Contents

Preface
xvii

1 **Introduction**
Bernhard H. Walke, Guido Hiertz and Lars Berlemann
1.1 Standardization
1.2 Next-generation Systems
1.3 The IEEE 802 Project
1.4 Motivation and Outline
1

2 **Wireless Communication – Basics**
Bernhard H. Walke, Lars Berlemann, Guido Hiertz, Christian Hoymann, Ingo Forkel and Stefan Mangold
2.1 Radio Transmission Fundamentals
2.1.1 Free-space Propagation
2.1.2 Two-path Propagation Over Flat Terrain
2.1.3 Attenuation
2.1.4 Fading
2.1.5 Shadowing
2.1.6 Filtering and Transmit Spectrum Masks
2.1.7 Propagation Models
2.1.7.1 One-slope Model
2.1.7.2 Hata–Okumura Model
2.1.7.3 Walfish–Ikegami Model
2.1.7.4 Dual-slope Model
2.1.7.5 Berg Model
2.1.8 Signal-to-Interference Ratio (SIR)
2.1.9 Noise – An Additional Source of Interference
2.1.10 Signal to Interference and Noise Ratio (SINR)
2.1.11 Interference Range
2.1.12 Digital Modulation
2.1.13 Modulation and Coding of Radio Signals
7

...
Contents

2.2 Duplexing Schemes
- **2.2.1 Time Division Duplex**
- **2.2.2 Frequency Division Duplex**

2.3 Multiplexing
- **2.3.1 Frequency Division Multiplex**
- **2.3.2 Time Division Multiplex**
- **2.3.3 Code Division Multiplex**
- **2.3.4 Space Division Multiplex**
- **2.3.5 Orthogonal Frequency Division Multiplex**
 - 2.3.5.1 Pilot Tones and Preambles
 - 2.3.5.2 Fast Fourier Transformation (FFT)
 - 2.3.5.3 Cyclic Prefix

2.4 Switching in Communication Networks
- **2.4.1 Circuit Switching**
- **2.4.2 Packet Switching**

2.5 Channel Coding for Error Correction and Error Detection
- **2.5.1 Forward Error Correction**
- **2.5.2 Automatic Repeat Request Protocols**
 - 2.5.2.1 Send-and-Wait
 - 2.5.2.2 Go-back-N
 - 2.5.2.3 Selective-Reject
 - 2.5.2.4 Summary
- **2.5.3 Hybrid Automatic Repeat Request**

2.6 Medium Access Control (MAC) Protocols
- **2.6.1 ALOHA**
 - 2.6.1.1 Pure ALOHA
 - 2.6.1.2 Slotted ALOHA
 - 2.6.1.3 Comparison of Pure and Slotted ALOHA
- **2.6.2 Carrier Sense Multiple Access**
 - 2.6.2.1 CSMA Variants
 - 2.6.2.2 CSMA/CD
 - 2.6.2.3 CSMA/CA
- **2.6.3 Polling**
- **2.6.4 Summary**

3 Radio Spectrum Regulation

Lars Berlemann and Bernhard H. Walke

3.1 Regulation Bodies and Global Institutions
- **3.1.1 International Telecommunication Union**
- **3.1.2 Europe**
- **3.1.3 Germany**
- **3.1.4 Japan**
- **3.1.5 China**
- **3.1.6 United States**

