1

Use of Oxide Ligands in Designing Catalytic Active Sites

Edward L. Lee and *Israel E. Wachs*

1.1

Introduction

Oxides of the group 5–7 metals (V, Nb, Ta, Cr, Mo, W, and Re) supported on a high surface area oxide material (SiO₂, Al₂O₃, TiO₂, ZrO₂, etc.) are recognized as industrially important catalysts for numerous chemical reactions [1–11]. For example, these catalysts are utilized for ο-xylene oxidation to phthalic anhydride [12, 13], methane/methanol oxidation to formaldehyde [14], and selective catalytic reduction (SCR) of NO with ammonia to N₂ over supported vanadia catalysts [15–19]; SCR of NO with ammonia and selective oxidation of methane over supported molybdena catalysts [20–22]; olefin metathesis and hydrocarbon isomerization reactions over tungsta catalysts; and metathesis of olefins and alkanes over supported rhenia catalysts [23–25]. These supported metal oxide catalysts consist of highly dispersed surface metal oxide species – the catalytic active sites – anchored to the underlying oxide support. Over the decades, there have been many successful methods of controlling and anchoring the molecularly dispersed metal oxide phase by chemical vapor deposition (CVD) [26–28], incipient wetness impregnation [29–34], and precipitation [35–37]. The surface coverage of the metal oxide overlayer can vary from below to above monolayer coverage or the maximum dispersion limit, that is, maximum metal oxide dispersion before formation of crystalline metal oxide nanoparticles (NPs). Below monolayer surface coverage, only surface isolated (or monomeric) and surface polymeric metal oxide species are present on the support. At low surface coverage, only isolated surface metal oxide species are generally present [38]. Above monolayer coverage or maximum dispersion limit, crystalline metal oxide NPs are also present and reside on top of the molecularly dispersed surface metal oxide monolayer. Therefore, monolayer coverage or maximum dispersion limit is a critical parameter that allows distinguishing between two-dimensional molecularly dispersed surface metal oxide species and the three-dimensional NPs.
present in supported metal oxide materials. For the purposes of simplifying and focusing the discussion, only SiO\textsubscript{2}-supported metal oxide catalysts at submonolayer coverages will be discussed in this chapter since the catalysis literature has demonstrated that only isolated surface metal oxide species are present at low coverage for supported MO\textsubscript{x}/SiO\textsubscript{2} catalysts [14, 38–56].

The surface metal oxide species of supported metal oxide catalysts control the overall catalytic performance such as activity and selectivity. Thus, understanding the interactions of the surface metal oxide catalytic active sites with their environment (e.g., the underlying oxide support material and reactive environments) provides the ability to control and design these catalytic active sites. By spreading the catalytic active oxide layer over the underlying oxide support layers, the interfacial interaction of these “monolayer” catalysts results in different structures and catalytic properties than their bulk metal oxide counterparts [57, 58]. Therefore, recent studies have focused on characterizing the bridging M–O–support bond for the design and control of the catalytic performance. The focus of this chapter will be to systematically surface modify the SiO\textsubscript{2} support with surface AlO\textsubscript{x}, TiO\textsubscript{x}, and ZrO\textsubscript{x} species (the oxide ligands). The group 5–7 transition metal oxides (V\textsubscript{2}O\textsubscript{5}, MoO\textsubscript{3}, and Re\textsubscript{2}O\textsubscript{7}) will then be anchored onto the surface-modified SiO\textsubscript{2} support by means of incipient wetness impregnation of soluble precursors and calcination. The V\textsubscript{2}O\textsubscript{5}, MoO\textsubscript{3}, and Re\textsubscript{2}O\textsubscript{7} catalytic active sites were chosen because of their dominant redox characteristics that will allow comparison of their reactivity properties. These “multilayered” supported M\textsubscript{1}O\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalysts will then be characterized and examined for their surface chemistry against the model supported MO\textsubscript{x}/SiO\textsubscript{2} systems to understand the influence of the oxide ligands on the molecular/electronic structures and catalytic performance of the surface metal oxide species.

In keeping with the theme of the book for new approaches to synthesis and characterization of heterogeneous catalysts, this chapter will focus on the oxide ligand of the “multilayered” supported M\textsubscript{1}O\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalysts by characterizing the surface M\textsubscript{1}O\textsubscript{x} molecular and electronic structures and investigating the catalytic reactivity for oxidative dehydrogenation of methanol to formaldehyde. The molecular and electronic structures of the supported M\textsubscript{1}O\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalysts will be determined with in situ Raman and UV–Vis diffuse reflectance spectroscopy (DRS) spectroscopy, respectively, under various environments (e.g., dehydrated, oxidative, reductive, and isotopic exchange) to investigate the fundamental interactions between the surface metal oxide overlayer (M\textsubscript{1}O\textsubscript{x}) and the surface oxide modifiers (M\textsubscript{2}O\textsubscript{x}) on the silica support. Time-resolved Raman spectra for reductive and isotopic oxygen exchange studies will provide additional insights into the dynamic nature of these catalytic active sites. The catalytic surface reactivity will be chemically probed via CH\textsubscript{3}OH temperature-programmed surface reaction (CH\textsubscript{3}OH-TPSR) spectroscopy that will provide the surface kinetics and nature of the catalytic active sites (redox, acidic, or basic). Theoretical modeling results via computational density functional theory (DFT) from the literature will be referenced where appropriate. This systematic approach to supported metal oxide catalysts will assist in the establishment of molecular structure–reactivity relationship for designing and controlling surface metal oxide catalytic active sites.
1.2 Molecular Structural Determination of Supported Metal Oxide Catalysts with In Situ Raman Spectroscopy

Raman spectroscopic studies in the late 1970s first reported the detection of surface metal oxide species for supported MoO$_3$ [59–61], WO$_3$ [62], V$_2$O$_5$ [63, 64], and Re$_2$O$_7$ [65] catalysts. These studies were followed by in situ Raman measurements in the early 1980s, where the gas phase environment and temperature of the catalyst could be controlled [66–70]. Detection of the reversible surface structures when exposed to hydrated and dehydrated conditions was demonstrated during this period [66]. These earlier experimental breakthroughs and with further advances in Raman technology allowed for the characterization of the surface structures of mixed metal oxide catalysts [58]. New approaches for in situ Raman spectroscopic measurements of catalytic surfaces are now undertaken via measurements under reductive, isotopic D$_2$O–H$_2$O and 16O–18O exchange environments coupled with time-resolved spectroscopy. These approaches provide new fundamental insights that enable the molecular structural determination of the catalytic active surface metal oxide sites present in supported metal oxide catalysts.

