References to figures are given in italic type; references to boxes and tables are in bold type. Abbreviations: BIM = building information modelling; VE = value engineering; VM = value management

academic QS curricula, coverage of sustainability in 376–377, 380, 380, 384
activity-based design approach [for creating sustainable communities] 11–12, 201, 204–206
data and information requirements 205
interior space layout 209, 210
key concepts and principles 202
zoning proposals 209, 210
see also decentralised energy networks
Africa, share of global construction output 8
air conditioning
alternatives 265, 266
capital cost 264
air-to-air energy recovery 165
alternative procurement routes 13
whole-life cost theory used 22
AMEC, knowledge management systems used by 233–234
appraisal of design 61–78
case study 69–77
by discounting methods 63–66
by residual valuation technique 65, 67–69
architect-led [traditional] procurement system 122, 128–129
area schedule, functional areas of building 253
ARUP, knowledge management systems used by 232, 233
Asia, share of global construction output 6, 7, 8
Atkins, knowledge management systems used by 233
Australia, tall buildings 290, 291
barcoding 233
BCIS (building cost information service) 31, 42, 43–44, 73
Standard Form of Cost Analysis 34, 40–41, 270
Standardised Method of Life Cycle Costing 262, 269, 270, 271, 272, 273
BedZED development 201
behaviour changes, energy demand reduced by 154
benchmarking 21, 41–43
of cost plans 255
definition 42
BIM (building information modelling) 13, 299–318
3D modelling in 305, 308, 309, 310
4D simulation 315
Build-to-Design (B2D) phase 306
case studies 307–310
change orders and quality 306–307
communication in 305
constructability analysis 305–306, 309–310
cost planning 260, 310–313
cost visualisation 312–313
data integrity 305–306
data visualisation 305
definitions 300–301
Design-to-Build (D2B) phase 306
evolving cost forecasting process 311–312
future directions 317–318
‘in-wall coordination’ process 307–308
information flow in 302–303
integration process 302
MPS (Model Progression Specification) language 303–304
proactive approach 304
productivity gains by using 232–233
quality aspects 305–310
scheduling 314–317
controlling stage 315–317
planning stage 314–315
takeoff process 310–311, 311
UK Government’s promotion of use 21, 42, 260, 300
value engineering process 304, 312
Virtual Construction technology 302, 307–308
biomass boilers 169, 259
in case study 268, 277, 278
biomethane gas injection 155
Blackfriars Road development project [London] building costs 72–73
case study 69–77
cost of planning obligations 73–74
development costs 72–73, 72
development location and site 69–72, 70–72
boiler equipment, energy savings 165–166
Bowley, Marian 300
brand value, factors affecting 26
BREEAM 14, 26, 146, 180–184, 242, 338, 344
characteristics 180
evolution of 180–181
life-cycle costing in 109
updates 180–181
BREEAM NC (new construction) scheme 181
assessment stages 181
mitigation principles 181
BREEAM rating/score
capital costs implications 14, 62, 63, 73, 89, 177
compared with other environmental ranking methods 89
Dutch tall buildings ranked by 89, 90
procedures 181–184
and reduction in whole life costs 14, 63
BRICS countries, economic growth 6
brownfield developments
in Netherlands 81
in UK 171
Brundtland report [1987] 337, 346
building codes and regulations
carbon emissions requirements 245
tall buildings 290
Building Cost Information Service see BCIS
building costs, data sources 73, 254
building height–construction cost relationship 12, 19, 20, 47–60
see also cost–height relationship
Building Information Modelling see BIM
Building Research Establishment
Environmental Assessment Method see BREEAM

CAD 232
Cambridge, University of, sustainability in curriculum 374
capital allowances 155, 161–162
enhanced 152, 155, 163–164, 365, 366
planning 364–365
capital cost theory 18–21
capital gains tax (CGT) 157–158
carbon dioxide (CO2) emissions designing to reduce 178–179
inclusion in WLC modelling 118
reduction of [in UK] 152, 153, 178
in healthcare sector 264, 265, 267–268, 269, 279
in retail sector 281
sources in built environment 178, 372
ways of dealing with in whole-life analysis 14, 82, 113–114
carbon emission trading 118
carbon footprint, factors affecting 187
carbon management 13
Carbon Reduction Commitment (CRC) 160, 244
see also CRC Energy Efficiency Scheme
Carbon Trust 338
Carter’s model 26
case studies
appraisal of design [Blackfriars Road Development Project] 69–78
procurement and contract strategy [Wembley Stadium] 123–124, 135
project management healthcare sector 236–237
leisure and entertainment sector 236
retrofitting building services 356–361
case studies (cont’d)
 sustainability assessment, healthcare centre 263–268, 275–279
 sustainability education in QS degree programmes 380–382
 sustainability strategies 339–353
 tax planning 365, 367
 ‘virtual construction’ technology [in BIM] 302, 307–308
 VM/VE office development with retail provision 330–335
 supermarket development 319–329

