SUBJECT INDEX

A

Aalto’s model, 637
Absorption and emission spectroscopies, 448
Abstraction of H atoms, 242
Acentric factor, 634, 656
mixing rule, 639
Activated complex (energized molecules), 125, 238
Activation energy, 119, 126, 129, 130, 182, 190, 256, 259, 281, 285, 413, 563
Activation energy of the desorption process, 182
Activation reaction, 156
Adiabatic flame temperature, 13, 72, 73, 88, 107, 108, 568
Adiabatic porous catalyst plug, 516
Adsorbate, 175
Adsorption process, 182
Adsorption rate constants, 185
Adsorption theory, 175
Adsorption with dissociation, 177, 178
Affinity (chemical affinity), 11, 32
Alcohols, 675, 699, 700
Aldehydes, 699, 700
Aliphatic hydrocarbon combustion, 210
reaction mechanism, 224, 225
Aliphatic hydrocarbon and oxygen system, 223
Alkanes, 498, 699, 700
Alkanes-air mixture, 410
Alkylcyclopentanes, 704
Alkynes, 699, 700
Amines, 699, 700
Ammonia, 699, 700
Autoignition temperature, 420
Atmospheric H2/air flames, 492
Atom-molecule mechanism (or radical-molecule complex mechanism), 282
Atom and radical combination, see Energy transfer mechanism (atom and radical combination)
Atom-transfer reaction, see Second-order reaction
Atomic mass unit, 694
Auger Electron Spectroscopy (AES), 187–189
Average molecular velocity, 120
AUTOignition temperature, 420
Automobile engines, 270
Balance of mass-flux at interface, 351
Baroncini et al.’s method for liquid thermal conductivity, 675
Basis functions of B-splines, 466
Beattie–Bridgeman equation of state, 630
Belles model, 395–401

Antiknocking compound, 499
Antisymmetric tensor, 234
Apparent stresses, see Reynolds stresses (apparent or turbulent stresses)
Approach velocity, 506, 507
Arbitrary Lagrangian Eulerian (ALE) numerical algorithm, 583
Aromatics, 676, 699, 700
Arrhenius equation (law), 122–124, 130, 162, 167, 382, 424, 563
Arrhenius factor, 116, 456, 451
Arrhenius rate coefficients, 170
Ash, 272
Atmospheric aerosols, 271
Atmospheric H2/air flames, 492
Atom-molecule mechanism (or radical-molecule complex mechanism), 282
Atom and radical combination, see Energy transfer mechanism (atom and radical combination)
Atom-transfer reaction, see Second-order reaction
Atomic mass unit, 694
Auger Electron Spectroscopy (AES), 187–189
Autoignition temperature, 420
Automobile engines, 270
Average molecular velocity, 120
Avogadro’s number, 8, 15, 38, 176, 286, 291, 437, 452, 694

B

Balance of mass-flux at interface, 351
Baroncini et al.’s method for liquid thermal conductivity, 675
Basis functions of B-splines, 466
Beattie–Bridgeman equation of state, 630
Belles model, 395–401
Benedict–Webb–Rubin (BWR) equation of state, 594–596, 630, 649
modified, 647
Benzene, 244
Benzene-ring resonance, 50, 51, 65
Benzoic acid, 63–65
Bimolecular collision (binary collision), 122, 123, 142, 144
Binary diffusion coefficient, 623
Binary diffusivity, 285
Binary mass diffusivity, 289
Blasius equation, 418
Blowout flame, 507
Body force, 300, 301, 321
Body force work, 324
Boiling line, 601
Boiling point, 701–705
Boltzmann constant, 122, 176, 183, 286, 291, 694
Boltzmann factor, 119, 122
Boltzmann’s exponential factor, 183
Bond energy, 48–52, 63, 399
of OH molecule, 225
Bond number, 537, 583, 584
Bondi’s liquid hydrocarbon method, 654
Branched-chain explosion of hydrogen, 395
Brute force method, 205
Bulk viscosity, 8, 286, 309, 324, 332
Bunsen burner, 438–442, 503, 504, 507, 533
Burner design, 172
Burning velocity, 482.
Burning velocity mixtures, 486
Burning velocity of H2/O2 flame, 528
Burning velocity of H2/O2 mixtures at different pressures, 527
Butadienyl radical, 245
Buoyancy effect, 557
Burke–Schumann’s theory of laminar diffusion flames, 539–547

