A
absolute value spectrum 235
absorption mode lineshape 84
active coupling
 in COSY cross peak 328
active spin
 in spectrum of two coupled spins 38
ADC 489
 digitization sidebands 490
 number of bits 489
analog to digital converter see ADC
angular frequency 17
 conversion to Hz 17
angular momentum
 classical 29
 nuclear spin 29
anti-phase magnetization 154
 coherence transfer using pulses 166
 effect of heteronuclear decoupling 169
 from evolution of coupling 150
 in I, S spin system 453
 in three-spin system 321
 interconversion with in-phase using spin echo 163
 multiplet from 155
anti-phase square array
 in COSY 194
 in COSY cross peak of three-spin system 327
 in description of reduced multiplet 333
APT 457
attenuator 486
axial peak
 moved using States–TPPI 233
 origin in NOESY 283
 suppression in NOESY 283
 suppression using phase cycling 403
axis system
 right-handed 49

B
B1 field see radiofrequency field
Boltzmann distribution 115, 131, 259
bra 107
broadband decoupling
 heating during 14
 in 13C spectra 14

in HSQC 211
 sequence 14
bulk magnetization
 at equilibrium 49
 calculated from density operator 128
 origin of 47
 precession of 50
 related to ensemble average 112
 related to expectation values for individual spins 112
 vector 48