It is important to recall that isotopic 16O–18O exchange results in band splitting. Based on vibrational theory, monoxo species are expected to exhibit two Raman vibrations ($M=^{16}$O and $M=^{18}$O); dioxo species are projected to give rise to three Raman vibrations (16O=$M=^{16}$O, 18O=$M=^{16}$O, and 18O=$M=^{18}$O); and trioxo species are expected to exhibit four Raman vibrations (18O=$M=^{16}$O, 18O=$M=^{18}$O) [71–75]. The position of the vibrational shifts can be estimated using a simple M–O diatomic oscillator model for the isotopic ratio:

$$\frac{v^{16}_O-M}{v^{18}_O-M} = \frac{\frac{1}{2\pi}}{\frac{1}{2\pi}} \sqrt{\left(\frac{k}{m(1/m_{16} + 1/m_{18})}\right)} = \sqrt{\left(\frac{1}{m(1/m_{16} + 1/m_{18})}\right)}$$

where v is the frequency of the M–O bond (cm$^{-1}$), k is the force constant, and m is the mass of the transition metal ion or oxygen [71, 73].

1.3 Characterization of AlO$_x$, TiO$_x$, and ZrO$_x$ Surface-Modified SiO$_2$

The surface of SiO$_2$ was modified by the deposition on the surface of M$_x$O$_y$ (AlO$_x$, TiO$_x$, or ZrO$_x$) species. For each supported M$_x$O$_y$/SiO$_2$ system, the surface-modified SiO$_2$ support consists of 5% M$_x$O$_y$/SiO$_2$, which is below the maximum dispersion limit for these oxides on SiO$_2$. The in situ Raman spectra of the dehydrated supported M$_x$O$_y$/SiO$_2$ samples are presented in Figure 1.1 (left) and do not exhibit any new significant spectral features as compared to the original SiO$_2$ support, with the exception of TiO$_x$/SiO$_2$, which will be discussed below. The deposition of alumina, titania, and zirconia on the silica support causes a decrease in the intensity of the band
Figure 1.1 (Left) In situ Raman spectra of (A) pure and unmodified SiO$_2$ and surface-modified SiO$_2$ with (B) 5% ZrO$_x$, (C) 5% AlO$_x$, and (D) 5% TiO$_x$ oxide ligands using 325 nm excitation energy at 500 °C. (Right) Time-resolved in situ Raman spectra of 5% TiO$_x$/SiO$_2$ during H$_2^{18}$O exposure after (A) 0 min, (B) 30 min, and (C) 80 min.

at 970 cm$^{-1}$ of the Si–OH vibration and indicates consumption of the Si–OH surface hydroxyls. This decrease is further confirmed by in situ near-IR DRS at 7315 cm$^{-1}$ (2v). The surface modification of the SiO$_2$ surface by the deposited oxides leads to direct interactions with the silica surface hydroxyl groups, resulting in the broadening of the 970 cm$^{-1}$ band, and in the ZrO$_2$/SiO$_2$ spectrum, its shift toward lower wavenumbers (∼940 cm$^{-1}$), which is suggestive of bridging Zr—O—Si linkages. Therefore, the AlO$_x$, ZrO$_x$, and TiO$_x$ surface modifiers anchor to the silica at the Si–OH site to create a surface metal oxide layer with residual exposed Si–OH species also present.

Additional Raman features are present, however, for the supported TiO$_x$/SiO$_2$ sample in Figure 1.1 (left). The transverse-optical (TO) mode of the silica network at 1065 cm$^{-1}$, assigned to perturbed Si(−O$^-$)$_2$ and Si−O$^-$ silica vibrations from the formation of Ti−O−Si bridging bond, appears to be resonance Raman enhanced with the 325 nm excitation, and the broad band at 550–600 cm$^{-1}$ is suggestive of a small amount of polymeric Ti−O−Ti species. The supported TiO$_x$/SiO$_2$ sample was exposed to isotopic 18O$_2$ and monitored with time-resolved in situ Raman, see Figure 1.1 (right), to determine if the ∼1065 cm$^{-1}$ band is related to the TO mode of the silica network or possibly the Ti=O bond. The isotopic oxygen exchange resulted in the band shift from ∼1060 to ∼1030 cm$^{-1}$, which exactly corresponds to that of the TO vibration [76] since Ti=O should shift to 1015 cm$^{-1}$ for a simple Ti–O diatomic oscillator (see Equation 1.1).