C
C1-Hydrocarbon Oxidation, 226
Calcium carbonate, 271
Calcium oxide, 271
Calorically perfect gases, 641
Carbon monoxide (CO), 224, 270
Carboxylic acid, 699, 700
Cartesian tensor notation, 300
Catalysis, 174
Catalyst, 174
Catalytic combustion, 173
Catalytic oxidation of H2 on Pt foil, 192
Catalyst plug postulation, 516
Catalytic surface reaction, 178
Cellular flame structure, 444
Cellular structure, 406
Centrifugal force, 312
CH reactions, 226
CH2 reactions, 227
CH3 oxidation step, 2335
CH3 reactions, 227
CH4/air flame, 471
CH4/air laminar flame, 210
CH4 oxidation, 234–236
CH4 reactions, 228
CH2CHO reactions, 230
CH3CHO reactions, 230
CH3CO reactions, 229
CH2CO (ketene) oxidation, 240
CH2CO reactions, 229
CH2O reactions, 227, 233, 234
CH3O reactions, 228
CH2OH reactions, 228
CH3OH reactions, 228, 241
CH3O2 reactions, 228
CH3O2H reactions, 229
CH4/O2/Ar mixtures, 503
CH4/O2/N2 mixtures, 503
C2H reactions, 229
C2H2 air mixtures, 409
C2H2 oxidation, 238
C2H2 reactions, 229
C2H3 reactions, 229
C2H4 oxidation, 237
C2H4 reactions, 230
C2H5 reactions, 230
C2H6 reactions, 230
C3H8/air laminar flame, 210
CH2CHO (acetaldehyde) reaction, 243
C2H3OH (ethanol) reactions, 242
Chain-branching reaction, 162–164, 216, 222, 231–234, 245, 261, 421, 523
Chain-carrying reaction, see Chain-propagating reaction
Chain-initiating reactions, 155, 156, 159, 160, 163
Chain-propagating reactions (chain-carrying reactions), 155, 156, 160–163, 216, 221, 246
Chain reaction, 154–156, 219, 252
Chain-terminating reaction (chain-breaking or chain-killing reaction), 155, 156, 160–164, 219, 220, 225, 396, 495, 523
Chang–Zhao equation, 634, 636, 637
modified, 637, 640
Chapman–Enskog approach, 655
Chapman–Enskog’s method, 678
Chapman–Jouguet, detonations, 102, 373–381, 413, 415
theory, 379
wave velocity, 373, 417, 418
Characteristic reaction zone width, 412
Charge-coupled-device (CCD), 140
Chemical affinity, see Affinity (chemical affinity)
Chemical equilibrium, 5, 6, 14, 17, 19, 31, 33, 34, 36
Chemical equilibrium application program (NASA-CEA Code), 13, 101–103, 107, 108, 434
Chemical nonequilibrium, 15, 18, 22, 23
Chemical potential, 12, 15, 27, 30, 32, 105, 106
Chemical reaction rate expression, 331
Chemical sensitivity analysis, 199
Chemisorption process, 174
CHEMKIN Code, 164–173, 468–471, 523, 563
CHO reactions, 226
Classical models of Belles, 395
Classical laminar flame theories, 449
Clausius–Clapeyron vapor-pressure equation, 96–98, 576, 577
CO emissions, 270, 271
CO oxidation mechanism, 233
CO reaction, 226
with OH radicals, 210
Coal, 272
Coal-derived fuels, 262
Coal matrix, 272
Coherent and anti-Stokes Raman spectroscopies (CARS), 448
Collision coefficient, 183
Collision frequency, 116, 119–122, 176
Collision frequency factor, 116
Collision integral, 656
Collision radius, 116
Collocation methods, 308
Combustion of biomass, 270
Combustion lifetime, 607
Competitive reactions, 150
Comprehensive theory, 449
Compressed liquids, 633, 634, 637
Compressibility factor, 92, 597, 624, 629, 647, 657
Computational singular perturbation methods for stiff equations, 247, 252
Computational singular perturbation (CSP) theory, 247, 252–255
Concentration, see Mass concentration (concentration)
Concentration sensitivity, 201
Concept of molecularity, 180
Concept of radical-species diffusion, 502
Conformal mapping, 595
Consecutive reactions, 148–149, 160
Conservation equations, 5, 160, 383, 376, 418
angular momentum, 6,
atomic species, 6, 36–38, 73, 94,
chemical species, 340
energy, 6, 16, 209, 320–328, 376, 418, 451–454, 458, 463, 464, 468, 469, 514, 534, 558
mass (continuity equation), 6, 18–20, 293–297, 376, 463, 464, 451, 452, 458
molecular species, 6, 451, 514
momentum (equation of motion), 6, 297–319, 376, 417
Conserved property, 41, 559
Conserved scalar, 40, 41
Constant pressure combustion, 53–66
Constant-pressure specific heat, 56
Constant-volume specific heat, 642, 671
Constitutive relationship, see Stress/strain-rate relationship (constitutive relationship)
Contact discontinuity, 381, 392, 394
Contemporary method for solving laminar-flame problems, 461
Continuity equation, see Conservation equations
Continuum, 6
Contour of a laminar diffusion flame, 561
Control emissions of pollutants, 255
Coriolis force, 312
Correlating equations, 661
Corresponding states method, 654, 661 of Lucas, 661
Corresponding states liquid density (COSTALD), 626, 634, 636
Counterflow premixed-flame setup, 492
Counterflow technique, 491
Covolume, 628
Critical Mach number, 398
Critical mixing line, 601, 604
Critical mixing point, 601, 602
Critical pipe diameter consideration, 416
Critical pressure, 591, 701–704
Critical pressure of gas mixture, 660
Critical shock Mach number, 397
for explosion, 397
Critical shock strengths for explosion, 395
Critical temperature, 591, 605, 606, 656, 701–705
Critical tube diameters, 402, 403, 408
Critical volume, 656, 701–704
Cubic equations of state, 629
Cyclones, 273
Cycloparaffins, 676
Cyclopentadienyl radical, 245
Cylindrical coordinates, 315, 317
Cylindrical laminar flame, 534

D

d^2 evaporation law, 570, 577, 578, 583
Dalton’s law of partial pressure, 17, 38, 329
Damköhler number, 538
Damping parameter, 209
Deactivation reaction, 156
Decomposition reaction of CH_3CO radical, 244
Decoupled Direct Method (DDM), 205
Deflagration, 5, 354–428
Deflagration lean limit, 400
Deflagration rich limit, 400
Deflagration-to-detonation transition, 356, 388–395, 420, 422, 426, 427
in gaseous mixtures, 388
Deformation and breakup dynamics, 610
Degree of reaction, 19
Dehydration, 182
Dehydrogenation, 182
V-operator, 314, 316–318
Dense gas viscosity, 660
Desorption and formation rate constants, 185
Desorption process, 182, 183
Detonability criteria, 405
Detonability limits, 395, 398, 399, 401–406, 410, 420
of a hydrogen-oxygen mixture, 395
of a reactive mixture, 395
of unconfined mixtures, 402
Detonation, 5, 225, 232, 239, 354–436
in stoichiometric hydrogen-oxygen kernel size, 427
mixture, 389
of methane-air mixtures, 402
Detonation cell, 404
size, 405, 407, 412

width, 355, 411, 412
Detonation lean limit, 400
Detonation rich limit, 400
Detonation sensitivity, 411
Detonation velocity, 376
Detonation wave speed, 354
Detonation wave velocity, 379, 380, 434
Diatomic gas, 503
Differential diffusion effect, 491
Differential operations involving the V-operator, 316–319
Diffusion equation, 304, 386
Diffusion (non-premixed) flames, 5, 269, 336, 439, 347, 355, 538–547, 551–568
overventilated flame, 539, 547
underventilated flame, 539, 547
Diffusion time, 549
Dilatation, 474
Dimensionless dipole moment, 656
Direct detonation initiation, 425
Dissipation by viscous stress, 324
Dissociation reactions, 502
Divergence theorem, 338
Drag coefficient, 418
for hard sphere, 613
Droplet burning in convective stream, 582
Droplet dynamic deformation, 610
Droplet heat up time, 622
Droplet lifetime, 605–607, 622
Droplet surface temperature, 608
Droplet relaxation time, 622
Dufour effect, 6, 320, 321, 324, 327, 330, 332, 562
Dynamic viscosity, 624, 655