C
calibration of pulses 61
chemical equivalence 446
chemical exchange 286
 analogy for secular contribution to transverse relaxation 290
 fast and slow limits 289
 microscopic view 287
chemical shift
 conversion to frequency 7
 ppm scale 6
chemical shift anisotropy see CSA
circular motion 16
 described using complex exponential 20
 phase shift in 18
cohereence
 relation to superposition state 134
cohherence order
 definition of 382
 effect of pulses 385
 evolution of operators of particular order 384
 in heteronuclear systems 388
 introduced 173
 observable 386
 possible values 383
 relation to raising and lowering operators 174
cohherence transfer
 by pulses from anti-phase state 166
 in INEPT experiment 167
cohherence transfer pathway
 amplitude modulated data 390
 cancellation of unwanted 397
 defined 387
 in heteronuclear experiments 388
 P- and N-type data 390
phase modulated data 390
relationship to frequency discrimination 389
retaining symmetrical 390
selection using phase cycling 396
selection with field gradient pulses 412
coil
in probe 485
used for detection 51
used to generate radiofrequency field 52
combination line
in ABX spectrum 474
in three-spin system 43
complex conjugate 498
complex exponential 498
relation to trigonometric functions 499
complex numbers 497
complex conjugate 498
$re^{i\theta}$ representation 498
square modulus 498
constant time
COSY 354
COSY, intensity of cross and diagonal peaks 355
COSY, linewidth in ω_1 356
HSQC 357
pulse sequence element 353
correlation function
definition 253
exemplified 254
exponential form 255
reduced 255
relation to correlation time 255
correlation time
definition 251
relation to correlation function 255
typical values 253
cosine modulation
in two-dimensional NMR 187
lack of frequency discrimination 226
used in States–Haberkorn–Ruben method 230
COSY
analysis using product operators 190
anti-phase square array in 194
constant time 354
constant time, analysis using product operators 354
constant time, intensity of cross and diagonal peaks 355
constant time, linewidths in 354
constant time, linewidth in ω_1 356
constant time, problems with 355
constant time, pulse sequence 354
cross peak 192
cross-peak multiplet in a three-spin system 326
detection of small couplings 198
diagonal peak 192
diagonal peak in small flip angle 336
double-quantum filtered 200
form of cross-peak multiplet 192
form of diagonal-peak multiplet 195
interpretation of 190
phase cycle 405
phase properties 197
problems with 199
pulse sequence 191
reduced multiplets 330
selective version 171
small flip angle 335
small flip angle, analysed using polarization operators 340
small flip angle, lineshape of cross peak 342
small flip angle, lineshape of diagonal peak 343
small flip angle, problems with 344
three-spin system 325
two-dimensional 190
coupling
constant 10
effect on evolution of product operators 150
not refocused by spin echo in homonuclear case 161
refocused in heteronuclear spin echo 164
sign of constant 12
term in Hamiltonian 37
virtual 475
coupling constant
determination of relative signs using reduced multiplets 333
effect of sign 39
effect of sign on ABX spectrum 472
measurement using reduced multiplet 334
sign of 12
cross correlation 306
dependence of rate constant on geometry 307
differential linebroadening 309
effect on transverse relaxation 308
exploitation in TROSY 310
in 15N–1H pair 306
in longitudinal relaxation 306
Solomon equations in presence of 308
cross peak
form of multiplet for COSY of three spins 326
form of multiplet in constant time COSY 354
form of multiplet in COSY 192
form of multiplet in DQF COSY 201
form of multiplet in small flip angle COSY 335
form of multiplet in TOCSY 223
form of multiplet in ZCOSY 346
in COSY 192
in NOESY 283
in small flip angle COSY, analysed using polarization operators 341
influence of active and passive couplings on form of 328
cross relaxation 270
in fast motion regime 273
in slow motion regime 273
transverse 297
transverse, dependence on spectral densities 298
transverse, during spin locking 298
zero crossing 273
cryo probe 486
CSA 250
cross correlation with dipolar relaxation 306
relaxation due to 304
tensor 304
CYCLOPS 403
dB 487
 relation to pulse width 488
DC spike 403
decoupling see broadband decoupling
density operator 126
 at equilibrium 128, 131
 definition 127
 expansion coefficients 130
 expressed in terms of \hat{I}_x, \hat{I}_y, and \hat{I}_z 129
 matrix representation 127
 rotation of 141
 time evolution 129
dephasing
 due to inhomogeneous broadening 300
 during field gradient pulse 415
DEPT 462
detection
 in rotating frame 60
 of precessing magnetization 51
diagonal peak
 form of multiplet in constant time COSY 354
 form of multiplet in COSY 195
 form of multiplet in DQF COSY 201
 form of multiplet in small flip angle COSY 336
 form of multiplet in TOCSY 223
 form of multiplet in ZCOSY 346
 in COSY 192
 in NOESY 283
 lineshape in small flip angle COSY 343
difference spectroscopy
 in HSQC 211
 in INEPT 170
 in NOE experiments 276, 279
 in selective COSY 172
digitization
 of time domain 77
 sampling rate 490
 sidebands 490
 with ADC 489
diplexer 488
dipolar relaxation
 described using Solomon equations 271
 longitudinal relaxation for two spins 272
 of two spins 267
 transverse, for two spins 296
Dirac notation 107
 implied integration 107
dispersion mode lineshape 84
double-quantum coherence
 diagrammatic representation of evolution 178
 evolution of 176
 generation from anti-phase terms 176
 representation using product operators 175
double-quantum filtered COSY see DQF COSY
double-quantum spectroscopy 203
 analysis using product operators 204
 direct peaks 367
 form of spectrum 205
 INADEQUATE experiment 206
 interpretation of spectrum 205
 phase cycle 406
 pulse sequence 204
 remote peaks 370
 three-spin system 366
double-quantum transition
 in three-spin system 42
 in two-spin system 39
doubly anti-phase magnetization 321
 generated in three-spin system 323
DPFGSE 433
 in NOE experiment 433
 transient NOE spectrum of quinine 434
DQF COSY
 advantages over COSY 203
 analysis using product operators 200
 pathway selection with gradients 421
 phase cycle 405
 phase properties of cross and diagonal peaks 201
 pulse sequence 200
dwell time 490
editing
 using APT 457
 using DEPT 466
 using INEPT 461
effective field
 for hard pulse 59
 in frequency units 56
 in rotating frame 55
 tilt angle of 56
eigenfunction
 associated eigenvalue 28
 of \hat{I}, 29, 108
 of Hamiltonian for one spin 30
 of Hamiltonian for three coupled spins 41
 of Hamiltonian for two coupled spins 37
 of Hamiltonian for two spins without coupling 35
 of operator 28
eigenvalue
 associated with eigenfunction 28
 of \hat{I}, 29
 of Hamiltonian for one spin 30
 relation to measurement 28
 eigenvalue equation 28
energy
 operator for 29
energy level
 description of transition using 23
 in frequency units 33
 of AB spin system 443
 of three coupled spins 41
 of two coupled spins 38
 of two spins without coupling 36
 problem with 24
energy level diagram
 three coupled spins 41
 two coupled spins 37
ensemble average
 calculation of bulk z-magnetization 112
 calculation of transverse magnetization 116
 overbar notation 114
equilibrium magnetization
 origin of 49
 value of 260
 equivalence
 chemical 446
 magnetic 447
 exchange see chemical exchange
 exchange broadening 287
 exchange narrowing 287
 EXORCYCLE 402
 expectation value 109
 of \(\hat{I}_z \) 109
 evolution of \(\langle \hat{I}_z \rangle \) during a pulse 125
 of \(\hat{I}_x \) and \(\hat{I}_y \) 111
exponential
 complex 498
 falling, as weighting function 92
 function, relation to logarithms 495
 rising, as weighting function 94
 extreme narrowing see fast motion