Extensive characterization experiments under dehydrated conditions have also been conducted by means of in situ IR, UV–Vis DRS, XPS, XANES, and 27Al NMR,
1.5 Molecular Structure of Dehydrated Supported V_2O_5/SiO$_2$

The surface vanadium oxide species in the dehydrated V_2O_5/SiO$_2$ catalyst exhibit a sharp and intense Raman vibration at 1038 cm$^{-1}$, as shown in Figure 1.3 (left), curve (7).
labeled A, and has been assigned to the terminal $\nu_n(V=O)$ stretch of isolated surface VO$_4$ species [39–45]. This Raman band position is also independent of exposure to D$_2$O at elevated temperatures indicating that there are no V–OH functionalities (not shown for brevity). The position of the terminal $V=O$ vibration at 1038 cm$^{-1}$ is consistent with the monoxo $V=O$ structure present in $H_3\text{SiMo}_{11}V\text{O}_{40}$ Keggin structure (1034 cm$^{-1}$) and $(\text{Ph}_3\text{SiO})_3V=O$ (1022 cm$^{-1}$), as well as with DFT calculations (1038–1047 cm$^{-1}$) for the simple gas phase monomer structure, $O=V(\text{OCH}_3)_3$ and monomeric polyhedral oligomeric silsesquioxanes [84–86]. Furthermore, dioxo O=V=O structures vibrate at a wavenumber ~ 970 (ν_s)/960 (ν_{as}) cm$^{-1}$ [73]. The terminal $\nu_s(V=O)$ vibration is accompanied by weaker bands at 340 and 905 cm$^{-1}$, assigned to the bending (δ) V–O and stretching V–O–Si modes, respectively. The weak shoulder band at 1070 cm$^{-1}$ is characteristic of the silica network TO mode and has been assigned to perturbed Si(–O$^-$)$_2$ and Si–O$^-$ silica vibrations that are also indicative of the formation of bridging V–O–Si bonds [40]. The partial reduction of the 1038, 905, and 340 cm$^{-1}$ Raman bands at 600°C under the reducing H$_2$ environment, shown in curve B of Figure 1.3 (left), confirms the assigned V=O, V–O–Si and bending V–O vibrations to surface V–O vibrations [43]. Comparison of the Raman spectra for the reduced supported $V_2\text{O}_5$/SiO$_2$ catalyst sample with that of the SiO$_2$ support (see curve C of Figure 1.3 (left)) reveals the decrease of the silica 970 and 605 cm$^{-1}$ bands relative to the silica 800 cm$^{-1}$ band upon deposition of

Figure 1.2 In situ Raman spectra under oxidizing conditions using 532 nm excitation energy of (A) 6% WO$_3$/SiO$_2$, (B) 3% WO$_3$/5% Al$_2$O$_3$/SiO$_2$, (C) 20% WO$_3$/Al$_2$O$_3$, and (D) pure SiO$_2$ for reference.
surface vanadia species, indicating the preferential anchoring of the surface vanadia species at the isolated SiO$_2$ support surface hydroxyls and the three-membered siloxane rings, respectively. Deuterated water experiments result in a shift of the 970 cm$^{-1}$ band to 955 cm$^{-1}$ due to the exchange of Si–(OH) to Si–(OD) as seen with the pure silica [55]. Additional insight is provided by time-resolved isotopic oxygen exchange of the dehydrated supported V$_2$O$_5$/SiO$_2$ catalyst, shown in Figure 1.3 (right), and results in splitting of the surface V=O band to 1038 and 995 cm$^{-1}$ (assigned to $\nu_(s)(V=^{16}O)$ and $\nu_(s)(V=^{18}O)$, respectively) and shifting of the V–O–Si vibration from 905 to 865 cm$^{-1}$ [56, 72]. The time-resolved Raman spectra reveal that the two symmetric V=O bands remain at the same wavenumber during the exchange process. The shift from 1038 to 995 cm$^{-1}$ closely matches the theoretical V=^{18}O vibration at 993 cm$^{-1}$ of a simple diatomic oscillator model [56].

The Raman spectra of the dehydrated supported V$_2$O$_5$/TiO$_2$/SiO$_2$, V$_2$O$_5$/ZrO$_2$/SiO$_2$, and V$_2$O$_5$/Al$_2$O$_3$/SiO$_2$ catalysts are presented in Figure 1.4 (left) and give rise to a single sharp band at ~1035 cm$^{-1}$ from the $\nu_(s)(V=O)$ stretching mode of the dehydrated surface VO$_x$ species. The similarity of the terminal $\nu_(s)(V=O)$ vibrations for the supported VO$_x$/M$_2$O$_x$/SiO$_2$ catalysts to that of the model supported VO$_x$/SiO$_2$ catalyst indicates that all these catalysts contain the same monoxo V=O species. The constancy of the V=O vibration indicates that the surface structure stays monoxo even with the addition of the surface modifiers, as depicted in Figure 1.4 (right).
Figure 1.4 (Left) In situ Raman spectra (532 nm) of dehydrated supported (A) 5% V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{x}/SiO\textsubscript{2}, (B) 5% V\textsubscript{2}O\textsubscript{5}/ZrO\textsubscript{x}/SiO\textsubscript{2}, (C) 5% V\textsubscript{2}O\textsubscript{5}/AlO\textsubscript{x}/SiO\textsubscript{2}, and (D) 5% V\textsubscript{2}O\textsubscript{5}/SiO\textsubscript{2} catalysts under oxidizing conditions at 600 °C. Pure dehydrated SiO\textsubscript{2} spectrum (E) is provided for reference. Reproduced in part from refs. [44, 77, 87–90]. (Right) Schematic of dehydrated supported VO\textsubscript{x} species on SiO\textsubscript{2} and surface-modified silica.

Furthermore, there is no apparent ligand effect of the surface modifiers on the molecular structure of the surface VO\textsubscript{x} species. A new weak Raman band at ~700 cm-1 is also present for the supported VO\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalysts, which becomes more intense with increasing vanadia and additive concentrations and is tentatively assigned to the stretching mode of the corresponding V–O–Al/V–O–Zr/V–O–Ti bridging bonds.