E

Effect of diluent concentration and initial density on detonation wave velocity, 380
Effect of temperature on flame speed, 460
Eigenvalue, 203, 251, 364, 516
Eigenvector, 251
analysis, 200, 203
Electrochemical methods, 142
Electron charge, 694
Electron mass, 694
Electrostatic precipitators (ESPs), 273
Elementary reaction, 129, 210, 284
Endothermic decomposition and reactions, 421
Endothermic reaction, 44, 61, 126, 127
Energy equation, 326
integral form of, 340
Energy-flux balance, 348
at the gas-liquid interface, 347
Energized molecules, 156
Energy loss spectroscopy (ELS), 189
Energy transfer mechanism (atom and radical combination), 282
Enskog theory, modified, 597
Enthalpy, 11, 43, 44, 52, 285, 320, 325, 348, 349, 354, 568, 603
change across the interface, 349
chemical, 348
sensible, 248
Entrainment rate, 555
Entrainment velocity, 555
Entropy, 12, 16, 24–27, 354
Entropy distribution, 367
Equation of continuity for the mixture, 294, 296
Equation of motion, 311–314
Equation of state, 5, 6, 9, 17, 29, 103, 359
Equilibrium composition, 95, 98–107
Equilibrium constants, 11, 12, 78–90, 151, 177, 197–199, 462
Equilibrium criteria for closed thermodynamic systems, 36
Equilibrium, liquid-vapor, 33, 97, 98
Equivalence ratio, 9, 10, 12, 39, 107, 420, 489, 490, 494, 524
Esters, 676, 699, 700
Ethane decomposition reaction, 236
Ethers, 676
Ethyl radicals, 236, 237
Ethylene (C₂H₄), 224
Ethylene-air flame, 440
Euler form of the momentum equation, 304
Eulerian approach, 298, 300, 302
Eulerian coordinates, 300
Evaporation coefficient, 570, 577
Excess and deficit of enthalpy, 568
Exothermic reaction, 44, 61, 126, 127, 238, 283
Expanding spherical flames, 477, 478, 480, 481
Explosion
branched-chain, 162–164
branched-chain limit condition, 396
thermal, 162
Explosion in an explosion, 389–392
onset of, 392
Explosion limits, 216, 220–223, 523
of H₂/O₂ Systems, 220
Explosion limit peninsula, 216, 222
Explosive reactions, 117
Extended corresponding-state (ECS) principle, 594–597
Extended X-ray adsorption fine structure (EXFAS), 188
Extensive property, 15

F
Fabric filters, 273
Fall-off curves, 158, 159, 165, 167
Fall-off reaction rate constant methods, 168, 170
Fall-off region, 237
Fast subspace, 249
Femtochemistry techniques, 137, 140–142
Fenimore mechanism, 255, 259–259, 269
Fick’s law of diffusion, 6, 289–292, 295, 320, 328–334, 345, 563
Field emission spectroscopy (FES), 189
Finite element collocation methods, 465
First law of thermodynamics, 16, 20, 24, 30, 74, 365
First-order local sensitivity coefficients, 204
First-order rate law, 152, 158
First-order reactions, 129, 132, 141, 143, 151–154, 157, 457
First order sensitivity matrix, 201
First viscosity, see Viscosity, dynamic (first viscosity)
Flame curvature, 474
effect of, 477
Flame front, 392
Flame height, 548, 561
Flame length, 560
Flame quenching, 513
Flame radius, 560
Flame speed, 254
Flame speed at flammability limit, 521
Flame stability, 506
Flame stabilization:
blowoff, 504–507, 510, 535
boundary velocity ingredient, 437, 504–506, 508
Flame stretch effect, 478
Flame stretch factor, 471, 477
Flame stretch rate, 474
Flame stretching, 477, 523
Flame temperature, 437
of methane/air laminar flame, 212
Flameholder, 535
Flamelet concept, 476
Flammability of laminar flames, 310, 329
Flammability limits, 420, 447, 471
heat loss effect, 535
lean, 526, 527
of pre-mixed gases, 395, 511
rich, 526, 527
Flammability studies, 172
Flammable zone of natural gas-air mixture, 513
Flash photolysis resonance fluorescence technique, 133, 137, 139, 141, 142
Flashback, 439–441, 504, 508, 510, 533, 535
Flashback region, 506
Flow reactor systems, 136, 142
Flow work, 324
Formaldehyde, 233
Formation of amines or HCN, 258
Formation of hydrogen cyanide, 262
Formation mechanism of nitrogen oxides, 255
Formation of thermal NO, 259
Formyl radical HCL, 234
Formyl radical (HCO) deformation reaction, 241
Fossil fuels, 262
Fourier’s law of heat conduction, 290, 320
Free radicals (chain carriers and free valences), 154, 155, 161, 220, 222, 264, 266
Freezing point, 701–704
FT-IR spectroscopy, 141
Fuel bound nitrogen route (FN), 255, 262, 269
Fuel equivalence ratio, 486, 488, 489
Fuel evaporation rate, 376, 575
Fuel-injector nozzle, 561
Fuel mass flux at droplet surface, 573
Fuel-oxygen content ratio, 9, 11, 39, 96, 442, 496, 505, 511
Fuel-oxidizer mixture, 410
Fuel-rich flames, 265
Fugacity, 11, 90–92, 95, 537, 598, 599
Functional group, 700

G

Galloping detonation, 405
Gas diffusivity, 678, 680
Gas-phase kinetics and preprocessor, 169
Gas-phase reactions, 117, 131–132, 223–245
Gas-phase relaxation time, 622
Gas solubility, 592
Gas-thermal conductivity, 671
Gas-turbine engines, 551
Gas viscosity, 656