F
fast motion 257
 relationship between longitudinal and transverse relaxation rates 295
 sign of NOE enhancement 277
 spectral density 257
 FID see free induction decay
field gradient pulse
 advantages and disadvantages of 426
 controlling phase errors 419
 dephasing during 415
 DPFGSE 433
 in conjunction with inversion pulse 418
 in conjunction with refocusing pulses 418
 in DQF COSY 421
 in HMQC 422
 in HSQC 424
 inability to select multiple pathways 416
 introduced 409
 obtaining absorption mode lineshapes when gradients used in \(t_1 \) 417
 phase errors due to 419
 refocusing condition 413
 selection of a single pathway 412
 selective excitation 432
 shaped 414
 sign of gradient 409
 strength of gradient 411
field–frequency lock 485
flip angle
 determination 61
 of pulse 57
 folding 490
Fourier transform
 cosine 188
 how the transform works 78
 mathematical formulation 80
 of two-dimensional cosine modulated data 188
 of two-dimensional sine modulated data 189
 sine 189
free induction decay 13
 description of decay during 83
 due to precession of transverse magnetization 51
 representation as complex time-domain signal 82
frequency
 angular 17
 conversion from Hz to angular 17
 motion in a circle 17
 offset 8
 offset in rotating frame 55
 receiver reference 8
 relation to period 17
 scale in two-dimensional NMR 190
frequency discrimination
 by quadrature detection 491
 in one-dimensional experiments 226
 in terms of coherence transfer pathway 389
 P- and N-type in two-dimensional NMR 228
 States–Haberkorn–Ruben method 230
 TPPI method 231