3.2 Licensed and Unlicensed Spectrum
- **3.2.1 Licensed Spectrum**
- **3.2.2 The Problem with Licensing**
4 Mesh Networks – Basics
Guido Hiertz, Erik Weiss and Bernhard H. Walke
4.1 Introduction 54
4.2 Classification of Wireless Mesh Networks 57
4.3 General Problem Statement 58
 4.3.1 Path Selection 58
 4.3.2 Medium Access Control 59
4.4 Exploiting the Capacity of the Radio Channel by Spatial Reuse 59
 4.4.1 Hidden Devices – Potential Interferers 61
 4.4.2 Exposed Devices – Unused Capacity 62
4.5 Fairness and Congestion Avoidance 63
4.6 Routing 65
 4.6.1 Routing Algorithms 65
 4.6.1.1 Ad-hoc On-demand Distance Vector Routing (AODV) 66
 4.6.1.2 Route Discovery 66
 4.6.1.3 Route Maintenance 68
 4.6.1.4 Local Repair 68
 4.6.2 Common Link Layer Behavior (Link Adaptation) 68
 4.6.3 Link Breakage Prediction 70
 4.6.4 Actions for Expected Link Break 71
 4.6.5 Early Route Rearrangement (ERRA) 72
 4.6.6 Early Route Update (ERU) 73
 4.6.7 Simulation Results 74
 4.6.8 Conclusions 75
4.7 Summary 75

5 IEEE 802.11 Wireless Local Area Networks
Stefan Mangold, Lars Berleemann, Matthias Siebert and Bernhard H. Walke
5.1 Scope of 802.11 77
5.2 Reference Model, Architecture, Services, Frame Formats 78
 5.2.1 Reference Model 78
 5.2.2 Architecture 79
 5.2.3 Services 80
 5.2.4 802.11 Frame Formats 80
5.3 Physical Layer 82
 5.3.1 Frequency Hopping, Direct Sequence Spread Spectrum, and Infrared 83
 5.3.2 802.11B Complementary Code Keying, CCK 83
 5.3.3 802.11A/G Orthogonal Frequency Division Multiplexing 83
5.4 Medium Access Control Protocol 84
 5.4.1 Distributed Coordination Function 84
 5.4.1.1 Listen Before Talk 85
 5.4.1.2 Timing and Interframe Spaces 85
 5.4.1.3 Collision Avoidance 87
 5.4.1.4 Recovery Procedure and Retransmissions 88
 5.4.1.5 Post-backoff 88
 5.4.1.6 Fragmentation 89
 5.4.1.7 Hidden Stations and RTS/CTS 90
 5.4.2 Synchronization and Cell Search 91
 5.4.3 Scanning Procedures in WLAN 802.11 93
 5.4.3.1 Passive Scanning 93
 5.4.3.2 Active Scanning 93
 5.5 Medium Access Control with Support for Quality-of-Service 94
 5.5.1 Point Coordination Function 94
 5.5.2 QoS Support with PCF 95
 5.5.3 QoS Support Mechanisms of 802.11E 95
 5.5.4 Improvements of the Legacy 802.11 MAC 96
 5.5.5 Contention-based Medium Access 97
 5.5.6 EDCA Parameters Per AC 98
 5.5.7 Evaluation of Contention-based Medium Access 100
 5.5.7.1 Related Work 101
 5.5.7.2 EDCA throughput Capacity in an Isolated QBSS with Four Stations 101
 5.5.7.3 EDCA throughput with Increasing Number of Stations 101
 5.5.8 Controlled Medium Access 103
 5.5.8.1 QoS Guarantee with HCCA vs. EDCA 103
 5.5.8.2 The Superframe 105
 5.5.9 Block Acknowledgment 105
 5.5.10 Direct Link Protocol (DLP) 107
 5.6 Radio Spectrum Management 107
 5.6.1 Measurements in 802.11 107
 5.6.1.1 Information Transfer 107
 5.6.1.2 Specific Measurements in 802.11h 108
 5.6.1.3 Basic Report 109
 5.6.1.4 Clear Channel Assessment (CCA) Report 109
 5.6.1.5 Receive Power Indication (RPI) Histogram Report 109
 5.6.2 Specific Measurements in 802.11K 110
 5.6.2.1 Channel Load Report 111
 5.6.2.2 Noise Histogram Report 112
 5.6.2.3 Beacon Report 112
 5.6.2.4 Frame Report 113
 5.6.2.5 Hidden Station Report 113
 5.6.2.6 Medium Sensing Time Histogram Report 113
 5.6.2.7 STA Statistics Report 114
 5.6.2.8 LCI Report 114
 5.6.2.9 Measurement Pause Request 115
5.7 History and Selected Sub-standards, i.e., Amendments