H

H atom abstraction reactions, 238, 243
H atom generation steps, 216
H2/air flame, 471
H2-air-CO2 mixture, 406
H2–air-diluents detonations, 410
H2-air-stream mixture, 406
H2/O2 reaction mechanism, 217
HCCO reactions, 229
HO2 formation/consumption reaction, 226
HO2 hydroperoxyl radical, 219
H2O2 formation/consumption reaction, 226
H2O2 species, 219
Half-life, 138
of chemical species, 142
Halogen containing compounds, 421
Halogenated hydrocarbons, 421
Halogenated species, 231
Hankinson–Brobst–Thomson model, 635
Hankinson–Thomson correlation, 637, 640
Harmful effects, 272
Hayduk and Minhas’s method, 686
Heat capacity of real gases, 645
Heat of combustion, 62, 63
Heat conduction equation, 295
Heat of formation, see Standard heat of formation (specific enthalpy of formation)
Heat of reaction, 12, 43–47, 52, 54, 55, 61, 63, 65, 424, 425, 558
Heat of vaporization, 12, 69, 602, 603
Heat transfer coefficient to a spherical droplet, 572
Heating value of a fuel, 61
HBT (Hankinson, Brobst, and Thomson) mixing rule for liquid density, 639
Helmholtz free energy, 35, 104
Hess’s thermochemical law, 48, 51, 63, 65
Heterogeneous reactions, 117, 174, 283, 351
Heterogeneous chemical kinetics, 165
Hexadecane, 588
Hierarchical structure, 224
High-pressure correction, 626
High-pressure vapor-liquid equilibria, 598
High-temperature liquid viscosity estimation methods, 667
Hill’s spherical vortex, 391, 586
Hildebrand-modified Batschinski equation for liquid viscosity, 666
HO₂ formation reaction, 267
Homogeneous differential equation, 336
Homogeneous ignition process, 213
Homogeneous reactions, 5
Hooke’s law, 304
Horizontal asymptote, 371
Hugoniot curve, 355, 357–368, 371, 435, 438
origin of, 361
Hybrid time-integration/Newtonian iteration technique, 492
Hydraulic drag coefficient, 418
Hydrazine decomposition reaction, 345, 533
Hydrocarbon-air laminar flame speed, 496
Hydrocarbon-air mixtures, 408, 410, 501
Hydrocarbon-air reactions, 330, 331, 345, 510
Hydrocarbon-nitrogen prompt-NO channel, 262
Hydrocarbon oxidation kinetics, 224
Hydrocarbon oxidation reaction mechanism, 460
Hydrodynamically smooth walls, 416
Hydrogen/air premixed flames, 484
Hydrogen atom abstraction reaction, 239
Hydrogen cyanide, 262
Hydrogen iodide, 123
Hydrogen-oxygen reactions (H₂-air reactions), 215–223, 225, 390, 391, 395
on platinum surface, 183
Hydrogen oxidation mechanism, 411
Hydrogen peroxide (H₂O₂) formation and consumption reactions, 231
Hydrogenation, 182
Hydrogenolysis, 182
Hydroperoxyl molecule (HO₂), 222, 230, 231, 242
Hydroxyethyl radical (CH₃CHOH), 243
Hygroscopic substance, 271

Ideal gas equation of state, 327, 626
for a multicomponent system, 331
Ignition, 173, 210
Ignition delay, 424
Ignition delay measurements in shock tube, 232
Importance of HO₂ and H₂O₂ chemistry for ultra lean-burning, 496
Incident shock, 397
Incinerators, 271
Incinerator exhausts, 274
Industrial furnace, 561
Induction period, 382
Induction time, 210, 355, 408
Industry exhaust, 270
Inertia force, 301
Infinitesimal process, 16
Infinitesimal control volume, 293, 298
Infinitesimal particle approach, 297, 298
Infrared spectroscopy (IR), 188
Ignition delay approach, 417
Ignition temperature, 499
Inhibition of flames of normal burning velocity, 421
Inhibitor, 284
Inorganic particles, 271
Integral reaction flow analysis, 212–215
Intensity of turbulence, 549
Intensive property, 15
Intermolecular potential function, 656, 680
Internal potential function, 656, 680
Internal circulation of droplet vaporization rate, 585
Internal energy, 12, 21, 23, 166
International System Equation, 103
Ion neutralization spectroscopy (INS), 189
Irreversible process, 14, 17, 25–29, 31
Irreversible thermodynamic processes, 14, 320
Isentropic process, 367, 373
Isobaric specific heat, 650
Isocoric specific heats, 650
Isocomposition contours, 556
Isotopes of elements, 170
Isotropic fluid, 309, 351
Iterative minimization technique, 136
IUPAC, 699

J

Jacobian matrix, 201, 208, 209, 251
normalized, 201
Jet invariant, 553, 559, 618, 621
Joback method for constant
pressure-specific heat, 642, 643

K

Karlovitz number (Ka), 475, 484, 485, 488
Karman–Pohlhausen integral approach, 586
Kay’s rule, 638
Kerosene-air reaction, 107
Ketones, 675, 699, 700
Ketyl radicals (HCCO), 240
Kinematic viscosity, 418
Kinetic energy, 12, 21, 349
Kinetic spectroscopy technique, 139, 142
Kinetic theory of gases, 176
Knocking, 312, 499
Kronecker delta function, 285, 310