G
Gaussian
 lineshape 97
 weighting function 95
gyromagnetic ratio 29

H
Hamiltonian
 as operator for energy 29
 determining time evolution 118, 129
 for coupling 37
 for one spin in a field 29
 for three spins with coupling 40
 for two spins without coupling 35
 free precession for one spin 140
 free precession for two spins 157
 in frequency units 34
 pulse for one spin 123, 141
 pulse for two spins 157
 strong coupling 442
hard pulse 59
HETCOR
 analysis using product operators 220
 form of spectrum 221
 pulse sequence 220
heteronuclear correlation spectra 208
 HETCOR 220
 HMBC 215, 347
 HMQC 212
 HSQC 209
 normal vs inverse 208
heteronuclear steady-state NOE 280
 dependence on gyromagnetic ratio 280
HMBC
 choice of fixed delay 215
 effect of 1H–1H couplings 347
 form of multiplets in ω_2 348
 of quinine 218
 pulse sequence 213
 suppressing one-bond correlations in 218
 with suppression of one-bond correlations, pulse sequence 219
HMOC
 analysis using product operators 213
 of quinine 215
 pathway selection using gradients 422
 phase cycle 407
 pulse sequence 213
 sensitivity of 215
 suppression of unwanted I spin magnetization with gradients 424
homogeneous broadening 300
homospoil pulse 420
HSQC
 analysis using product operators 209
 constant time 357
 constant time, advantage of 358
 constant time, pulse sequence 357
 coupled in both dimensions, pulse sequence 359
 coupled or decoupled acquisition 211
 form of spectrum 211
 pathway selection using gradients 424
 pulse sequence 210
 purge gradient in 425
 sensitivity 212
 sensitivity-enhanced 350
 suppression of unwanted signals 211
I
 in-phase magnetization 153
 in three-spin system 321
 interconversion with anti-phase using spin echo 163
 multiplet from 154
INADEQUATE
 example of 206
 principle of experiment 206
INEPT 167
 coupled acquisition 168
 decoupled acquisition 169
 in L_0S spin systems 458
 sensitivity enhancement 167
inhomogeneous broadening 300
 decay due to 300
 description using T^*_z 303
 due to field gradient 411
 origin of 300
 refocused by spin echo 301
initial rate approximation
 analysis of NOESY 282
 analysis of transient NOE experiment 275
integral 9
interferogram 185
inverse detection
 in heteronuclear correlation spectra 208
 sensitivity advantage 212
inversion pulse
 described using product operators 146
 described using vector model 58
 effect on coherence order 386
 with field gradient pulse 418
inversion–recovery
 analysis of data from 264
 pulse sequence 264
isotropic mixing 221
J
 J-modulation
 of spin echo in L_0S spin system 455
 of spin echo in homonuclear spin system 159
 spectra showing 162
 suppression in constant time experiment 353
K
 ket 107
L
 Larmor frequency
 as rate of precession 50
 definition of 32
 influence of chemical shift 33
 relation to gyromagnetic ratio 32
Larmor precession
 about applied field 50
 detection of 51
 in rotating frame 55
lattice
 coming to equilibrium with 246
line broadening 92
lineshape
 absolute value 235
 absorption mode 9
 absorption mode Lorentzian 84
 dispersion mode Lorentzian 84
 effect of phase 85
 Gaussian 97
 mixed 86
 phase-twist 228
 two-dimensional double absorption 188
 two-dimensional double dispersion 197
 width of 9
linewidth
 at half height 9
 in ω_1 of constant time COSY 356
local field
 dipolar 244
 effect on z-magnetization 244
 from CSA 250
Index

heteronuclear 214, 462
multiple-quantum transition
in three-spin system 42
in two-spin system 39
multipllet
doublet of doublets 11
prediction using tree diagram 10
two-dimensional 191

N
N-type
by combining cosine and sine modulated data 228
coherence transfer pathway for 390
spectrum 229
NOE
as a result of cross relaxation 274
difference spectrum 276, 278
measured using steady-state experiment 278
measured using transient NOE experiment 274
transient experiment using DPFGSE 433
NOE enhancement
competition between cross and self relaxation 279
defined 277
in steady-state NOE experiment 279
in transient experiment 277
sign of 277
transverse, in ROESY 299
NOESY
analysed using the Solomon equations 281
cross and diagonal peaks 283
doquinine 284
phase cycle 407
pulse sequence 281
relayed peaks 285
spin diffusion in 285
suppression of axial peaks 283
z-filter in 430
zero-quantum interference 427
noise
origin of 90
non-secular 293
part of transverse relaxation 247, 286
non-selective pulse see hard pulse
normalization
of wavefunction 108
nuclear Overhauser effect see NOE
Nyquist frequency 490
folding 490

O
observable
coherence order 386
product operator 451
product operators 156
off-resonance effects 67
excitation of a range of offsets 69
offset frequency
in rotating frame 55
of peak 8
refocused by spin echo 65
operator
eigenfunction of 28
for x- and y-components of spin angular momentum 111
for z-component of spin angular momentum 29
lowering 174
matrix representation 111
order of action 27
raising 174
role in quantum mechanics 27