5.7.1 IEEE 802.11 115
5.7.2 IEEE 802.11a 115
5.7.3 IEEE 802.11b 115
5.7.4 IEEE 802.11c 116
5.7.5 IEEE 802.11d 116
5.7.6 IEEE 802.11e 116
5.7.7 IEEE 802.11f 116
5.7.8 IEEE 802.11g 116
5.7.9 IEEE 802.11h 117
5.7.10 IEEE 802.11i 117
5.7.11 IEEE 802.11k 117

6 IEEE 802.15 Wireless Personal Area Networks 119

Guido Hiertz, Yunpeng Zang and Bernhard H. Walke

6.1 Scope of 802.15 120

6.1.1 Objectives 120

6.1.2 Different Subgroups 120

6.2 802.15.3 – High-speed Wireless Personal Area Networks 121

6.3 Task Group 3 122

6.3.1 802.15.3 Medium Access Control 122

6.3.1.1 802.15.3 Network Topology 123

6.3.1.2 802.15.3 Medium Access Control 124

6.3.1.3 Contention Access Period (CAP) 124

6.3.1.4 Channel Time Allocation Period (CTAP) 126

6.3.1.5 802.15.3 Data Transmission 126

6.3.1.6 802.15.3 Network Security and Robustness 127

6.3.1.7 802.15.3 Power Management 127

6.3.2 802.15.3 Physical Layer 127

6.4 Task Group 3a 128

6.4.1 DS-UWB Proposal 129

6.4.2 MB-OFDM Proposal 130

6.5 Task Group 3b 133

6.6 Task Group 3c 133

6.7 WiMedia (Multiband OFDM) Alliance MAC Layer 134

6.7.1 Overview 135

6.7.2 Next Generation WPAN – WiMedia MAC 135

6.7.2.1 Medium Access 135

6.7.2.2 Prioritized Contention Access 135

6.7.2.3 Distributed Reservation Protocol 136

6.7.2.4 Transmission Opportunities 138

6.7.2.5 Acknowledgement Policies 138

6.7.2.6 Minimum Interframe Space and Frame Aggregation 138

6.7.2.7 Fragmentation and RTS/CTS Handshake 138

6.7.2.8 Beacon Period and Beacon Frames 138

6.7.3 Simulative Performance Analysis 140

6.7.4 Conclusion 145
6.8 Next-generation WPAN Technologies
 6.8.1 Market Perspective
 6.8.2 PHY Technology
 6.8.3 MAC Design