L

Lagrange multiplier, 105, 106
Lagrangian approach, 298–300, 464
Lagrangian coordinate, 464
Laminar burning velocities, 484, 485, 488, 500
Laminar diffusion flame jets, 336, 539–547
Laminar flame (premixed laminar flame), 173, 210–212, 232, 269, 364, 388, 422, 439, 471–496
Laminar flame speed, 373, 423, 437, 444, 459, 471, 483, 490, 496, 511, 534
dependence on mixture composition, 497
effect of additives, 499, 500
effect of flame temperature, 502
effect of fuel molecular structure, 497–499
effect of initial temperature, 501, 511
effect of mixture ratio, 496, 497
effect of pressure, 500, 501
effect of stretch, 485
effect of thermal diffusivity and specific
heat, 502, 503
flammability limits, 510–528
various hydrocarbon-air mixtures, 512, 513
Laminar flame speed measurement:
constant-volume bomb method, 442, 443
flat-flame burner method, 445–447
particle-track method, 445
soap-bubble (constant-pressure bomb
method), 443, 444
Laminar flame stability, 504
Laminar flame in the stagnation-point flow
regimes, 491
Laminar flame theory:
comprehensive theory, 416, 422, 451–458
contemporary method, 461–468
diffusion theory, 449, 458–461
thermal theory, 449–451
Laminar pre-mixed flames, 258, 336
Landau–Teller formation, 168
Langmuir adsorption isotherm, 175–177, 180, 191
Langmuir’s concept of chemisorption, 174
Langmuir–Hinshelwood mechanism, 179, 181
Langmuir–Rideal mechanism, 179–182
Laplace’s law, see Lavoisier and Laplace’s
thermochemical law (Laplace’s law)
Laser-based optical techniques, 447
Laser-beam extinction measurement, 448
Laser Doppler anemometry (LDA), 448
Laser Doppler velocimetry, 448
Laser induced fluorescence (LIF) technique, 191, 448
Laser photolysis, 141
Laser Rayleigh-scattering technique, 448
Latent heat of vaporization, 591
Lavoisier and Laplace’s thermochemical
law (Laplace’s law), 47, 65, 66
Lean H₂/O₂/N₂ mixtures, 496
Lee–Kesler method for C_p calculations, 649
Lennard-Jones 12–6 potential, 656, 680
Lennard-Jones energies of species, 679
Levenburg–Marquardt method, 136
Lewis number (Lewis–Semenov number), 6, 290, 334, 336, 337, 491, 547
Lifetime of a droplet, 570, 577, 586, 587, 589, 591, 604, 605, 607, 608, 610, 612–614
Lift curve, 507
Lifted flame, 507
Limiting tube diameter, 406, 409, 410
Limits of detonability, 397
Liquid diffusivity, 684–688
Liquid-phase reactions, 117
Liquid rocket-engine combustor, 561
Liquid thermal conductivity, 674–678
Liquid viscosity, 661
Local reaction flow analysis, 213
Low-activation energy free radical reactions, 124
Low-energy electron diffraction (LEED), 189
Lower Chapman–Jouguet point, 355, 360
Low-pressure premixed flames, 264
Low-temperature path, 184
Low-temperature viscosity estimation methods, 664
LOX droplet vaporization, 610
Lucas’s Estimation method, 668
Lucas method for dense gas viscosity, 659
Lundgren’s “fine-grained density” method, see Turbulent diffusion flame, probabilistic approaches.

M

Mach number, 395, 412, 434
Magnesium oxide particles, 445
Mallard and LeChatelier’s development, 449
Markstein length, 478, 482–485, 489, 490
Markstein numbers, 484, 487
Mass-average velocity, 285–288, 328
Mass burning rate, 339
Mass concentration (concentration), 82, 287
Mass conservation equation
for species A, 294
for i-th species, 296
Mass diffusivity coefficients, 333
Mass diffusivity velocity, 286, 287, 296, 322
Mass diffusivity, 6, 289, 290, 292, 349, 460
Mass flux balance equation, 351
Mass flux balance of the i-th species at the gas-solid interface, 346
Mass fraction, 8, 12, 38, 200, 212, 465, 514, 573
Mass-weighted averaging see Favre averaging (mass-weighted averages)
Material derivative, see Substantial derivative (total derivative of material derivative)
Maximum flame speed, 498
Maximum flame temperature, 216
Maxwellian distribution of velocity, 139
Mean free path, 102, 139, 286, 291, 342, 548, 655, 671
Measurement of gas-phase reaction rates, 131
Mechanical energy equation, 323, 325
Mechanical equilibrium, 14
Mechanism for ethane oxidation, 215
Mechanism for methane oxidation, 215
Mechanism of flame anchoring, 503
Metal combustion, 174
Metal oxides, 271
Melting point, 705
Methane, 83, 92, 93, 177, 210–211, 215, 234, 235, 244, 261, 262, 402, 484, 489, 490, 509, 511, 533
Methane-air flame, 262, 564
Method of corresponding states, 657
Methoxy (CH₃O), 242
Methylene radical, 240
Missenard group contribution method, 653
Missenard’s equation for liquid thermal conductivity, 677
Mixture rules, 626, 631, 687, 688
Mixture compressibility factor, 600
Mixture fraction, 11, 12, 40–43, 552, 557–559
Modification of the GFM (Green’s function method), 205
Modified Yetter kinetic Scheme for atmospheric H₂/air mixtures, 493
Moist carbon-monoxide flame, 458, 459
Molar-average velocity, 268, 287
Molar concentration, 11, 12, 167, 285–290
Molar diffusivity velocity, 286, 287
Molar flux, 286, 287, 289, 350
Molar standard free energy of formation, 78, 80
Mole fraction, 8, 10, 12, 38, 197, 198, 200, 287, 354, 468, 471
Molecular beam scattering techniques, 139
Moment closure methods, see Turbulent diffusion flame, direct-closure approach
Momentum diffusivity, 290
Momentum equation, 297, 340
integral form of, 340
Momentum flux balance at gas-solid interface, 343
Monatomic gas, 503
Monolayer adsorption, 175
Monopropellant decomposition flame, 534
Monte Carlo solution method, 200
Multicomponent diffusion equation, 328–330
Multidimensional detonation-wave structure, 384
Multiheaded detonation, 402, 405, 410
Multilayer adsorption, 175
Multiple photo ionization technique (MPI), 137, 140

N

\(n \)-decane, 587–589
\(n \)-hexane, 588, 589
\(n \)-pentane, 606, 608
NACA Report, 512
NASA chemical equilibrium code, 165.