P

P-type
by combining cosine and sine modulated data 228
coherence transfer pathway for 390
spectrum 228
paramagnetic species
relaxation by 250
passive coupling
in COSY cross peak 328
passive spin
in COSY cross peak 328
in spectrum of three coupled spins 42
in spectrum of two coupled spins 38
phase 17
correction of errors in spectrum 88
effect on lineshape 85
errors due to field gradient pulses 419
in two-dimensional spectra 234
of peaks in COSY 197
origin of frequency dependent 88
receiver 391
phase correction
frequency-dependent or first-order 88
frequency-independent or zero-order 88
in two-dimensional spectra 234
phase cycle
COSY 405
double-quantum spectroscopy 406
DQF COSY 405
EXORCYCLE 402
HMQC 407
NOESY 407
phase cycling
basic principle 395
combining different cycles 399
grouping pulses together 401
neglect of high-order coherences 402
of final pulse 402
of first pulse 401
problems with 408
refocusing pulse 402
selection of a pathway 396
selectivity of a given cycle 398
time saving tricks 401
phase shift
relation to circular motion 18
phase-twist lineshape
from phase modulated data 228
photons
energy of 20
polarization operators
defined 337
effect of pulses 339
free evolution 338
small flip angle COSY analysed using 340
ZCOSY analysed using 345
populations
related to 1_z etc. 269
related to ensemble average 115
used in analysis of dipolar relaxation of two spins 269
used to compute z-magnetization 115, 258
pre-amplifier 488
precession
about applied field 50
detection of 51
in rotating frame 55
probe 485
cryo 486
tuning and matching 485
product operators
diagrammatic representation of evolution of coupling 152
diagrammatic representation of rotations 147
double- and zero-quantum terms 175
effect of coupling on 150
for 1_S spin systems 450
for one spin 139
for three spins 320
for two spins 149
interpretation, for two spins 150
limitations 142
notation for heteronuclear spin systems 157
observable operators 156, 451
relation to magnetization 140
product operators, analysis using
1–T sequence 148
constant time COSY 354
COSY 191
double-quantum spectroscopy 204, 366
DQF COSY 200
HETCOR 220
HMQC 213
HSQC 209
INEPT 168
pulse–acquire 143
sensitivity-enhanced HSQC 350
spin echo 145
spin echo in 1_S spin system 455
spin echo in heteronuclear spin system 164
spin echo in homonuclear spin systems 158
TOCSY 222
pulse
calibration of 61
effect on coherence order 385
flip angle of 57
Hamiltonian for 123
hard 59
inversion 58
Index

R
radiofrequency field
 calibration of 62
 described using rotating frame 53
 generation using coil 52
raising operator 174, 382
 effect of z-rotation 382
rate constant
 for longitudinal relaxation 262
 for longitudinal relaxation of two spins by dipolar mechanism 272
 for relaxation due to CSA 305
 for transverse relaxation 293
 related to spectral density 271
 theoretical prediction of 271
receiver
 block diagram 492
 hardware 488
 phase 391
 phase following signal 395, 396
 reference frequency 8
reduced correlation function 255
reduced field 55
reduced multiplets
 construction of 332
 determination of relative signs of couplings 333
 from small flip angle COSY 335
 in COSY with one heteronucleus 330
 in terms of anti-phase square arrays 333
 measuring passive coupling 334
reduced spectral density 257
reference compound 6
refocusing pulse
 description using product operators 146
 description using vector model 63
 phase cycle 402
 with field gradient pulse 418
relative signs of couplings
 determined using reduced multiplets 333
 effect on ABX spectrum 472
relaxation
 defined 242
 due to CSA 304
 due to random fields 294
 in terms of populations 260
 longitudinal dipolar, of two spins 267
 mechanisms 249
 time between experiments 266
relaxation delay 13, 266
relaxation mechanism
 CSA 250
 dipolar 244, 249
 paramagnetic species 250
 random fields 294
resolution
 effect of linewidth 9
 resolution enhancement 94

Q
quadrature artifacts 403
quadrature detection
 principle 491
quadrature images 403
quantum mechanics 26
 measurement in 109
 observation in 24
 of one spin 105
 operators in 27
 wavefunctions in 26
quinine
 APT 459
 coupled and decoupled 13C spectra 14
DEPT 467
DPFGSE NOE 434
HMBC 218
HMQC 215
NOESY 284
proton spectrum 13
structure 13
TOCSY 225