CBRE, UK yields data 245, 388
CGT (capital gains tax) 157–158 rates 157
change orders
 impact on quality 306–307
 site productivity affected by 97
 zero change orders [BIM case study] 307–308
Chartered Institute of Building see CIOB
CHP (combined heat and power) 166, 259 networks 155
 quality assurance scheme 166, 366
CIOB (Chartered Institute of Building), on environmental impacts 339
Climate Change Act [2008, UK] 13, 244, 337, 372
climate change issues 10–11
economic costs 338
 flooding 213, 214–215
climate change levy 157, 161
CO₂ emissions see carbon dioxide emissions
Code for Sustainable Homes (CSH) 245, 258–259, 377
 mandatory minimum standards 258, 259
 requirements for planning approval 258
 sustainability criteria for 258, 259
combined heat and power see CHP
Committee on Climate Change 337
community infrastructure levy 63
‘compensation’ events [in NEC3 contract] 129
competitiveness
 factors affecting 339
 in case studies 348, 353, 351–352
complexity, effects on costs 17
compound interest calculations 64
compressed air equipment, energy savings 166
construction costs, reduction of, life-cycle cost optimised by 113
construction investment
 and development theories 9
 and fiscal policies 9–10
 and monetary policies 10
construction management procurement system 132–133
 compared with management contracting approach 132–133
construction market(s)
 factors affecting size and nature 6
 globalisation of 6–9
construction methods, site productivity affected by 96
Construction Project Information Committee (CPI), definition of BIM 301
consumption costs, reduction of, life-cycle cost optimised by 113–114
contaminated land, meaning of term 172
contour crafting 233
cost cutting, contrasted with value engineering 320
cost data sources 72–73, 254
cost documentation, standardisation of 32, 44
cost drivers in project 253, 257–258
cost estimating 31
 new approaches 32–45
 standardisation of 32–33, 45
cost–height relationship 12, 19, 20, 47–60
doors and windows costs 55, 57
electrical costs 58, 59
Hong Kong study 50–52
plumbing costs 58, 59
research in 1970s and 1980s 48–50
roof costs 55, 56
services costs 56–59
Shanghai studies 53–59
substructure costs 55, 59
superstructure costs 288
U-shaped curve 49–50, 51, 286
upper floors costs 55, 56, 59
‘cost limits’ approach 41–43
cost plan
 concept and format 37–40, 248–253
 evolution through RIBA design stage 37–40, 255–257
impact of sustainability 258–259
meaning of term 21, 248
percentage split of costs 253, 257–258
 steps 253–255
 benchmarking against other schemes 255
 contingency 255
 design development 253
 main contractor’s overheads and profit 255
main contractor’s preliminaries 254
measurement 253
on-costs 254–255
price rates/adjustment/market testing 254
template used 253
cost planning 19–21, 31, 248–260
in BIM 260, 310–313
new approaches 32–45
standardisation of 33
cost-plus contract 126
cost reimbursement contract 126
cost visualisation [in BIM] 312–313
cost yardsticks [for public-sector projects] 19, 38
Costain, knowledge management systems used by 234
counter-terrorism design measures [in tall buildings] 288–291, 293
new approaches 294
cost implications 293, 295, 296
CRC (Carbon Reduction Commitment) 160, 244
CRC energy efficiency scheme 152, 154, 160
Crotty, R., on BIM 301, 318
CSH see Code for Sustainable Homes
Cubitt, Thomas 299
decarbonisation of heating/cooling supply 154–155
decentralised energy networks 202
key features 203–204, 211
key steps in design process 206–209
defining collectivism 206
establishing activities 206
identifying high-energy-consumption areas 208–209
re-assessing energy consumption of key activities 207–208
rules to reduce space demand 206–207
zoning proposal 209
DECs (display energy certificates) 154
Delft Maintenance Calculating Model 86
Delft University of Technology, estimating model 83
demand-side policies 10
derelict land, meaning of term 172
des
design and build’ contracts 130–131
design and build’ procurement system 122, 129–130
example of use 123, 130, 135
design characteristics, site productivity affected by 95
design costs and benefits
assessment for design alternatives 61–63
design factors affecting 17–18
matrix 18
design economics
reason for importance 4
theories and principles 16–29
traditional theories 17, 19
design economists
current role 11–12
emerging role 12–14
future role 15
design innovation 348, 349–350
design liability, limitation of 129, 131
design quality indicators 25
design variables, examples 19, 20
design variation orders, site productivity affected by 97
‘develop and construct’ approach 129–130
development costs 24–25, 67
in Blackfriars case study 71, 71
development theories, and construction investment 9
development value 24–25, 65
effect of investment yield 68–69, 77
effect of rental income 67–68, 77
DGNB certification system for sustainable buildings 138, 146
DGNB standard, life-cycle costing in 109, 110, 111, 119
DIN standards 33
discount factor/rate 64, 65, 274
discounting 64–65
discounting methods
appraisal of design using 63–66
examples 65, 66
display energy certificates (DECs) 154
district heating systems 155
domestic appliances, energy consumption data [listed] 203
domestic RHI (domestic renewable heat incentive) 154
Dutch housing market, factors affecting 81
Dutch office market 80–81
earth tubes [for cooling] 266
Eastern Europe, growth in construction market 6, 8
ECAs (enhanced capital allowances) 152, 155, 163–164, 365, 366
qualifying technologies 164, 165–170, 366
eco-costs
estimation using life-cycle costing 84
of materials 84
meaning of term 82
eco-costs/value ratio see EVR
economic benefits [of buildings], effect of sustainable credentials 149
economic benefits [of good design] 17
economic context 4–6
economic costs 18
economic costs/benefits, effects on sustainability 338
economic infrastructure 4
economic performance aspects in investment decision making 139
relationship with other building performance characteristics 141–142
relevance to different property market players 140
economic performance requirements 138, 139, 141
economic value [of design] 25
education, of design economists 15
efficiency, factors affecting 13
Egan report [1998] 21, 28, 300
electric power, methods to save 114
electrical efficiency [of lighting and appliances], improving 154
electricity consumption, per person [listed] 203
elemental cost planning 31, 38
measurement rules for 38–39
elemental cost plans 39–40, 248–251
as function of building’s areal size 40, 249–250, 252–253
employment considerations 5, 58
EN 15643-1:2010 [sustainability assessment of buildings] 138, 139, 141
Energy Act [2011, UK] 153
energy clusters 202, 204
energy consumption
by buildings 178
peak times 205
per person [listed] 203
energy demand in buildings, reducing 153–155
energy efficiency measures, in healthcare centre [case study] 264, 267
energy efficiency standards for buildings, mandatory 244
energy label approach, Dutch tall buildings ranked 89
Energy Performance Certificates (EPCs) 149, 154, 244, 338, 377
energy-saving technologies 114, 165–169
VAT rate for 369
Energy Star approach 14
examples of use 149
Energy Technology List 164, 165–170, 366
enhanced capital allowances 152, 155, 163–164, 363, 366
case studies 365, 367
see also ECAs
Enterprise Zone allowances 162, 171
Environment Agency [England & Wales], flood-risk advice 214
environmental assessment tools 177–190
key features 179–180
applicability 179
availability 179
communicability 180
cost 180
robustness 179
scoring system 179
usability 179–180
other tools listed 178
see also BREEAM; LEED
environmental considerations 13, 26
environmental costs 18, 75–76
environmental impact in built environment 262
see also sustainability
environmental performance requirements 138, 139, 141
environmentally innovative work settings, organisational performance affected by 193, 195–196, 198
EU (European Union)
emissions reduction 16, 178
Emissions Trading Scheme 11, 372
Energy Performance of Buildings Directive 244
renewable resources target 212
Strategic Environment Assessment Directive 213
evacuation of tall buildings 290, 291, 294
EVR (eco-costs/value ratio) tool 14, 82–86
applications
Dutch housing stock intervention projects 86–88
tall buildings [in Netherlands] 88–90
basis of model 82
embedding in other sustainability rankings methods 89–90
end-of-life phase eco-costs 83
operating phase eco-costs 83
production phase eco-costs 82–83
and Reference Projects Model 85–86
requirements for estimating model 84–85
and value of dwellings 83–84
explicit knowledge 231
Extranet applications 233, 234
see also 4Projects project collaboration software
factor analysis technique 101
‘fair value’ [RICS definition] 246
feed-in tariffs (FITs) 154, 173, 174, 244, 370
FIDIC contract(s) 125
financial viability in planning, RICS Guidance
Note 67, 69, 71, 76, 78
fire escape management in tall buildings 290, 291
fiscal drivers 155–161
capital gains tax 157–158
climate change levy 157, 161
corporation tax 157, 159
CRC energy efficiency scheme 160
income tax 157
taxes and levies 156–160, 161
value added tax 157, 158–160, 161
fiscal incentives [on carbon mitigation] 14, 173–175, 244–245
fiscal policies 9–10, 12
FITs (feed-in tariffs) 154, 173, 174, 244, 370
fixed-price contract 126
flood insurance 214, 222–224
elevation certificate required [in US] 219, 223
UK compared with US 223
flood mitigation 215–217
cost implications 218–222
resilience measures 220, 222
resistance measures 220
decision support flowchart [for new buildings] 218, 219
definition 215
implications to property values and insurance cost 222–224
methods
avoidance measures 215–216, 224
resilience measures 217, 221, 224
resistance measures 216–217, 221, 224
for new buildings at design stage 218
Flood Re agreement [in UK] 223
floods
challenges due to climate change 214–215
threats worldwide 213
in urban areas 215
floodplain areas, developments in 214, 215–216
floor areas, differing definitions 35–36
projects project collaboration
software 234–235
case studies 235–237
‘Contract Manager’ module 235
‘Discussion’ module 234–235
‘Query/Action’ module 235
‘Team and Organisation Directory’ module 235
‘Workflow and Approval Process’ module 235
function analysis 24
function–cost ratio 23
functional performance requirements 137
relationships with other building characteristics 141, 142
future value (FV) 64