1.6 Molecular Structure of Dehydrated Supported MoO\textsubscript{3}/SiO\textsubscript{2} and MoO\textsubscript{3}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} Catalyst Systems

The in situ Raman spectrum of dehydrated supported MoO\textsubscript{3}/SiO\textsubscript{2} is presented in curve A of Figure 1.5 (left). The dehydrated surface molybdenum oxide species possess dioxo (O=)\textsubscript{2}Mo(–O–Si)\textsubscript{2} and monoxo O=Mo(–O–Si)\textsubscript{4} structures that give rise to Raman bands for v\textsubscript{s}(Mo(=O)) at ~976–988 cm-1 and v\textsubscript{s}(Mo=O) at 1020 cm-1, respectively [91–97]. The corresponding dioxo v\textsubscript{as}(Mo(=O)) stretch appears as a shoulder at 965–975 cm-1 and the weak vibration at 364 cm-1 is attributed to the bending δ(O–Mo–O) mode [20, 75, 94–97]. The surface MoO\textsubscript{x} vibration at 1020 cm-1 is consistent with that of the monoxo H\textsubscript{3}SiMo\textsubscript{12}O\textsubscript{40} Keggin structure (1006 cm-1) and DFT calculations predicting monoxo (Si–O)\textsubscript{4}Mo=O vibrations at 1014–1017 cm-1.
Consequently, the surface molybdena vibrations present for the dehydrated supported MoO$_3$/SiO$_2$ catalyst samples at 976–988 cm$^{-1}$ with the shoulder band at 965–975 cm$^{-1}$ correspond to dioxo surface O═Mo═O species, consistent with DFT calculations predicting the dioxo (Si═O)$_2$:Mo(═O)$_2$ vibration located at 995(v_s) and 977 (v_{as}), respectively. The expected weak bridging Mo═O—Si band is not readily observed in the ∼900–930 cm$^{-1}$ region and may be overshadowed by the intense bands of the surface molybdena species. Upon exposure to reducing hydrogen environments, the surface v_s(Mo(═O)$_2$) vibration present in the in situ Raman spectrum of curve D of Figure 1.5 (left) reduces its intensity to about a quarter of the fully oxidized intensity, which indicates partial reduction. Additionally, the decrease in intensity of the Raman bands at 364, ∼965, and 1020 cm$^{-1}$ during the H$_2$ reduction treatments confirms that these assignments are associated with Mo═O vibrations. Oxidation of the partially reduced supported MoO$_3$/SiO$_2$ catalysts restores all the surface MoO$_x$ vibrations as shown in curve B of Figure 1.5 (left).

The surface dioxo v_s and v_{as} (Mo(═16O)$_2$) Raman bands at 988 and 970 cm$^{-1}$ shift to 938 and 920 cm$^{-1}$, respectively, after almost complete isotopic oxygen exchange of the corresponding Mo(═18O)$_2$ species, and are presented in Figure 1.5 (right). The shift of approximately ∼50 cm$^{-1}$ is consistent with earlier IR literature observations, that the 990 cm$^{-1}$ band shifts to 940 cm$^{-1}$ during isotopic exchange from Mo16O to Mo18O species [97] and that the 970 cm$^{-1}$ band shifts to 935 cm$^{-1}$ for the Mo16O to Mo18O species [98], and with Raman spectra studies that the 988 cm$^{-1}$ band shifts to 938 cm$^{-1}$ [99]. The Raman band of the surface monoxo v_s(Mo═16O) species at
1020 cm$^{-1}$ is not readily observed in Figure 1.5 (right) because of resonance enhancement of the vibrations of the surface dioxo species and the presence of a greater concentration of surface dioxo species at higher MoO$_x$ loading (8 wt.%). Consequently, only the isotopic shift of for surface dioxo species will be discussed. At intermediate extent of isotopic oxygen exchange, the band splitting occurs at 978 cm$^{-1}$ of the v_s(Mo($=^{16}$O)$_2$) vibration and at 934 cm$^{-1}$ of the v_s(Mo($=^{18}$O)$_2$) species. Note that the v_s(Mo($=^{16}$O)$_2$) vibration shifts from 988 cm$^{-1}$, when the surface MoO$_4$ contains \sim100% 16O, to 978 cm$^{-1}$, when the surface MoO$_4$ is composed of a mixture of 16O and 18O. No shift of any surface species (Raman bands at \sim965, 976–991, and 1020 cm$^{-1}$) is observed during H$_2$O–D$_2$O exchange or during injection of pure H$_2$O, which is consistent with the absence of an Mo–OH functionality. Therefore, shifting of the Raman bands is indicative of intermediate 16O=Mo=18O species, as suggested by DFT calculations. The DFT calculations predict that the Mo=O component shows a shift of not more than 5–7 cm$^{-1}$ (995 to \sim988 cm$^{-1}$) from v_s(Mo($=^{16}$O)$_2$) to v_s(Mo($=^{16}$O=Mo=18O)) and one that is larger, \sim32 cm$^{-1}$ (\sim988 to \sim956 cm$^{-1}$), from v_s(Mo($=^{16}$O)=Mo=18O) to v_s(Mo($=^{18}$O)$_2$). Experimentally, the Mo=O component shows an initial shift of 5–10 cm$^{-1}$ (981–988 to 976–987 cm$^{-1}$) followed by a larger one, of almost \sim40 cm$^{-1}$, to \sim933–938 cm$^{-1}$, which represents the shift from v_s(Mo($=^{16}$O)$_2$) to v_s(Mo($=^{16}$O=Mo=18O) to v_s(Mo($=^{18}$O)$_2$). The v_{as}(Mo($=^{16}$O)$_2$) shoulder vibration at 970 cm$^{-1}$ that shifts 40–50 cm$^{-1}$ to lower wavenumbers also closely follows the DFT calculations, where it is predict that the shift of v_{as}(Mo($=^{16}$O)$_2$) to v_{as}(Mo($=^{18}$O)$_2$) is \sim43 cm$^{-1}$ (977 to \sim934 cm$^{-1}$) after complete exchange. The shoulder at \sim920 cm$^{-1}$ is also consistent with v_{as}(Mo($=^{18}$O)$_2$) and not the Si–18OH vibration, which appears at 950 cm$^{-1}$ (not shown for brevity). Thus, consistent with predictions from the DFT calculations, the existence of the intermediate 16O=Mo=18O species allows for the conclusion that the dehydrated surface molybdenum oxide species exist as surface dioxo O$_2$Mo($=^{18}$O)$_2$ species.