on resonance 57
phase error due to 68
phase of 66
swept-frequency 431
pulse programmer 493
pulse sequence
 1–1 148
 APT 457
constant time COSY 354
constant time HSQC 357
COSY 191
DEPT 462
double-quantum spectroscopy 204
DPFGSE NOE 433
DQF COSY 200
HETCOR 220
HMBC 213
HMBC, with suppression of one-bond correlations 219
HMQC 213
HSQC 210
HSQC, coupled in both dimensions 359
INEPT 168
inversion–recovery 264
NOESY 281
pulse–acquire 13, 60, 143
ROESY 299
sensitivity-enhanced HSQC 351
spin echo 63
steady-state NOE 278
TOCSY 222
transient NOE 274
TROSY HSQC 363
ZCOSY 345
purge gradient 420
 in z-filter 428
 in HSQC 425
with sine bell 98
ROESY
 pulse sequence 299
roofing 444
rotating frame
 description of radiofrequency field 53
 detection in 60
 effective field in 55
 Larmor precession in 55
 reduced field in 55
rotation
 diagrammatic representation of rotations of angular
 momentum operators 147
 of spin angular momentum operators 141
 table of rotations of spin angular momentum operators 143
rotational diffusion 251

S
 scalar coupling see coupling
 secular 293
 dependence on spectral density of secular part of transverse
 relaxation 292
 part of transverse relaxation 248, 286, 290
selective excitation 69
 aided with gradients 432
 in selective COSY 171
 phase in 70
 using shaped pulses 70
selective inversion 70, 274
 practical implementation in TROSY 362
 used in TROSY 360
self relaxation 270
sensitive volume 410
sensitivity enhancement 92
 matched filter 94
sensitivity-enhanced experiments 349
 HSQC 350
sensitivity-enhanced HSQC
 analysed using product operators 350
 practical aspects 353
 processing 352
 pulse sequence 351
shaped pulses 70
shims 484
signal-to-noise ratio
 effect of acquisition time on 91
 improved using weighting function 92
 improvement by time averaging 13
sinc wiggles 100
sine bell
 shifted 98
 weighting function 98
sine bell squared 98
sine modulation
 in two-dimensional NMR 189
 lack of frequency discrimination 227
 used in States–Haberkorn–Ruben method 230
slow motion 258
 sign of NOE enhancement 277
spectral density in 258
soft pulses 69
 inversion with 70
 shaped 70
Solomon equations 271
 analysis of NOESY 282
 analysis of steady-state NOE 278
 analysis of transient NOE 275
 in presence of cross correlation 308
spatially dependent phase
 defined 411
 dependence on experimental parameters 412
 due to shaped gradient 414
 in heteronuclear systems 414
spectral density 256
 area under 256
 at Larmor frequency, maximum in 257
 form for exponential correlation function 256
 reduced 257
 relation to correlation function 256
spectrum
 one spin 31
 three coupled spins 41
 two coupled spins 38
spin angular momentum
 eigenfunctions and eigenvalues of \hat{I}_z 29
 matrix representations of operators 112
 operator for z-component, \hat{I}_z 29
 operators for x- and y-components, \hat{I}_x and \hat{I}_y 111
 rotations of operators 143
spin diffusion see slow motion
spin echo
 description using vector model 63
 for one spin, analysed using product operators 145
 gradient echo for selective excitation 432
 in heteronuclear systems, analysed using product operators 164
 in homonuclear systems, analysed using product operators 138
 in I_nS spin systems 455
 interconversion of in-phase and anti-phase states 163
 offset refocused by 65
 phase evolution during 66
 refocusing of inhomogeneous broadening 301
 used to measure rate constant for transverse relaxation 304
spin lattice relaxation see longitudinal relaxation
spin locking 298
spin state
 effect on multiplet 10
 label for reduced multiplet 332
 label for spectrum of two coupled spins 38
spin system
 notation 449
spin system analysis 468
 AA’XX’ 476
 AB 442, 468
 ABX 470
 computer program 477
spin–spin relaxation see transverse relaxation
States–Haberkorn–Ruben method
frequency discrimination in two-dimensional NMR 230
States–TPPI 233
steady-state NOE
analysed using Solomon equations 278
heteronuclear 280
pulse sequence 278
strong coupling 12, 442
AA′XX′ 476
AB 442, 468
ABX 470
roofing 444
strong coupling parameter 443
placing in correct quadrant 469
subspecrum
in ABX spin system 471
superconducting magnet 483
superposition state 25
effect of free evolution 119
effect of pulse on 123
for one spin 106
generation of transverse magnetization by pulse 125
swept-frequency pulse 431