GBCI (Green Building Certification Institute) 187
GEFMA/IFMA 220 [life-cycle cost standard] 109, 110, 111, 112, 119
general anti-avoidance rule (GAAR) 370
geothermal energy 211, 268, 358
German standards 33, 109, 119
GIA (gross internal area) 35–36
cost estimates and plans based on 35, 36, 39, 40, 249–250, 252
GIFA (gross internal floor area) 35–36
cost estimates and plans based on 35, 36, 38, 39, 40
global construction market, future growth 6–9
GMP (guaranteed maximum price) contract 123, 126, 130
‘green’ buildings
construction costs 14, 62, 63, 68
reduction in operating costs 14, 63, 68
rental income 68
Green Deal 153, 173, 175
Green Investment Bank 244
green leases 245
GreenCalc, Dutch tall buildings ranked 89
GREENSTAR sustainability rating system 242
Grotius Tower [The Hague, Netherlands] 88, 89
BREEAM score 89, 90
hand air dryers, energy savings 167
healthcare centre see integrated primary care centre
healthcare sector
BIM applications 307–310
carbon reduction strategies in hospital 269
integrated primary care centre [case study] 263–268, 275–282
project management 236–237
heat efficiency of buildings, improving 114, 153–154
heat pumps 166, 268
heat recovery systems 114, 165, 267
heating energy
consumption per person [listed] 203
methods to reduce 114, 267
Higher Education Funding Council for England (HEFCE), on sustainability in curriculum 375
historical buildings
renovation of 358–359
see also Star Island
Hong Kong, tall buildings 50–52
Hoog aan de Maas building [Rotterdam, Netherlands] 88, 89
environmental ranking 89
household insurance 214, 222–223
housing market, Netherlands 81
housing stock intervention projects, EVR model applied to 86–88
HVAC systems, energy savings 167