The dehydrated supported MoO$_3$/TiO$_x$/SiO$_2$, MoO$_3$/ZrO$_x$/SiO$_2$, and MoO$_3$/AlO$_x$/SiO$_2$ catalysts give rise to Raman bands in the 985–1002 cm$^{-1}$ assigned to dehydrated surface dioxo Mo($=^{18}$O)$_2$ species, and are presented in curves A, B, and C, respectively, of Figure 1.6 (left) [88, 100]. These Raman spectra do not exhibit the Raman band at 1020 cm$^{-1}$ of the isolated surface monoxo M=O species, suggesting that the surface modifiers affected the ratio of the two dehydrated surface MoO$_x$ species. The slight shift from 981 to 985–1002 cm$^{-1}$ indicates distortions of the dioxo surface Mo($=^{18}$O)$_2$ species from interactions with the surface AlO$_x$, TiO$_x$, and ZrO$_x$ additives on the surface-modified SiO$_2$ support, schematically depicted in Figure 1.6 (right). The somewhat higher wavenumber value of 1002 cm$^{-1}$ for the supported MoO$_3$/AlO$_x$/SiO$_2$ system may reflect the presence of some monoxo surface MoO$_5$ species. The corresponding surface dioxo v_{as}(Mo($=^{18}$O)$_2$) band occurs as a shoulder at \sim965–975 cm$^{-1}$ on the strong symmetric stretch and is most visible for the highly distorted supported MoO$_3$/AlO$_x$/SiO$_2$ catalyst at 973 cm$^{-1}$, however, surface hydroxyl groups and some surface dioxo species may also overlap in this region. The weak and broad bands at \sim825–880 cm$^{-1}$ observed for supported MoO$_3$/AlO$_x$/SiO$_2$ and MoO$_3$/ZrO$_x$/SiO$_2$ catalysts are assigned to bridging M–O–Al and M–O–Zr bonds, respectively [95, 101, 102].
1.7 Molecular Structure of Dehydrated Supported Re₂O₇/SiO₂ Catalyst Systems

The dehydrated surface rhenium oxide species on the supported Re₂O₇/SiO₂ catalyst are present as isolated trioxo surface (O≡)₃Re−O−Si species, giving rise to Raman bands for νₐ(Re(≡O)) at 1010 cm⁻¹, νₐsr(Re(≡O)) at 977 cm⁻¹, and bending δ(Re−O−Re) at 343 cm⁻¹. The Raman spectrum is presented in curve A of Figure 1.7 (left) [103, 104]. The 977 cm⁻¹ band from the surface ReOₓ species of Re₂O₇/SiO₂ overlaps with the Si−OH band at 970 cm⁻¹, as will be further shown below. The positions of these three surface ReOₓ Raman bands coincide with the νₐ(Re(≡O)), νₐsr(Re(≡O)), and δ(Re−O−Re) vibrations of the trioxo Re(≡O)₃ functionality of the gas phase (O≡)₃Re−O−Re(≡O)₃ molecule at 1009, 972, and 341 cm⁻¹, respectively. However, the vibrations of the bridging Re−O−Re bond at 456 (νₐ) and 185 (δ) cm⁻¹ are absent, and this is consistent with the isolated nature of the surface rhenia species on the SiO₂ support. The bridging Re−O−Si band, expected to give rise to a weak band at ~900 cm⁻¹, is not readily apparent in the vibrational spectrum. Upon exposure to reducing hydrogen environments, the dehydrated surface ReO₄ species on SiO₂ readily reduces, as shown in curve C of Figure 1.7 (left). The complete removal of the Re−O vibrations under reducing environments followed by complete restoration of
the Re–O vibrations under oxidizing environments (Raman bands at 1010, 977, and 343 cm\(^{-1}\)) in curve B of Figure 1.7 (left) confirms that these vibrations are associated with the surface rhenia species. Note that the Raman spectrum of the reduced supported Re\(_2\)O\(_7\)/SiO\(_2\) catalyst looks exactly like the Raman spectrum of the dehydrated SiO\(_2\) support and demonstrates that the SiO\(_2\) support is not reduced by the reduction treatments. In addition, the broadening of the 977 cm\(^{-1}\) band to 968 cm\(^{-1}\) and the lack of shift of the 343 and 1010 cm\(^{-1}\) Raman bands during exposure to D\(_2\)O reflect that these vibrations are not associated with surface Re–OH species [55].