7 IEEE 802.16 Wireless Metropolitan Area Networks
 Christian Hoymann and Bernhard H. Walke
 7.1 Scope of 802.16
 7.2 Deployment Concept, Reference Model and Target Frequency Bands
 7.2.1 Deployment Concept
 7.2.2 Reference Model
 7.2.3 Target Frequency Bands
 7.3 History and Different Subgroups
 7.3.1 History
 7.3.2 IEEE 802.16-2004 – Base Document
 7.3.3 IEEE 802.16/Conformance
 7.3.4 IEEE 802.16.2 Coexistence
 7.3.5 IEEE 802.16e Mobility
 7.3.6 IEEE 802.16f/g/i Network Management
 7.3.7 IEEE 802.16h License Exempt
 7.3.8 IEEE 802.16j Mobile Multi-hop Relay Study Group
 7.3.9 ETSI BRAN HiperACCESS and HiperMAN
 7.3.10 WiMAX Forum
 7.3.11 Wireless Broadband (WiBro)
 7.4 Physical Layer
 7.4.1 Orthogonal Frequency Division Multiplexing in 802.16
 7.4.1.1 Randomizer
 7.4.1.2 Forward Error Correction
 7.4.1.3 Interleaving
 7.5 Medium Access Control Layer
 7.5.1 Service-Specific Convergence Sublayer
 7.5.1.1 Packet Convergence Sublayer
 7.5.1.2 ATM Convergence Sublayer
 7.5.2 MAC Common Part Sublayer
 7.5.2.1 Duplex Modes
 7.5.2.2 Frame Structure
 7.5.2.3 Frame Control
 7.5.2.4 Packet Data Unit Format
 7.5.2.5 Fragmentation and Packing
 7.5.2.6 Automatic Repeat Request
 7.5.2.7 Connection Identifier
 7.5.2.8 Network Entry
 7.5.2.9 Connection Management
 7.5.2.10 Bandwidth Requests and Uplink Scheduling Services
 7.5.3 Security Sublayer
 7.6 System Profiles
 7.6.1 MAC Profiles
 7.6.2 Physical Layer Profiles
 7.6.3 RF Profiles, Duplexing Modes and Power Classes
7.7 Space Division Multiple Access
 7.7.1 PHY Layer Comprising an Antenna Array
 7.7.2 Enhanced PHY Service Access Point
 7.7.3 SDMA Enhanced Medium Access Control Layer
 7.7.4 SDMA Scheduling
7.8 Performance Evaluation of 802.16
 7.8.1 Multi-user Multi Phy Mode Scenario
 7.8.1.1 PHY Layer Configuration and PHY Mode Distribution
 7.8.1.2 MAC Layer Configuration and Performance Metric
 7.8.2 Performance Analysis
 7.8.2.1 System Performance of the Example Scenario
 7.8.3 Simulative Performance Evaluation
 7.8.3.1 IEEE 802.16 Simulator
 7.8.3.2 Simulation Results
7.9 Performance of SDMA Enabled 802.16 Networks
 7.9.1 Scenario and Simulation Environment
 7.9.2 Downlink Cell Throughput
 7.9.3 Signal to Interference Plus Noise Ratio
7.10 Conclusion

8 IEEE 802.11, 802.15 and 802.16 for Mesh Networks

Guido Hiertz, Lars Berlemann, Harianto Wijaya, Christian Hoymann,
Stefan Mangold and Bernhard H. Walke

8.1 Approaches to Wireless Mesh Networks in IEEE and Industry
 8.1.1 Differences between Mesh WPAN, WLAN and WMAN
 8.1.2 Mesh WLAN
 8.1.2.1 802.11s
 8.1.2.2 Summary
 8.1.3 Mesh WPAN
 8.1.3.1 Status of Standardization in TG 802.15.5
 8.1.4 Mesh WMAN
 8.1.4.1 802.16 Mesh Option
 8.1.4.2 802.16j
8.2 Extensions to IEEE 802 MAC Protocols – Homogeneous Multi-hop Networks
 8.2.1 IEEE 802.16 Multi-hop Networks
 8.2.1.1 Multi-hop Operation in the Time and Frequency Domain
 8.2.1.2 MAC Subframe Embedding
 8.2.1.3 Hierarchical Beacon with Fixed Slot Allocation
 8.2.1.4 Time Sharing Wireless Router
 8.2.1.5 Time Sharing Wireless Router with Spatial Reuse
 8.2.2 IEEE 802.11e Multi-hop Networks
 8.2.2.1 Collision Avoidance through Channel Reservation
 8.2.2.2 Collision Avoidance by Channel Reservation with Spatial Reuse
 8.2.3 Performance Evaluation Results
 8.2.3.1 Scenario Description
 8.2.3.2 Mean Delay vs. Offered Traffic
 8.2.3.3 System Capacity vs. Distance between BS/HC and FRS
 8.2.4 Summary
8.3 Extensions to IEEE 802 MAC Protocols for Heterogeneous Multi-hop Networks