See also Chemical equilibrium application code
Name of chain, 698
NASA-CEA program, 378, 434
butadine (\(C_4H_6 \)), 238
NASA database, 171
Name of group, 698
National Ambient Air Quality Standard for carbon monoxide, 271
Natural gas-air reaction, 512, 513
Navier–Stokes equations, 297, 310–319, 612
Near-critical enhancement, 593
Neutral preferential-diffusion condition, 487, 490
Newton’s law of momentum transport, 290
Newton’s second law, 303
Newton–Raphson
descent method, 88, 95, 106
iteration methods, 373, 375–379
iteration procedure, 376
NH or NH\(_2\) free radical, 266
Nitric oxide, 173, 255
Nitrogen diluted flames, 494
Nitrogen dioxide, 129, 130
NO production from fuel-bound nitrogen, 262
NO \(\rightarrow \) HCN \(\rightarrow \) N\(_2\) Mechanism, 264, 265
NO \(\rightarrow \) NO\(_2\) conversion, 269
NO\(_2\) mechanism, 267
N\(_2\)O mechanism, 267–269
Noble–Abel dense-gas law, 434
Nonequilibrium thermodynamics, 26–34
Nonexplosive reactions, 117
Nonideal detonation, 414
Nonideal gas effects, see Real gas (nonideal) effects
Nonplanar leading shock wave, 385
Nonpolar compounds, 634
Nonpolar liquids, 635
Nonpolar substances, 672
Non-premixed flames, see Diffusion (non-premixed) flames
Normal boiling point, 624
Normal paraffins, 686, 703
Normal unstretched laminar-flame speed, 475
Normalized velocity deficit, 416
NO\(_x\) emissions, 172
NO\(_x\) formation mechanism, 255, 270
Nuclear magnetic resonance, 142
Number density, 679

O

O\(_2\)/H\(_2\) system, 601, 602
O\(_3\) decomposition mechanism, 232
Olefins, 498, 677
One-dimensional planar propagating premixed flames, 252
One-step (single-step) chemical reaction, 118, 141–147
1–3 butadine (\(C_4H_6 \)), 238
Onsager’s reciprocal relations, 320
Onset of retonation in stoichiometric hydrogen-oxygen mixture, 390
Opposed flow diffusion flames, 173
Opposing reactions, 150, 151
Optical spectroscopy, 188
Order of chemical reaction, 12
Organic acids, 675
Organic compounds, 699
Orrick and Erbar’s Group Contribution Method, 665
Orthogonal curvilinear coordinate system, 472
Orthonormal relations, 249
Oscillatory combustion phenomena of H\(_2\)/O\(_2\) systems, 216
Overall continuity equation, 464
Overall order of the reaction, 128, 162
Overall rate sensitivity coefficient, 203
Oxidation of acetaldehyde, 243
Oxidation of ammonia, 174
Oxidation of HCN, 262
Oxidation of ketene, 240
Oxidation of NH\(_3\), 265, 266
Oxyhydrogen reaction mechanism, 224
Ozone, 133, 232, 419, 420, 434, 461, 464, 467, 468
Ozone/oxygen flame, 461
premixed, 464

P

p-T explosion diagram of H2/O2 mixture, 223
Paraffins, 675, 701
Partial equilibrium assumption for O atoms, 257
Partial molar Gibbs function (chemical potential), 32–34
Partial oxidation, 182
Partial pressure of species i, 12
Particle image velocimetry (PIV), 448
Particle tracking methods, 448
Particulate matter, 271
Peclet number, 547
Penetration distance, 437, 504
Peng–Robinson equation of state, 649
Perfectly stirred reactors, 252
Periodic table of elements, 708
Perkins and Geankoplis’s method for liquid diffusivity, 687, 688
Phase equilibrium, 34, 95–98
Phenyl radical, 245
Photochemical initiation of detonation in mixtures, 425
Photo-stationary methods, 142
Photoradiolysis, 133–142
Pitzer’s acentric factor, 595, 624, 646, 654
Pitzer equation for reduced vapor pressure, 646
Planar laser induced fluorescence (PLIF) technique, 448
Planck’s constant, 694
Platinum catalyzed surface reaction, 186
Plug flow reactor, 137, 173
Polar molecules, 672
Polyaromatic hydrocarbon (PAH) oxidation, 244
Polyaromatic hydrocarbons (PAH), 272
Porosity, 353
Potential energy, 12, 21
Prakash–Sirignano model of droplet internal circulation, 391, 396, 586
Preexponential factors, 167
Preferential diffusion of heat and species, 568
Prefixes, 696
Premixed ethylene-air flame, 440
Premixed H2/O2 gases, 523
Premixed laminar flame, see Laminar flame (premixed laminar flame)
Premixed stoichiometric CH4/air flame, 214
Pressure dependant reactions, 170
Pressure exponent, 500
Pressure oscillation characteristic time, 622
Primary bonds, 52
Primary methods of NOx control, 270
Production rate of kth species, 166
Prompt NO mechanism, 255, 258, 263
Propagation of detonations in rough-walled tubes, 415
Propane/air mixtures, 488, 489
Proton mass, 694
Przedziecki and Sridhar’s Corresponding States Method, 666
Pyrolysis of acetylene, 238
Pyrolysis process of a solid fuel, 353

Q

Quantum correction factor, 657
Quantum gases, 657
Quartz photochemical cell, 135
Quasi-detonation process, 415
Quasi-equilibrium, 251
Quasi-steady assumption, 572
Quasi-steady state assumption, 257
Quasi-steady state assumption (QSSA) and partial Equilibrium assumption, 246
Quenching distance, 437, 440, 504, 507–510
between parallel plates, 509
Quenching of flame-shock complex, 422

R

Radical recombination reaction, 124
Ramjet engine, 538, 551, 590
Random motion molecular velocity, 291
Rankine–Hugoniot relations, 356, 359, 360, 370, 434, 435
Ranz–Marshall correlation, 587, 612
Rapid mixing, 142
Rate-determining (slow) step, 144, 202
Rate of production of chain carriers, 220
Rate of removal of free radicals, 222
Rate limiting reaction steps, 200, 202, 204, 258, 259, 269
Rate of reaction, see Reaction rate (rate of reaction)
Rayleigh-line relation, 359, 361, 435
approximate, 375
Reactedness, 558
Reaction coordinate, 126
Reaction flow analysis, 211
Reaction flow diagrams, 212
Reaction mechanism description, 170
Reaction mechanism of H₂ oxidation, 225
Reaction mechanisms of H₂/O₂ systems, 215–223, 524
Reaction mechanism of hydrogen oxidation on platinum surface, 186
Reaction path diagram, 263–266
Reaction product imaging technique, 140
Reaction progress variable (reactedness), 12, 19
Reaction rate (rate of reaction), 118, 119, 131, 137, 163, 166, 168, 184, 450, 451, 508
Reaction rate of adsorption, 177
Reaction rate of desorption, 177
Reactivity of C-Si bond, 499
Reactivity of Si-H bond, 499
Real (nonideal) gas effects, 90–92
Real gas equation of state, 626
Redlich-Kwong (R-K) equation of state, 599, 600, 628, 629
mixing rules, 631
Reduced and detailed mechanisms, 254, 255
Reduced dipole moment, 657
Reduced mass of molecules, 116, 122
Reduced mechanism for high temperature H₂/air and CH₄/air oxidation, 252
Reduced pressure, 597
Reduced specific molar volume, 595
Reduced temperature, 597, 623
Reduction of reaction mechanisms, 245
Reichenberg Method for dense gas viscosity, 658
Relationship between Xᵢ and Yᵢ, 331
Relative mass-diffusion velocity components, 322
Relative mass flux, 288,
Relative molar flux, 288, 291
Relative rate-constant photolysis technique, 134
Relative sensitivities, 208, 210
Relaxation method, 137, 138, 142
Relation modulus in shear, 344
Residence time, 549
Resonance energy, 49–51
Resonant multiple photo ionization (REMPI) technique, 140
Retonation wave, 389–391
Reversible process, 14, 24–26