Isotopic H\(_2\)\(^{18}\)O exchange of the dehydrated supported Re\(_2\)O\(_7\)/SiO\(_2\) catalyst is shown in Figure 1.7 (right) and reveals the Raman band splitting of the Re(=O)\(_3\) species. The initial \(v_\text{s}(\text{Re}(=\text{O}))_3\) Raman band at 1010 cm\(^{-1}\) rapidly decreases in intensity and shifts to lower wavenumbers because of the incorporation of \(^{18}\)O into the surface ReO\(_4\) species and, concurrently, the \(v_\text{as}(\text{Re}(=\text{O}))_3\) band at 977 cm\(^{-1}\) also shifts to lower wavenumbers. The associated bending \(\delta(\text{O}–\text{Re}–\text{O})\) mode shifts from 343 to \(≈\)335 cm\(^{-1}\) as a consequence of incorporation of the \(^{18}\)O into the surface rhenia structure [56]. The time-resolved Raman spectroscopy during the isotopic oxygen
exchange allows for the resolution of the multiple band splitting of the symmetric and asymmetric vibrations, where the v_s vibrations are deconvoluted at ~ 1002, 990, and ~ 960 cm$^{-1}$ and the v_{as} vibrations are deconvoluted at 932 cm$^{-1}$, with a small shoulder at ~ 918 cm$^{-1}$. The Raman bands at ~ 1002 and 990 cm$^{-1}$ are tentatively assigned to a single substituted 18O species, 18O$=$Re($^{=16}$O)$_2$, and a double substituted 18O species, (18O$=$)$_2$Re$=$16O, where the 990 cm$^{-1}$ band grows at the expense of 1002 cm$^{-1}$. Furthermore, the 960 cm$^{-1}$ vibration, which becomes distinct after prolonged exposure to isotopic oxygen and at the expense of the ~ 1002 and 990 cm$^{-1}$ bands, is tentatively attributed to the triple substituted 18O species, (18O$=$)$_3$Re. It is expected that if complete isotopic oxygen exchange were achieved beyond what is presented in curve D of Figure 1.7 (right), the 990 cm$^{-1}$ would completely disappear and be replaced with the triply substituted (18O$=$)$_3$Re band at 960 cm$^{-1}$. For the initial v_{as}(Re($^{=16}$O)$_3$) band at 977 cm$^{-1}$, isotopic exchange shifts the band to 932 cm$^{-1}$ and a shoulder at 918 cm$^{-1}$, where both vibrations are tentatively assigned to a fully exchanged v_{as}(Re ($^{=18}$O)$_3$) vibration with various degrees of distortion. The detection of four surface rhenia isotopic vibrations (Re($^{=16}$O)$_3$ at 1010 cm$^{-1}$, Re($^{=18}$O)($^{=16}$O)$_2$ at ~ 1002 cm$^{-1}$, Re($^{=18}$O)$_2($^{=16}$O) at 990 cm$^{-1}$, and Re($^{=18}$O)$_3$ at 960 cm$^{-1}$) is consistent with the trioxo structure of the dehydrated surface ReO$_4$ species on SiO$_2$.

The in situ Raman spectra of the dehydrated supported Re$_2$O$_7$/TiO$_x$/SiO$_2$, Re$_2$O$_7$/ZrO$_x$/SiO$_2$, and Re$_2$O$_7$/AlO$_x$/SiO$_2$ catalysts are presented in Figure 1.8.

Figure 1.8 (Left) In situ Raman spectra (325 nm) of dehydrated supported (A) 3% Re$_2$O$_7$/TiO$_x$/SiO$_2$, (B) 3% Re$_2$O$_7$/ZrO$_x$/SiO$_2$, (C) 3% Re$_2$O$_7$/AlO$_x$/SiO$_2$, and (D) 3% Re$_2$O$_7$/SiO$_2$ (532 nm for 3% Re$_2$O$_7$/TiO$_x$/SiO$_2$ only) under oxidizing conditions at 450 °C. (Right) Schematic of dehydrated supported ReO$_4$ species on SiO$_2$ and on surface-modified silica.
(left) and give rise to strong bands at ~1002–1010 cm\(^{-1}\) that is characteristic of the trioxo \(v_\nu(\text{Re(=O)}_3)\) functionality [88]. The corresponding asymmetric stretch appears between 941 and 975 cm\(^{-1}\) for the surface-modified SiO\(_2\) catalysts. The bridging Re–O–Ti and Re–O–Zr vibrations are also observable at ~905–920 cm\(^{-1}\). The similar band positions of the \(v_s\) and \(v_{as}(\text{Re(=O)}_3)\) and bending mode of the model and surface-modified supported rhenia catalysts show that the surface oxide additives do not significantly alter the structure of the dehydrated surface ReO\(_x\) species that consists of the terminal trioxo Re(=O)_3 functionality (see schematic in Figure 1.8 (right)).

1.8 Electronic Structure of Dehydrated Supported MO\(_x\)/SiO\(_2\) and M\(_1\)O\(_x\)/M\(_2\)O\(_x\)/SiO\(_2\)

Catalysts via In Situ UV–Vis Spectroscopy

The corresponding UV–Vis DRS complements the surface Raman and IR spectroscopic vibrational information and provided local structural information (isolated monomer, dimer, polymeric chain, cluster, or 3D structure) of the supported metal oxide species. UV–Vis DRS monitors the surface metal oxide cation electronic structure via the ligand-to-metal charge transfer (LMCT) band position and the corresponding edge energy (\(E_g\)) value. The \(E_g\) values of the surface metal oxide species are determined by comparison against the electronic structures of well-defined metal oxide reference compounds [105–107]. In addition, each supported MO\(_x\)/SiO\(_2\) catalyst system possesses unique spectral signatures through the LMCT band maxima that provide additional insights into their local molecular structures. It should be noted that the absorbance of a strong M\(_2\)O\(_x\) species, such as TiO\(_x\) for surface-modified TiO\(_x\)/SiO\(_2\), may strongly overlap the contribution of the M\(_1\)O\(_x\) species, such as the Re\(_2\)O\(_7\)/TiO\(_x\)/SiO\(_2\). Therefore, careful baseline subtraction must be performed to ensure proper band deconvolution. The in situ UV–Vis \(E_g\) values for the dehydrated surface M\(_1\)O\(_x\) (M\(_1\) = V, Mo, and Re) species on native SiO\(_2\) and surface-modified SiO\(_2\) catalyst samples are scaled against well-defined reference compounds in Figure 1.9.

