CONTENTS

1 Introduction

1.1 A Transdisciplinary Research Area, 1
1.2 Some Mathematical Ideas, 4
1.3 Some Difficulties and Challenges in Studying Extremes, 6
 1.3.1 Finiteness of Data, 6
 1.3.2 Correlation and Clustering, 8
 1.3.3 Time Modulations and Noise, 9
1.4 Extremes, Observables, and Dynamics, 10
1.5 This Book, 12
Acknowledgments, 14

2 A Framework for Rare Events in Stochastic Processes and Dynamical Systems

2.1 Introducing Rare Events, 17
2.2 Extremal Order Statistics, 19
2.3 Extremes and Dynamics, 20

3 Classical Extreme Value Theory

3.1 The i.i.d. Setting and the Classical Results, 24
 3.1.1 Block Maxima and the Generalized Extreme Value Distribution, 24
 3.1.2 Examples, 26
 3.1.3 Peaks Over Threshold and the Generalized Pareto Distribution, 28
3.2 Stationary Sequences and Dependence Conditions, 29
 3.2.1 The Blocking Argument, 30
 3.2.2 The Appearance of Clusters of Exceedances, 31
3.3 Convergence of Point Processes of Rare Events, 32
 3.3.1 Definitions and Notation, 33
 3.3.2 Absence of Clusters, 35
 3.3.3 Presence of Clusters, 35
3.4 Elements of Declustering, 37

4 Emergence of Extreme Value Laws for Dynamical Systems
 4.1 Extremes for General Stationary Processes—an Upgrade Motivated by Dynamics, 40
 4.1.1 Notation, 41
 4.1.2 The New Conditions, 42
 4.1.3 The Existence of EVL for General Stationary Stochastic Processes under Weaker Hypotheses, 44
 4.1.4 Proofs of Theorem 4.1.4 and Corollary 4.1.5, 46
 4.2 Extreme Values for Dynamically Defined Stochastic Processes, 51
 4.2.1 Observables and Corresponding Extreme Value Laws, 53
 4.2.2 Extreme Value Laws for Uniformly Expanding Systems, 57
 4.2.3 Example Revisited, 59
 4.2.4 Proof of the Dichotomy for Uniformly Expanding Maps, 61
 4.3 Point Processes of Rare Events, 62
 4.3.1 Absence of Clustering, 62
 4.3.2 Presence of Clustering, 63
 4.3.3 Dichotomy for Uniformly Expanding Systems for Point Processes, 65
 4.4 Conditions $D_{\mathbf{q}}(u_n), D_{\mathbf{d}}(u_n), D^{\mathbf{p}}(u_n)^*$ and Decay of Correlations, 66
 4.5 Specific Dynamical Systems Where the Dichotomy Applies, 70
 4.5.1 Rychlik Systems, 70
 4.5.2 Piecewise Expanding Maps in Higher Dimensions, 71
 4.6 Extreme Value Laws for Physical Observables, 72

5 Hitting and Return Time Statistics
 5.1 Introduction to Hitting and Return Time Statistics, 75
 5.1.1 Definition of Hitting and Return Time Statistics, 76
 5.2 HTS Versus RTS and Possible Limit Laws, 77
 5.3 The Link Between Hitting Times and Extreme Values, 78
 5.4 Uniformly Hyperbolic Systems, 84
 5.4.1 Gibbs Measures, 85
 5.4.2 First HTS Theorem, 86
 5.4.3 Markov Partitions, 86
 5.4.4 Two-Sided Shifts, 88
 5.4.5 Hyperbolic Diffeomorphisms, 89
 5.4.6 Additional Uniformly Hyperbolic Examples, 90
CONTENTS

5.5 Nonuniformly Hyperbolic Systems, 91
 5.5.1 Induced System, 91
 5.5.2 Intermittent Maps, 92
 5.5.3 Interval Maps with Critical Points, 93
 5.5.4 Higher Dimensional Examples of Nonuniform Hyperbolic Systems, 94
5.6 Nonexponential Laws, 95