T

\(T_1 \) 262
\(T_1 \) noise 203
\(T_2 \) 294
\(T_2^* \) 303
tilt angle
of effective field 56
time averaging 13
time domain
complex representation 82
digitization of 77
signal with phase shift 86
transformation to frequency domain 77
truncation, effect of 100
two-dimensional 185
time proportional phase incrementation see TPPI
TOCSY
analysis using product operators 222
form of cross- and diagonal-peak multiplets 223
in extended spin systems 225
interpretation of spectrum 221
isotropic mixing in 221
of quinine 225
pulse sequence 222
\(z \)-filter in 430
zero-quantum interference in 224
TPPI 231
combined with States method 233
implemented in COSY 233
transient NOE experiment
effect of longer mixing times 278
enhancement in 277
pulse sequence 274
transition
in terms of energy levels 23
transmitter 486

transverse magnetization
free evolution calculated from wavefunction 122
related to ensemble average 116
zero at equilibrium 49, 116
transverse relaxation 247
behaviour of isolated spins 293
cross relaxation 297
dipolar, of two spins 296
effect of correlation time 295
effect of cross correlation 308
measurement of rate constant for 304
non-secular part 247, 286
rate constant for 293
relationship between non-secular part and longitudinal
relaxation 294
secular contribution 290
secular part 248, 286, 290
tree diagram 10
grouponometric identities 499
triple-quantum transition
in three-spin system 43
TROSY
exploitation of effect 358
in \(^{15}\text{N}–^{1}\text{H}\) fragment 310
line-selective transfer in 360
multiplet 359
origin of effect 310
TROSY HSQC
processing data from 364
pulse sequence 363
truncation 100
tuning and matching 485
two-dimensional lineshape
absolute value 233
double absorption 188
double dispersion 197
phase-twist 228
two-dimensional NMR
cosine amplitude modulation 187
COSY 190
double-quantum spectroscopy 203, 366
DQF COSY 200
frequency discrimination 226
frequency scales 190
general scheme 184
HETCOR 220
HMBC 215, 347
HMQC 212
HSQC 209
HSQC, constant time 357
INADEQUATE 206
NOESY 281
obtaining cosine and sine modulated data 227
phase modulation 228
processing 185
recording 185
ROESY 299
sensitivity-enhanced HSQC 350
sine amplitude modulation 189
power level and dB 487
TOCSY 221
TROSY HSQC 363
ZCOSY 345

U
unit operator 149

V
vector model 47
vector model description of
 off-resonance effects 67
 pulse calibration 61
 pulse–acquire 60
 pulses 52
 pulses of different phases 66
 refocusing pulse 63
 spin echo 63
virtual coupling 475

W
wavefunction 24
 eigenfunction 28
 normalization 108
 orthogonal 108
 role in quantum mechanics 26
 superposition state 25, 106
 time evolution 118
weak coupling 12, 442
weighting function
 decaying exponential, to enhance sensitivity 92
 Gaussian to control noise 95
 Gaussian used in conjunction with rising exponential 95
 Lorentz-to-Gauss transformation 97
matched filter 94
resolution enhancement with 94
shifted sine bell 98
sine bell 98
sine bell squared 98
specifying parameters 96

Z
z-filter
 in NOESY, TOCSY and ZCOSY 430
 introduced 428
 suppression of zero-quantum in 429
 zero-quantum in 428
z-magnetization
 differential equation for relaxation of 262
 driven to zero by random local fields 244
 equilibrium value 246, 260
 in terms of populations 260
 recovery to equilibrium, described 263
 relation to magnetic moments 243
 selection with field gradient pulse 420
ZCOSY
 advantages 347
 analysis using polarization operators 345
 form of cross-peak multiplet 346
 form of diagonal-peak multiplet 346
 pulse sequence 345
 z-filter in 430
zero filling 99
zero-frequency glitch 403
zero-quantum coherence
 dephasing 430
 diagrammatic representation of evolution 178
 evolution of 176
 generation from anti-phase terms 176
 interference in NOESY 427
 interference in TOCSY 224
 representation using product operators 175
 suppression of 426
zero-quantum dephasing 430
zero-quantum transition
 in three-spin system 42
 in two-spin system 39