Reynolds’ transport theorem, 338, 339, 473, 476
Rossini’s approach, 35
Runge-Kutta integration routine, 157
Rutherford back-scattering spectroscopy (RBS), 188

S

Saturated liquids, 633
Saturated straight-chain hydrogen, 697
Schlieren photographs
flash, 388
streak, 389
Schmidt number, 6, 390, 337, 549, 556
Second explosion limit, 222
Second-order rate law, 158
Second-order reaction, 122, 132, 143–147, 153, 154, 157, 457, 512
Secondary bonds, 52
Secondary droplet-breakup regimes, 584
Secondary ion mass spectroscopy (SIMS), 188
Self-ignition induction time, 422
Self-similarity profiles, 552, 555
Self-sustained detonation front, 391
in a 2H₂ + O₂ + 2CO mixture, 387
region, 405
Sensitivity analysis, 225, 252, 259
global methods, 204
local methods, 204
theory, 201
Sensitivity coefficients, 209
Sensitivity of mass fractions of H atoms and water vapor, 212
Shchelkin spiral, 405
Shock front, 392
Shock-to-detonation transition process, 356
Shock strength, 395
Shock tube, 102, 137–139, 142, 232, 233, 237, 240, 242, 244, 381
Shock waves, 426, 427
Shock wave amplification by coherent energy release (SWACER), 427
Shvab–Zel’dovich formulation, 332–336, 453, 538, 540–544, 564, 565, 579
Shvab–Zel’dovich energy equation, 335
Shvab–Zel’dovich species equation, 335
Shvab–Zel’dovich variables, 579
Simple chemically reacting system (SCRS), 558, 559
Single fuel droplet burning, 569–581
Single fuel droplet burning (continued)
 double-film model, 569
effect of internal circulation, 585–590
Single-headed spin detonation, 402,
 403–405
 onset of, 405
Single-head detonation wave, 410
Single-head spinning waves, 409
Single-step forward reaction, 335, 514
Singlet electronic excited state of
 methylene, 230
Slow subspace, 249
Smoked-foil method, 384–386, 406, 407,
 410
SO2, 271, 272
Soave–Redlich–Kwong equation of state,
 625, 635, 649
Sodium-line-reversal method, 448
Soft X-ray appearance potential
 spectroscopy (SAPS), 189
Solid-phase reactions, 117
Sonic velocity, 354
Soot, 272
Soot formation and oxidation, 173
Soret effect, 6, 320, 330, 332, 480, 562
Spalding transfer number, 580, 581, 587,
 605, 613
Spalding transfer number at high-pressure,
 605
Spalding’s theory, 513–522
Spark energies, 485
Spark plug, 511
Species continuity equation, 463
Species diffusion theory, 534
Species dissociation, 380
Special function groups, 699
Species mass-flux balance, 343, 348
 at a gas-solid interface, 345, 352
Specific enthalpy of formation, 354
Specific gravity, 701–704
Specific heat, 623, 641
 at constant pressure, 165
 at constant volume, 166
Specific impulse, 215
Specific internal energy, 321
Specific reaction-rate constant, 116, 119,
 125, 129, 144, 148, 153
Specific impulse, 3
Speed of light, 694
Speed of sound, 423
 behind a detonation wave, 373
Spherical bomb, 479
Spherical coordinates, 315, 318
Spherical deflagration wave, 485
Spherical detonations, 402
Spherical flame, 443, 534
Spherical flameholder, 535
Spherical flame propagation, 534
Spin pitch, 406
Spinning detonation, 384
SRK and PR equations of state, 595, 628
Stability diagram for premixed open burner
 flame, 506
Stable flame region, 506
Stable preferential-diffusion conditions, 485,
 490
Stagnation point flow-field, 491
Standard heat of formation (specific
 enthalpy of formation), 12, 43–47, 66,
 Standard-state enthalpy, 165
Standard-state entropy, 166
Static methods, 132
Stationary 1D C-J detonation, 413
Steady-state approximation (assumption),
 157, 158, 161, 164, 246, 281, 396
Steady-state one-dimensional problems,
 205, 208
Steam reforming, 182
Stefan–Boltzmann constant, 694
Steric factor, 116, 123
Sticking coefficient, 174, 183
 at zero surface coverage, 186
Stiff ODE solver code (LSODE), 206
Stiff ordinary differential equations,
 252
Stiff system of equations, 172, 248
Stirred reactors, 173
Stoichiometric coefficients, 12, 76, 78, 116,
 118, 119, 129
Stoichiometric condition, 9, 10, 107
Stoichiometric equation, 20, 514
Stoichiometric H2/O2 flame, 471
Stoichiometric H2/O2 mixture, 221, 386,
 391
Stoichiometric mixture of air and methane,
 533
Stoichiometric propane/air flame, 211
Stoichiometric vector, 247, 249
Stoichiometry, 482, 483
Stopped flow spectrophotometric technique,
 137, 138
Stored energy, 11, 15, 16, 20, 321, 347
Strain-rate tensor, 285, 307, 324, 474
Stream function, 562, 563
Stress/strain-rate relationship (constitutive
 relationship), 304–310
Stress tensor, 301, 304, 305, 307, 311, 314,
 315, 343, 344, 351
Stretch effects in hydrogen/air mixtures, 477
Stretch factor, 475, 485
Stretch rate, 491
Stretched laminar premix flame, 471
Stretched vortex ring, 611
Stretch-free flame speed, 492
Strong detonation wave, 363
Structure of self-sustaining detonation waves, 384
Sublimating surface, 352
Sublimation temperature, 705
Substantial derivative (total derivative of material), 300
Substituted methyl groups, 498, 499
Sulfur dioxide, 271
Sulfuric acid, 271
Supercritical combustion, 591, 661
Supercritical droplet combustion, 608
Supercritical burning, 590–614
Supercritical droplet gasification, 610
Superdetonation, 389
Super-equilibrium concentrations of O atoms, 257, 269
Surface adsorption process, 174
Surface bond energy for desorption, 183
Surface catalysis, 174
Surface chemical composition, 187
Surface coverage in monolayers, 195
Surface coverage parameter, 183
Surface crystallography, 189
Surface reaction mechanism, 194
Surface reaction rate, 183, 342
Surface tension of a liquid, 624
Surface sites, 177
Surface stress force, 301
SWACER, 427
Symmetric tensor, 324
System(s)
 closed, 15–19, 22, 24, 26, 27
 isolated, 15, 27
 open, 15, 28

