Contents

Preface xi
Definitions xiii

1 Introduction to Ageing of Structures 1
1.1 Structural Engineering and Ageing Structures 1
1.2 History of Offshore Structures Worldwide 4
1.3 Failure Statistics for Ageing Offshore Structures 8
1.3.1 Introduction 8
1.3.2 Failure Statistics of Offshore Structures 8
1.3.3 Experience from Land Based Structures 9
1.3.4 Experience from Offshore Fixed Steel Structures 10
1.3.5 Experience from the Shipping and Mobile Offshore Unit Industries 14
1.4 The Terms ‘Design Life’ and ‘Life Extension’ and the Bathtub Curve 15
1.5 Life Extension Assessment Process 18
References 20

2 Historic and Present Principles for Design, Assessment and Maintenance of Offshore Structures 23
2.1 Historic Development of Codes and Recommended Practices 23
2.1.1 US Recommended Practices and Codes 23
2.1.2 UK Department of Energy and HSE Guidance Notes 24
2.1.3 Norwegian Standards 26
2.1.4 ISO Standards 27
2.2 Current Safety Principles Applicable to Structural Integrity 28
2.2.1 Introduction 28
2.2.2 Application of Safety Principles to Structures 29
2.2.2.1 General 29
2.2.2.2 Partial Factor and Limit State Design Method 30
2.2.2.3 Robustness 32
2.2.2.4 Design Analysis Methods 34
2.2.2.5 Management of Structures in Operation 35
2.2.3 Managing Safety 35
2.2.4 Change Management 38
Contents

3.4.5 Concrete Structures 75
3.4.5.1 Corrosion of Steel Reinforcement 75
3.4.5.2 Corrosion of Prestressing Tendons 77
3.5 Fatigue 77
3.5.1 Introduction 77
3.5.2 Factors Influencing Fatigue 80
3.5.3 Implications of Fatigue Damage 81
3.5.4 Fatigue Issues with High Strength Steels 83
3.5.5 Fatigue Research 84
3.6 Load Changes 85
3.6.1 Marine Growth 85
3.6.2 Subsidence and Wave in Deck 86
3.7 Dents, Damages, and Other Geometrical Changes 86
3.8 Non-physical Ageing Changes 88
3.8.1 Technological Changes (Obsolescence) 88
3.8.2 Structural Information Changes 89
3.8.3 Knowledge and Safety Requirement Changes 90
References 91

4 Assessment of Ageing and Life Extension 95
4.1 Introduction 95
4.1.1 Assessment Versus Design Analysis 96
4.2 Assessment Procedures 97
4.2.1 Introduction 97
4.2.2 Brief Overview of ISO 19902 99
4.2.3 Brief Overview of NORSOK N-006 101
4.2.4 Brief Overview of API RP 2A-WSD 102
4.2.5 Brief Overview of ISO 13822 102
4.2.6 Discussion of These Standards 103
4.3 Assessment of Ageing Materials 104
4.4 Strength Analysis 107
4.4.1 Introduction 107
4.4.2 Strength and Capacity of Damaged Steel Structural Members 108
4.4.2.1 Effect of Metal Loss and Wall Thinning 109
4.4.2.2 Effect of Cracking and Removal of Part of Section 110
4.4.2.3 Effect of Changes to Material Properties 110
4.4.2.4 Effect of Geometric Changes 110
4.4.2.5 Methods for Calculating the Capacity of Degraded Steel Members 110
4.4.3 Strength and Capacity of Damaged Concrete Structural Members 111
4.4.4 Non-Linear Analysis of Jacket of Structures (Push-Over Analysis) 113
4.5 Fatigue Analysis and the S–N Approach 115
4.5.1 Introduction 115
4.5.2 Methods for Fatigue Analysis 116
4.5.3 S–N Fatigue Analysis 117
4.5.3.1 Fatigue Loads and Stresses to be Considered 117
4.5.3.2 Fatigue Capacity Based on S–N Curves 119
Contents

4.5.3.3 Damage Calculation 121
4.5.3.4 Safety consideration by Design Fatigue Factors 122
4.5.4 Assessment of Fatigue for Life Extension 122
4.5.4.1 Introduction 122
4.5.4.2 High Cycle/Low Stress Fatigue 123
4.5.4.3 Low Cycle/High Stress Fatigue 124
4.6 Fracture Mechanics Assessment 126
4.6.1 Introduction 126
4.6.2 Fatigue Crack Growth Analysis 128
4.6.3 Fracture Assessment 131
4.6.4 Fracture Toughness Data 132
4.6.5 Residual Stress Distribution 132
4.6.6 Application of Fracture Mechanics to Life Extension 132
4.7 Probabilistic Strength, Fatigue, and Fracture Mechanics 134
4.7.1 Introduction 134
4.7.2 Structural Reliability Analysis – Overview 135
4.7.3 Decision Making Based on Structural Reliability Analysis 136
4.7.4 Assessment of Existing Structures by Structural Reliability Analysis 138
References 139

5 Inspection and Mitigation of Ageing Structures 143
5.1 Introduction 143
5.2 Inspection 144
5.2.1 Introduction 144
5.2.2 The Inspection Process 145
5.2.3 Inspection Philosophies 147
5.2.4 Risk and Probabilistic Based Inspection Planning 148
5.2.5 Inspection of Fixed Jacket Structures 150
5.2.6 Inspection of Floating Structures 154
5.2.7 Inspection of Topside Structures 155
5.2.8 Structural Monitoring 158
5.3 Evaluation of Inspection Findings 160
5.4 Mitigation of Damaged Structures 161
5.4.1 Introduction 161
5.4.2 Mitigation of Corrosion Damage 163
5.4.3 Mitigation of the Corrosion Protection System 163
5.4.4 Mitigation of Fatigue and Other Damage 166
5.5 Performance of Repaired Structures 168
5.5.1 Introduction 168
5.5.2 Fatigue Performance of Repaired Tubular Joints 168
5.5.3 Fatigue Performance of Repaired Plated Structures 170
References 171

6 Summary and Further Thoughts 173
6.1 Ageing Structures and Life Extension 173
6.2 Further Work and Research Needs Related to Ageing Structures 174
6.3 Final Thoughts 176
A Types of Structures 177
A.1 Fixed Platforms 177
A.2 Floating Structures 177
Reference 179

B Inspection Methods 181
B.1 General Visual Inspection 181
B.2 Close Visual Inspection 181
B.3 Flooded Member Detection 181
B.4 Ultrasonic Testing 182
B.5 Eddy Current Inspection 182
B.6 Magnetic Particle Inspection 182
B.7 Alternating Current Potential Drop 182
B.8 Alternating Current Field Measurement 182
B.9 Acoustic Emission Monitoring 183
B.10 Leak Detection 183
B.11 Air Gap Monitoring 183
B.12 Strain Monitoring 183
B.13 Structural Monitoring 184

C Calculation Examples 185
C.1 Example of Closed Form Fatigue Calculation 185
C.2 Example of Application of Fracture Mechanics to Life Extension 186

Index 191