Contents

Foreword xiii
Preface xv
Acknowledgements xvii

1 Introduction to High Temperature Research 1
Preamble 2
1.1 The Basis of It All 2
 1.1.1 Photosynthesis 2
 1.1.2 The Role of Carbon 3
1.2 High Temperatures 3
 1.2.1 Chemistry at Ambient Temperatures 3
 1.2.2 Chemistry at High Temperatures 3
 1.2.3 The Nitrogen Industry 4
 1.2.4 Iron and Steel 4
1.3 Carbothermal Silicon and Aluminium 4
 1.3.1 Ferrosilicon and Silicon Metal 4
 1.3.2 The First Laboratory Furnace 5
 1.3.3 Carbothermal Aluminium 5
 1.3.4 More Laboratory Furnaces 6
 1.3.5 A Note on Chemical Thermodynamics 6
1.4 Summary of Contents 6
Select Bibliography 7

2 Basic Design of Laboratory Furnaces 11
Preamble 12
2.1 Methods of Heating 12
2.2 Materials 13
 2.2.1 Electric Conductors or Resistors 13
 2.2.2 Insulating Materials 15
2.3 Basic Furnace Design 17
 2.3.1 Obtaining a Uniform Temperature 17
 2.3.2 Base Metal Wire 20
 2.3.3 The Stand and Auxiliaries 24
 2.3.4 Silicon Carbide 24
 2.3.5 Molybdenum Disilicide 28
 2.3.6 Oxide Resistors 28
 2.3.7 Noble Metals 29
 2.3.8 Molybdenum Wire 29
 2.3.9 Graphite 30
2.4 Induction Heating 31
 2.4.1 Elementary Principles 31
 2.4.2 High Frequency Generators 33
 2.4.3 Some Laboratory Applications 34
2.5 Power Input, Insulation and Cooling 36
 2.5.1 Power and Temperature 36
 2.5.2 Thermal Insulation 37
 2.5.3 Water Cooling 40
2.6 Temperature Control 44
 2.6.1 Elementary Principles and Two-Position Control 44
 2.6.2 PID Control 46
 2.6.3 Power Regulators 47
 2.6.4 Sensing Elements for Control 48
2.7 Electric Connections and Circuits 49
 2.7.1 General Rules 49
 2.7.2 Current-Carrying Capacity of Insulated Copper Wire 50
 2.7.3 Fail-Safe Protection Devices 51
References 53

3 Temperature Measurements 55
 Preamble 56
 3.1 Fundamentals of Temperature Measurement 56
 3.1.1 The Concept of Temperature 56
 3.1.2 The Thermodynamic Temperature Scale 58
4.3.2 The Automated Version 111
4.3.3 The Modern Manual 112
4.4 Photoelectric Pyrometers 112
 4.4.1 Basic Principle 112
 4.4.2 The Choice of Wavelength 113
 4.4.3 Target Size and Free Sight 114
 4.4.4 Two-Colour Pyrometers 115
4.5 Corrections for Window and Mirror 116
 4.5.1 Reflection and Absorbtion in a Window 116
 4.5.2 The Use of a Mirror 118
 4.5.3 Graphical Representation of A-Values 120
4.6 Control and Calibration 121
 4.6.1 Tungsten Ribbon Lamps 121
 4.6.2 Melting Points 123
 4.6.3 Metal-Carbon Systems 124
4.7 Practical Hints 125
 4.7.1 The Object Inside a Furnace 125
 4.7.2 More about the Black Body 126
 4.7.3 Increasing the Apparent Emissivity of an Exposed Surface 126
References 127

5 Refractory Materials in the Laboratory 129
Preamble 130
5.1 Oxides 131
 5.1.1 Silica, SiO₂ 133
 5.1.2 Mullite, 3Al₂O₃ · 2SiO₂ 134
 5.1.3 Alumina, Al₂O₃ 135
 5.1.4 Magnesia, MgO 136
 5.1.5 Beryllia, BeO 136
 5.1.6 Zirconia, ZrO₂ 136
 5.1.7 Thoria, ThO₂ 137
 5.1.8 General Notes on Materials’ Properties 138
5.2 Carbides 139
 5.2.1 Silicon Carbide, SiC 139
 5.2.2 Aluminium Carbide, Al₄C₃ 145
 5.2.3 Boron Carbide, B₄C 146
5.3 Nitrides 147
 5.3.1 Silicon Nitride, Si₃N₄ 147
5.3.2 Aluminium Nitride, AlN 149
5.3.3 Sialons 153
5.3.4 Boron Nitride, BN 153

5.4 Carbon and Graphite 155
5.4.1 Carbon: The Element 155
5.4.2 Occurrence of Carbonaceous Materials 156
5.4.3 Carbon and Graphite 157
5.4.4 Vitreous Carbon 159
5.4.5 Carbon Fibres and Graphite Felt 160

5.5 Refractory Metals 161
5.5.1 Base Metals and Alloys 161
5.5.2 Noble Metals 161
5.5.3 Molybdenum and Tungsten 162
5.5.4 Tantalum 164
5.5.5 Rhenium 165

5.6 Notes on Crucible Materials and Compatibility 165
5.6.1 A Line of Thought 166
5.6.2 Graphite plus Metals 166
5.6.3 Ceramics plus Metal 167
5.6.4 Molten Salts and Slags 167
5.6.5 Chemical Transport Reactions 168
5.6.6 Special Materials 168
5.6.7 A Note on Safety 171