T

Tait equation, 637
Takahashi’s high-pressure correction, 683
Tangential velocity of flame surface, 475
Taylor series expansion models, 200
Teja and Rice’s method for liquid viscosity, 670
Temperature dependence of burning velocity, 525, 526
Temperature exponent, 500
Temperature-programmed desorption (TPD), 190
Temperature-programmed reaction spectra (TPRS), 190
Temperature reaction paths, 55
Temperature sensitivities, 203
Tertiary bonds, 52
Theory of Zel’dovich, Frank-Kamenetsky, and Semenov, 451
Thermal conductivity, 624
Thermal desorption spectroscopy (TDS), 190
Thermal diffusion coefficient, 286, 330
Thermal diffusion time, 588
Thermal diffusivity, 290, 503
Thermal equilibrium, 14, 16
Thermal NO mechanism, 255, 256
Thermal theory, 449
Thermodynamic coordinates, 14
Thermodynamic database, 170
Thermodynamic equilibrium, 14, 150–152
Thermodynamic property database, 169
Thickness of unstretched flame, 475
Thin’s method, 644
chaperon relationship, 223
for the trimolecular reaction, 223
Third explosion limit, 222, 223
Third law of thermodynamics, 17
Third-order reactions, 133, 147, 231, 283
Three-body chain-terminating reactions, 495
temperature insensitive, 495
temperature sensitive, 495
Three-body reaction, 222
Three-body recombination rate constant, 282
Threshold Reynolds number, 611
Time averaging, see Reynolds averaging (time averaging)
Time-dependant one-dimensional problems, 205
Time-dependant spatial problems, 209
Time-dependant zero-dimensional problems, 205
Total derivative, see Substantial derivative (total derivative of material)
Total enthalpy, 285, 325
Total fixed nitrogen (TFN), 259, 261
Total number of collisions, 328
Total oxidation, 182
Total stored energy, 15
Total stress tensor, 343
Toluenes, 699, 700
Transfer number for supercritical vaporization, 613
Transient flame propagation process, 533
Transition from a multi-headed detonation to a single-headed spin detonation, 402
Transport equations, 5, 6
probability density function, 6
Transport properties, 101, 557, 558, 560, 593–598
Transport property preprocessor, 169
Trimolecular reaction rate, 216
Triple bond, 256
Triple point, 386, 387, 705
Triplet state of methylene, 230
Troe-coworker approach, 168
Truncated virial equations, 649
Truncation error, 172, 467
Turbojet engine, 618
Turbulence dissipation rate, 6
Turbulence kinetic energy, 6
Turbulence (Reynolds) stresses, 6
Turbulent boundary layer, 420
Turbulent eddy viscosity, 549
Turbulent flames, 471, 476, 490
Two-flux model, 353
Two-point boundary value problem solver, 169
Tyn and Calus’s method for liquid diffusivity, 685, 686
Tyn’s method for higher temperatures, 686, 687

U
Ultraviolet photoemission spectroscopy (UPS), 188
Ultraviolet radiation, 425
Unified analyses of thermophysical properties, 593
Unimolecular reaction, 142, 156, 158
Unit normal vector, 473
Universal gas constant, 12, 624, 693
Unsaturated hydrocarbons, 498
Unstable preferential diffusion, 485–487, 490
Upper Chapman-Jouguet point, 360
UV/visible absorption spectroscopy, 141

V
Van der Waals equation of state, 628
Van’t Hoff equilibrium box, 32, 74–76
Van Velzen Group Contribution method, 665
Venting in the early stages of explosion, 421
Vertical asymptote, 371
Very lean H\textsubscript{2}/air flames, 495
Vibrational energy transfer process, 170
Vinyl acetylene, 245
Vinyl radical (C\textsubscript{2}H\textsubscript{1}), 237, 245
Virial coefficients, 629
Virial equation of state, 629
Virtual origin of the jet, 621
Viscoelastic materials, 344
Viscosity, dynamic (first viscosity), 286, 309, 351
Viscous stripping, 611
Vogel equation of liquid viscosity, 662
Void fraction, 353
Volume dilatation, 310, 325
Von Neumann spike, 383
Von Neumann state, 413
Vorticity equation, 563

W
Wall recombination processes, 173
Wassiljewa equation for gas mixture thermal conductivity, 673
Weber number, 538, 583
Wet-bulb temperature, 606
Wet-bulb state, 604
Wet scrubbers, 273
Wilke-Chang Correlation, 684, 685, 688
Wood-burning stoves, 271

X
Xiang’s equation for liquid viscosity, 664
X-ray adsorption technique, 383
X-ray photoemission spectroscopy (XPS or ESCA), 188

Z
Zel’dovich, Frank-Kamenetsky, Semenov theory, see Laminar flame theory, comprehensive theory
Zel’dovich mechanism for NO formation, 255–256, 259, 269
Zero-dimensional ignition delay problem, 210
Aero-order reaction, 457
Zeroth law of thermodynamics, 15
ZND detonation wave structure, 372, 382, 383, 403, 412, 413
ZND model, 412
ZND theory, one dimensional, 413