The dehydrated model supported M\(_1\)O\(_x\)/SiO\(_2\) catalysts predominantly exist as isolated surface MO\(_x\) species on SiO\(_2\), which is reflected by the relatively high UV–Vis \(E_g\) values in Figure 1.9. The addition of the surface modifiers retains the high \(E_g\) values. For the surface molybdena catalyst system, the introduction of the surface M\(_2\)O\(_x\) modifiers eliminates the higher wavenumber, or lower energy, LMCT transition in the UV–Vis spectra for the surface M\(_1\)O\(_x\) species, which suggests a more isolated or distorted surface molybdena species [88]. This is in agreement with the Raman observations of the distortions of the surface MoO\(_x\) species in supported MoO\(_x\)/M\(_2\)O\(_x\)/SiO\(_2\) catalysts and the suppression of the surface monoxo species. The lack of influence of the different surface M\(_2\)O\(_x\) ligands on the dehydrated surface O\(_3\)V=O and ORe(=O)\(_3\) species reveals that these structures are not perturbed by the surface modification of the SiO\(_2\) support.
1.9 Determination of Surface Kinetic Parameters

The surface chemistry and reactivity of model supported MOₓ/SiO₂ and MₓOₓ/M₂Oₓ/SiO₂ catalysts can be determined by CH₃OH-TPSR spectroscopy since CH₃OH is a “smart” chemical probe molecule capable of distinguishing between surface acidic, redox, and basic sites [125]. By determining the nature of the catalytic active sites (redox, acidic, or basic), their specific surface reactivity (k_rds) toward methanol can be calculated, where k_rds represents the first-order kinetic constant of the rate-determining step (rds) [125–128]. The dissociative chemisorption of methanol forms surface methoxy (CH₃O⁻) intermediate species, which is the most abundant reaction intermediate (MARI) [129, 130], and undergoes different reaction pathways that are dependent on the nature of the catalytic active site: formaldehyde (HCHO) from surface redox sites, dimethyl ether (CH₃OCH₃, DME) from surface acidic sites, and CO/CO₂ from surface basic sites [125, 131]. H₂O formation is also a product of the CH₃OH surface chemistry. For the purposes of a focused discussion in this chapter, only the redox surface reactivity arising from methanol oxidative dehydrogenation to formaldehyde will be elaborated upon henceforth.

The surface kinetic parameters (E_acid and k_rds) for the surface methoxy reactions to HCHO are directly obtained from the CH₃OH-TPSR spectra. The rds for the
unimolecular surface \(\text{CH}_3\text{O}^+ \) dehydrogenation to HCHO involves breaking of the surface methoxy C–H bond [34]. Applying the first-order Redhead equation [132] for the unimolecular decomposition reaction of the rds for the different reaction pathways allows for the determination of the \(E_{\text{act}} \) for the surface reactions:

\[
\frac{E_{\text{act}}}{RT_p} = \left(\frac{\nu}{\beta} \right) \exp \left(\frac{-E_{\text{act}}}{RT_p} \right)
\]

in which \(T_p \) is the \(\text{CH}_3\text{OH}-\)TPSR peak temperature of the reaction product, \(R \) is the gas constant (1.987 cal mol\(^{-1}\) K\(^{-1}\)), \(\nu = 10^{13} \) s\(^{-1}\) for first-order kinetics, and \(\beta \) is the heating rate (10 °C min\(^{-1}\)). The rate-determining step, \(k_{\text{rds}} \) (HCHO), for the conversion of the surface methoxy intermediate to HCHO is also a function of \(E_{\text{act}} \) (and hence \(T_p \)) and is determined by

\[
k_{\text{rds}} = \nu \exp \left(\frac{-E_{\text{act}}}{RT} \right)
\]

in which \(T \) is the reference temperature (\(T = 230 \) °C) that will be used for comparison of \(k_{\text{rds}} \) values.

1.10 Redox Surface Reactivity of Model Supported \(\text{M}_1\text{O}_x/\text{SiO}_2 \) Catalysts

The specific catalytic activities (\(k_{\text{rds}} \)) for the formation of HCHO of the model supported \(\text{M}_1\text{O}_x/\text{SiO}_2 \) and surface-modified \(\text{M}_2\text{O}_x/\text{SiO}_2 \) catalysts were determined with \(\text{CH}_3\text{OH}-\)TPSR and are compared to their corresponding unsupported bulk \(\text{MO}_x \) catalysts in Figures 1.10. The surface reactivity of the model silica-supported \(\text{M}_1\text{O}_x \) catalytic active sites is affected by anchoring of the \(\text{M}_1\text{O}_x \) transition metal oxides to the \(\text{SiO}_2 \) support. The specific activity of the surface \(\text{M}_1\text{O}_x \) (\(\text{M}_1 = \text{V} \) or Mo) catalytic active sites on \(\text{SiO}_2 \) is generally lower, by several orders of magnitude, than that of their unsupported \(\text{M}_1\text{O}_x \) metal oxides. The same is also true for the supported \(\text{ZrO}_x \) species on \(\text{SiO}_2 \). Whereas the surface \(\text{AlO}_x \) on silica is not affected by its anchoring to the \(\text{SiO}_2 \) support, with both exhibiting no redox activity, the surface \(\text{TiO}_x \) species on \(\text{SiO}_2 \) possess redox behavior while bulk \(\text{TiO}_2 \) does not exhibit redox characteristics. These differences reflect the changes resulting from anchoring isolated surface \(\text{MO}_x \) species onto the \(\text{SiO}_2 \) support surface via the bridging \(\text{M}–\text{O}–\text{Si} \) linkages. Although some contribution may come from the different molecular structures present in the bulk and supported \(\text{MO}_x \) catalysts, the coordination of the surface \(\text{M}_1\text{O}_x \) and \(\text{M}_2\text{O}_x \) species to the silica support appears to be the major influence on the reactivity characteristics of the surface oxide anchored to the \(\text{SiO}_2 \) support.

1.11 Redox Surface Reactivity of Supported \(\text{M}_1\text{O}_x/\text{M}_2\text{O}_x/\text{SiO}_2 \) Catalysts

The introduction of the surface \(\text{AlO}_x, \text{TiO}_x, \) and \(\text{ZrO}_x \) modifiers onto the \(\text{SiO}_2 \) support dramatically enhances the \(k_{\text{rds}} \) redox values, by as much as a factor of \(\sim 10^4 \), of the
supported \(\text{M}_1 \text{O}_x \) catalytic active sites, as presented in Figure 1.11. These results are in agreement with steady-state \(\text{CH}_3 \text{OH} \) oxidation studies, where the turnover frequency (TOF) significantly increases with the addition of the surface modifiers for the supported \(\text{M}_1 \text{O}_x/\text{M}_2 \text{O}_x/\text{SiO}_2 \) catalyst systems.