6 Extreme Value Theory for Selected Dynamical Systems 97
 6.1 Rare Events and Dynamical Systems, 97
 6.2 Introduction and Background on Extremes in Dynamical Systems, 98
 6.3 The Blocking Argument for Nonuniformly Expanding Systems, 99
 6.3.1 Assumptions on the Invariant Measure μ, 99
 6.3.2 Dynamical Assumptions on (f, \mathcal{X}, μ), 99
 6.3.3 Assumption on the Observable Type, 100
 6.3.4 Statement or Results, 101
 6.3.5 The Blocking Argument in One Dimension, 102
 6.3.6 Quantification of the Error Rates, 102
 6.3.7 Proof of Theorem 6.3.1, 107
 6.4 Nonuniformly Expanding Dynamical Systems, 108
 6.4.1 Uniformly Expanding Maps, 108
 6.4.2 Nonuniformly Expanding Quadratic Maps, 109
 6.4.3 One-Dimensional Lorenz Maps, 110
 6.4.4 Nonuniformly Expanding Intermittency Maps, 110
 6.5 Nonuniformly Hyperbolic Systems, 113
 6.5.1 Proof of Theorem 6.5.1, 115
 6.6 Hyperbolic Dynamical Systems, 116
 6.6.1 Arnold Cat Map, 116
 6.6.2 Lozi-Like Maps, 118
 6.6.3 Sinai Dispersing Billiards, 119
 6.6.4 Hénon Maps, 119
 6.7 Skew-Product Extensions of Dynamical Systems, 120
 6.8 On the Rate of Convergence to an Extreme Value Distribution, 121
 6.8.1 Error Rates for Specific Dynamical Systems, 123
 6.9 Extreme Value Theory for Deterministic Flows, 126
 6.9.1 Lifting to X^h, 129
 6.9.2 The Normalization Constants, 129
 6.9.3 The Lap Number, 130
 6.9.4 Proof of Theorem 6.9.1, 131
 6.10 Physical Observables and Extreme Value Theory, 133
 6.10.1 Arnold Cat Map, 133
 6.10.2 Uniformly Hyperbolic Attractors: The Solenoid Map, 137
 6.11 Nonuniformly Hyperbolic Examples: the HÉNON and LOZI Maps, 140
 6.12 Extreme Value Statistics for the Lorenz ’63 Model, 141
7 Extreme Value Theory for Randomly Perturbed Dynamical Systems 145

7.1 Introduction, 145
7.2 Random Transformations \textit{via} the Probabilistic Approach: Additive Noise, 146
 7.2.1 Main Results, 149
7.3 Random Transformations \textit{via} the Spectral Approach, 155
7.4 Random Transformations \textit{via} the Probabilistic Approach: Randomly Applied Stochastic Perturbations, 159
7.5 Observational Noise, 163
7.6 Nonstationarity—the Sequential Case, 165

8 A Statistical Mechanical Point of View 167

8.1 Choosing a Mathematical Framework, 167
8.2 Generalized Pareto Distributions for Observables of Dynamical Systems, 168
 8.2.1 Distance Observables, 169
 8.2.2 Physical Observables, 172
 8.2.3 Derivation of the Generalized Pareto Distribution Parameters for the Extremes of a Physical Observable, 174
 8.2.4 Comments, 176
 8.2.5 Partial Dimensions along the Stable and Unstable Directions of the Flow, 177
 8.2.6 Expressing the Shape Parameter in Terms of the GPD Moments and of the Invariant Measure of the System, 178
8.3 Impacts of Perturbations: Response Theory for Extremes, 180
 8.3.1 Sensitivity of the Shape Parameter as Determined by the Changes in the Moments, 182
 8.3.2 Sensitivity of the Shape Parameter as Determined by the Modification of the Geometry, 185
8.4 Remarks on the Geometry and the Symmetries of the Problem, 188

9 Extremes as Dynamical and Geometrical Indicators 189

9.1 The Block Maxima Approach, 190
 9.1.1 Extreme Value Laws and the Geometry of the Attractor, 191
 9.1.2 Computation of the Normalizing Sequences, 192
 9.1.3 Inference Procedures for the Block Maxima Approach, 194
9.2 The Peaks Over Threshold Approach, 196
 9.2.1 Inference Procedures for the Peaks Over Threshold Approach, 196
9.3 Numerical Experiments: Maps Having Lebesgue Invariant Measure, 197
 9.3.1 Maximum Likelihood versus L-Moment Estimators, 203
 9.3.2 Block Maxima versus Peaks Over Threshold Methods, 204
9.4 Chaotic Maps With Singular Invariant Measures, 204
CONTENTS

9.4.1 Normalizing Sequences, 205
9.4.2 Numerical Experiments, 208

9.5 Analysis of the Distance and Physical Observables for the HNON Map, 212
9.5.1 Remarks, 218

9.6 Extremes as Dynamical Indicators, 218
9.6.1 The Standard Map: Peaks Over Threshold Analysis, 219
9.6.2 The Standard Map: Block Maxima Analysis, 220

9.7 Extreme Value Laws for Stochastically Perturbed Systems, 223
9.7.1 Additive Noise, 225
9.7.2 Observational Noise, 229

10 Extremes as Physical Probes 233

10.1 Surface Temperature Extremes, 233
10.1.1 Normal, Rare and Extreme Recurrences, 235
10.1.2 Analysis of the Temperature Records, 235

10.2 Dynamical Properties of Physical Observables: Extremes at Tipping Points, 238
10.2.1 Extremes of Energy for the Plane Couette Flow, 239
10.2.2 Extremes for a Toy Model of Turbulence, 245

10.3 Concluding Remarks, 247

11 Conclusions 249

11.1 Main Concepts of This Book, 249
11.2 Extremes, Coarse Graining, and Parametrizations, 253
11.3 Extremes of Nonautonomous Dynamical Systems, 255
11.3.1 A Note on Randomly Perturbed Dynamical Systems, 258
11.4 Quasi-Disconnected Attractors, 260
11.5 Clusters and Recurrence of Extremes, 261
11.6 Toward Spatial Extremes: Coupled Map Lattice Models, 262

Appendix A Codes 265

A.1 Extremal Index, 266
A.2 Recurrences—Extreme Value Analysis, 267
A.3 Sample Program, 271

References 273

Index 293