References 171

6 Vacuum in Theory and Practice 175

Preamble 177

6.1 Basic Concepts 177
6.1.1 Why Vacuum? 177
6.1.2 Units of Gas Pressure 178
6.1.3 Elements of a Vacuum System 179

6.2 Expressions from the Kinetic Theory of Gases 181
6.2.1 The Mean Free Path 181
6.2.2 Collision Frequency on a Plane Surface 182

6.3 Various Applications 183
6.3.1 Rate of Oxidation 183
6.3.2 Evaporation Processes 184
6.3.3 Processes in the Presence of an Inert Gas 186
6.3.4 Outgassing 187
6.4 Throughput, Conductance and Pumping Speed
 6.4.1 Viscous Flow
 6.4.2 Molecular Flow
 6.4.3 The Transition Region
 6.4.4 Molecular Flow, Short Tubes

6.5 Forevacuum Pumps
 6.5.1 The Oil Sealed Rotary Vane Pump
 6.5.2 The Rotary Piston Pump
 6.5.3 Other Forevacuum and Medium-Pressure Pumps

6.6 High-Vacuum Pumps
 6.6.1 The Oil Diffusion Pump
 6.6.2 Vapour Booster Pumps
 6.6.3 Turbomolecular Pumps
 6.6.4 The Ion Pump

6.7 Evacuation Time and Chamber Materials
 6.7.1 Evacuation Time
 6.7.2 The Suitable Pump Combination
 6.7.3 Materials and Outgassing

6.8 Flange Fittings
 6.8.1 The Flange and the O-Ring
 6.8.2 Small Flange Fittings
 6.8.3 Rotatable, Collar, and Clamping Flanges
 6.8.4 ConFlat (CF) Flanges

6.9 Valves
 6.9.1 High-Vacuum Valves
 6.9.2 Forevacuum and Gas Admittance Valves

6.10 Feedthroughs
 6.10.1 Packing Glands
 6.10.2 Electric Leads
 6.10.3 Windows

6.11 Pressure and Vacuum Gauges
 6.11.1 The Mercury Manometer
 6.11.2 The McLeod Manometer (H. G. McLeod, 1874)
 6.11.3 Diaphragm Manometers
 6.11.4 The Pirani and the Thermoelectric Gauge
 (M. Pirani, 1880–1968)
 6.11.5 Hot-Cathode Ionization Gauge
 6.11.6 Penning, or Cold-Cathode Ionisation
 Gauge (F. M. Penning, 1894–1953)
6.12 Leak Detection and Mending 220
 6.12.1 Preliminary Testing of Components 220
 6.12.2 A Note on Cleanliness 221
 6.12.3 Leak Testing, First Step 221
 6.12.4 Leak Rates 222
 6.12.5 Leak Hunting 222
 6.12.6 Mending 225

References 226

7 High Temperature Furnaces and Thermobalances 227
 Preamble 228
 7.1 Aim and Scope 228
 7.1.1 High Temperature Furnaces 228
 7.1.2 Thermobalances 229
 7.2 General Design Principles 229
 7.2.1 Graphite Heating Elements 229
 7.2.2 Current, Voltage and Terminals 230
 7.2.3 Obtaining a Zone of Uniform Temperature 230
 7.2.4 Materials and Water Cooling 233
 7.2.5 Positions of Furnace and Balance 234
 7.3 Specific Furnace/Thermobalance Designs 236
 7.3.1 The Bell Jar Type: Beljara 236
 7.3.2 Movable Furnace: Octopus 240
 7.3.3 The Jar Upside Down: Maxine 244
 7.3.4 Front Door: Versatilie 249
 7.4 Notes on Windows and Balances 256
 7.4.1 Windows for Optical Pyrometry 256
 7.4.2 Balances for Thermogravimetry 260
 7.4.3 Adjusting to the Pyrometer Target 261
 7.5 Non-Graphite Heating Elements 262
 7.6 Concluding Remarks 265

References 266

8 The Summing Up 267
 Preamble 268
 8.1 Equilibrium Gas Pressures (I): $\sim 10^{-4}$–10^{-1} mbar 268
 8.1.1 An Introduction 268
 8.1.2 Knudsen Effusion 268
 8.1.3 The Clausing Factor 270
8.1.4 The Evaporation Coefficient 270
8.1.5 Methods of Extrapolation 271
8.1.6 An Example (with Some Difficulties): The System Al – Al₂O₃ 272

8.2 The Thermal Decomposition of Silicon Carbide 275
8.2.1 Background 275
8.2.2 Equipment 276
8.2.3 Procedure and Observations 277
8.2.4 Effect of Non-Ideal Effusion 280
8.2.5 The Effect of Surface Diffusion 280
8.2.6 Multiple Species 284
8.2.7 More on Surface Diffusion 286
8.2.8 A Short Account of the Transistor 287

8.3 Equilibrium Gas Pressures (II): 10–1000 mbar 288
8.3.1 Permanent Gases, Direct Measurement 288
8.3.2 Condensible Gases; The Ruff-MKW Method 290

8.4 Carbothermal Reduction of Silica and Alumina 297
8.4.1 Silica Plus Carbon 298
8.4.2 Carbothermal Silicon 299
8.4.3 Alumina Plus Carbon 301
8.4.4 Carbothermal Aluminium 304

8.5 Molten Aluminium Oxycarbide as an Ionic Melts 308
8.5.1 The Treatment of Temkin 308
8.5.2 The Melting of Ionic Compounds 309
8.5.3 A Model for the Aluminium Oxycarbide Melt 310
8.5.4 The Phase Diagram 310
8.5.5 End of Story 313

References 314

Author Index 317

Subject Index 321