Figure 1.10 The \(k_{\text{ads}} \) values for HCHO formation from supported \(\text{M}_1 \text{O}_x/\text{SiO}_2 \) and \(\text{M}_2 \text{O}_x/\text{SiO}_2 \) catalysts at 230 °C for low and high (maximum dispersion) metal oxide coverage. The \(k_{\text{ads}} \) values of the unsupported bulk oxides are also shown for reference (with the star notation) [125–128].

Figure 1.11 The \(k_{\text{ads}} \) values for supported 3% \(\text{M}_1 \text{O}_x/5\% \text{M}_2 \text{O}_x/\text{SiO}_2 \) catalysts (\(\text{M}_1 = \text{V, Mo, and Re; M}_2 = \text{Al, Zr, and Ti} \)) for decomposition of surface methoxy intermediate to HCHO.
Combining the molecular structural information with the corresponding reactivity studies allows for examination of possible molecular/electronic structure–activity relationships for the group 5–7 supported M\textsubscript{1}O\textsubscript{x} active sites. The multilayered supported VO\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} and ReO\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalyst systems contain the same surface monoxo VO\textsubscript{4} and trioxo ReO\textsubscript{4} structures, respectively, as their M\textsubscript{1}O\textsubscript{x}/SiO\textsubscript{2} counterparts. Consequently, the difference in reactivity is not related to a structural change of the surface M\textsubscript{1}O\textsubscript{x} species but is due to the different support ligands (M\textsubscript{2}O\textsubscript{x} and SiO\textsubscript{2}). It is proposed that the enhanced surface redox activity is most likely related to the lower electronegativity of substrate oxide cations (Si > Al > Ti ~ Zr). Lowering of the oxide support ligand electronegativity increases the electron density on the oxygen of the bridging M\textsubscript{1}O\textsubscript{x}—O—M\textsubscript{2}O\textsubscript{x} bond, which facilitates the dissociative chemisorption of methanol and decomposition of the surface methoxy intermediate to HCHO [133]. Several recent theoretical DFT/\textit{ab initio} calculations have concluded that for the supported vanadia catalytic systems, the bridging V—O—support bond is the most energetically favorable methanol chemisorption site on the surface VO\textsubscript{x} structure [84, 85, 134]. The bridging V—O—support bond has been shown to dramatically affect the steady-state TOF, defined as the number of HCHO molecules formed per surface VO\textsubscript{x} sites per second [135] during steady-state CH\textsubscript{3}OH oxidation. The TOF increases by two orders of magnitude with different supports, from 10-3 to 10-1 s-1 (SiO\textsubscript{2} < Al\textsubscript{2}O\textsubscript{3} < TiO\textsubscript{2} < ZrO\textsubscript{2}). Therefore, by substituting the bulk SiO\textsubscript{2} support with oxide ligands of lower electronegativity, the activity of the surface-modified vanadia catalyst systems was enhanced due to the formation of the bridging V—O—Al, V—O—Zr, and V—O—Ti bonds, which are the favorable active sites for methanol chemisorption. In addition, anchoring of the surface M\textsubscript{1}O\textsubscript{x} species onto the surface M\textsubscript{2}O\textsubscript{x} species may also change their local molecular structures and their related surface reactivity properties.

1.12 Conclusions

It is shown in this chapter that the activity of the supported catalytic active sites can be controlled and designed by oxide ligands. The molecular and electronic characterization of the model supported MO\textsubscript{x}/SiO\textsubscript{2} and surface-modified supported M\textsubscript{1}O\textsubscript{x}/M\textsubscript{2}O\textsubscript{x}/SiO\textsubscript{2} catalyst systems were determined by \textit{in situ} Raman and UV–Vis spectroscopy, respectively. The \textit{in situ} Raman spectroscopy measurements were undertaken using various new approaches, such as time-resolved spectroscopy under reductive (H\textsubscript{2}) and isotopic exchange (18O—16O and D\textsubscript{2}O—H\textsubscript{2}O) environments. These new findings revealed that supported V\textsubscript{2}O\textsubscript{3}/SiO\textsubscript{2} system contains isolated monoxo V=O surface species, supported MoO\textsubscript{3}/SiO\textsubscript{2} consists of both isolated monoxo M=O and dioxo O=Mo=O surface species, and supported Re\textsubscript{2}O\textsubscript{7}/SiO\textsubscript{2} possesses isolated trioxo Re (=O\textsubscript{3}) surface species. The redox activity of these surface M\textsubscript{1}O\textsubscript{x} species is significantly reduced by their anchoring to the SiO\textsubscript{2} support. The oxide ligands of the surface-modified SiO\textsubscript{2} catalysts, on the other hand, did not significantly alter the molecular structures of the model systems, but did significantly increase the catalytic redox
reactivity performance by as much as a factor of $\sim 10^4$. This enhancement in redox surface activity is through the bridging M–O–support bonds and their relative electronegativity. The lower cation electronegativity values of the M_2O_x oxide ligands increase the electron density of the oxygen atom in the bridging $M_1O_{x−1}–O–M_2O_x$ and, consequently, enhance its proton-accepting characteristics (CH$_3$O–H during chemisorption and *OCH$_2$–H during the surface decomposition step).

Acknowledgments

The authors gratefully acknowledge the support from the United States Department of Energy – Basic Energy Sciences grant DEFG02-93ER14350.

References

133 Kim, T. and Wachs, I.E., Ph.D. Thesis.