8.3.1 Overview

8.3.2 Medium Access Control in Heterogeneous Mesh Networks

8.3.2.1 802.11 Mesh Network to Serve 802.11 Stations

8.3.2.2 802.16 Mesh Network to Serve 802.11 Stations

8.3.2.3 New Mesh Network Protocol to Connect 802.16 BSs

8.3.3 Interworking Control of 802.16 and 802.11

8.3.3.1 Scenario

8.3.3.2 Medium Access Control

8.3.3.3 BSHC and Legacy 802.11 Stations

8.3.4 Performance Evaluation Results

8.3.5 Summary

8.4 Conclusion

9 Coexistence in IEEE 802 Networks

Lars Berlemann, Stefan Mangold and Bernhard H. Walke

9.1 Homogeneous Coexistence – Spectrum Sharing 802.11e Networks

9.1.1 Coexistence Scenario

9.1.2 Overview

9.1.3 Single Stage Game

9.1.3.1 Quality-of-Service as Utility

9.1.3.2 Utility under Competition

9.1.4 Behaviors in Single Stage Games

9.1.4.1 Cooperation through Predictable Behavior

9.1.4.2 Classification of the Opponent’s Behavior

9.1.5 Equilibrium Analysis of Single Stage Game

9.1.6 Multi Stage Game

9.1.7 Strategies in Multi Stage Games

9.1.7.1 Static Strategies

9.1.7.2 Dynamic (Trigger) Strategies Grim and TitForTat

9.1.7.3 RANDOM Strategy

9.1.7.4 QoS Support in Multi Stage Games of Competing WLANs

9.1.8 Coexistence Among 802.16 Systems

9.2 Heterogeneous Coexistence – Unlicensed Operation of 802.16

9.2.1 Coexistence Scenario

9.2.2 Protecting the Beginning of 802.16 MAC Frame

9.2.3 Protecting the 802.16 UL Subframe

9.2.4 Shifting the Contention Slots

9.3 Summary and Conclusion

10 Broadband Cellular Multi-hop Networks

Bernhard H. Walke, Ralf Pabst and Daniel C. Schultz

10.1 Definitions

10.2 Rationale

10.3 Related Work
10.4 Relay-based Deployment Concept for Cellular Broadband Networks 259
 10.4.1 Relaying Use Cases 260
 10.4.1.1 Relay to Increase Coverage Range 260
 10.4.1.2 Relay to Increase Cell Capacity 261
 10.4.1.3 Relay to Cover Locations Heavily Shadowed from Access Point 261
 10.4.1.4 Exploiting Spatial Separation of Subcells in REC 263
 10.4.2 Estimation of Subcell Capacity in a Relay Enhanced Cell 264
 10.4.2.1 Multi-hop throughput in Cellular Deployment 264
 10.4.2.2 Subcell Capacity served by an FRS 264
 10.4.2.3 Capacity of Multi-hop Links under Delay Constraint 266
 10.5 Conclusions 267

11 Mutual Integration and Cooperation of Radio Access Networks 269
 Matthias Siebert and Bernhard H. Walke
 11.1 State-of-the-Art Overview 270
 11.1.1 ETSI BRAN/3GPP 270
 11.1.2 IEEE 272
 11.1.2.1 IEEE 802.11u: Interworking with External Networks 272
 11.1.2.2 802.21 Media Independent Handoff Working Group 273
 11.1.3 IETF 274
 11.1.4 ITU-T 274
 11.1.5 WWRF 275
 11.2 Mobility and Handover 275
 11.2.1 General Aspects of Mobility 276
 11.2.2 Handover Aspects 277
 11.2.2.1 Definition 278
 11.2.2.2 Reasons for Handover 278
 11.2.2.3 Types of Handover 279
 11.2.2.4 Handover Control 282
 11.2.2.5 Layer 2 Handover 283
 11.2.2.6 Higher Layer Handover 283
 11.2.2.7 Horizontal and Vertical Handover 284
 11.3 Trigger 286
 11.3.1 Definition and Classification 286
 11.3.2 Decision Criteria 287

12 Future Mesh Technologies 289
 Rui Zhao, Ole Klein, Bernhard H. Walke and Lars Berlemann
 12.1 Facts on Medium Access Control 289
 12.1.1 State of the Art in Medium Access Control Protocols – A Taxonomy 291
 12.1.1.1 HiperLAN 2 (H/2) 291
 12.1.1.2 DECT 292
 12.1.1.3 GPRS 292
 12.1.2 Potentials and Limitations of the State-of-the-art MAC Protocols 292
 12.1.2.1 Reservation per Packet 293
 12.1.2.2 TDMA in the Short 295
 12.1.2.3 TDMA in the Long 296
12.1.3 Key Methods for QoS Supporting Medium Access Control Protocols 296
12.1.3.1 Single-hop Links 296
12.1.3.2 Multi-hop Links 297
12.2 Mesh Networking for 802.11 WLAN 298
12.2.1 Mesh Distributed Coordination Function 299
12.2.1.1 TDMA Frame and Energy Signals 299
12.2.1.2 Prioritized Channel Access 300
12.2.1.3 Link Setup and Traffic Channel Reservation 303
12.2.1.4 Transmission and On-demand-TCH Turnaround 303
12.2.1.5 Packet Multiplexing and Multi-hop Operation 304
12.2.1.6 Coexistence 305
12.2.2 Performance Evaluation Results 305
12.2.2.1 Simulation Tool 305
12.2.2.2 Simulation Results – QoS Performance in Mesh Networks 306
12.3 Conclusion 308

13 Cognitive Radio and Spectrum Sharing 311
Lars Berlemann, Stefan Mangold and Bernhard H. Walke
13.1 From Software-defined Radio to Cognitive Radio 311
13.1.1 Software-defined Radio and Software Radio 311
13.1.2 Composite Radio and Reconfigurable Radio 312
13.1.3 Cognitive Radio 312
13.2 Cognitive Radio Networks 314
13.2.1 Essential Characteristics 315
13.2.2 Spectrum Information Base 316
13.2.3 Similar Approaches and Related Work 317
13.3 Spectrum Sharing and Flexible Spectrum Access 317
13.3.1 Spectrum Trading 317
13.3.2 Underlay and Overlay Spectrum Sharing 319
13.3.2.1 Opportunistic Spectrum Usage 320
13.3.2.2 IEEE 802.11k 321
13.3.3 Vertical and Horizontal Spectrum Sharing 321
13.3.4 Coexistence, Coordination and Cooperation 324
13.4 Coexistence-based Spectrum Sharing 324
13.4.1 Dynamic Frequency Selection 325
13.4.2 Transmit Power Control 325
13.4.3 Ultra-wide Band 325
13.4.4 IEEE 802.16.2 326
13.4.5 IEEE 802.16h 326
13.4.6 IEEE 802.19 326
13.5 Coordination-based Horizontal Spectrum Sharing 326
13.5.1 Common Spectrum Coordination Channel 326
13.5.2 Dynamic Spectrum Allocation 327
13.5.2.1 Brokerage-based Spectrum Sharing 327
13.5.2.2 Inter-operator Spectrum Sharing 328
13.5.3 IEEE 802.11y 328
13.5.4 Spectrum Sharing Games 328
13.6 Coordination-based Vertical Spectrum Sharing
 13.6.1 Common Control Channel 329
 13.6.2 IEEE 802.22 330
 13.6.3 Spectrum Pooling 330
 13.6.4 Value Orientation 330
 13.6.5 Spectrum Load Smoothing 330
13.7 Policies and Etiquette in Spectrum Usage
 13.7.1 Policy Framework 331
 13.7.2 Spectrum Navigation 332
 13.7.3 Reasoning-based Spectrum Navigation
 13.7.3.1 Reasoning 333
 13.7.3.2 Knowledge Representation 333
 13.7.3.3 Traceability of Decision Making 334
 13.7.4 Policy-defined Medium Access Control 334
13.8 Summary and Conclusion 334

14 Conclusions 337
 Bernhard H. Walke, Lars Berlemann and Stefan Mangold

Abbreviations 345

References 355

Index 375