income tax 157
rates 157, 158
‘incomplete contracts’ 121
information technology
site productivity affected by 100
see also BIM
innovation in construction sector 339
case studies 348, 349–350
innovative work settings, organisational performance affected by 192–199
integrated primary care centre [case study] 275–279
base case building 276, 277
design reviews 276, 276, 277, 278, 279
basic characteristics 263
building form/orientation/design 264, 265
cooling and natural ventilation 264, 266, 278
energy efficiency measures 264, 267, 278
renewable energy resources 264, 267, 278
interaction innovative work settings, organisational performance affected by 195, 197–198
internal rate of return (IRR) 63, 65
international agenda, effects 10–11
investment decision processes, effect on future users and buyers 144–145
IPD (investment property databank), Sustainability Property Index Monitor 243
IPD/RICS sustainability inspection checklist 390–391
ISO 15686-5 [on service-life planning] 109, 269–271
LCC modelling 110, 111, 270, 272
and national standards 109
whole-life cost 91, 107, 108, 119, 270, 272

JCT contracts 125, 126, 128–129, 131
just-in-time (JIT) techniques 98, 317

Kingston University, sustainability in curriculum 374
KJ-square building [The Hague, Netherlands] 88, 89
environmental ranking 89
knowledge-intense organisations 230
knowledge-management systems 13, 232–234
primary care centre see also Star Island see also BIM see also BIM
knowledge reuse 230–231
in construction projects 231–232
key benefits 230
Knox Hall [New York city] 358
Kyoto Protocol 10–11, 163, 178, 336, 372, 378

labour characteristics, site productivity affected by 95–96, 103, 104
labour productivity
factors affecting 94, 96
UK compared with other European countries 94
labyrinth cooling 266
land remediation, meaning of term 172
Land Remediation Relief see LRR
land use planning, in Netherlands 81–82
Latham report [1994] 21, 300
Latin America, share of global construction output 8
LCA (life cycle analysis), eco-cost assessment tool based on 82
LCC (life cycle cost)
compared with WLC 91, 108, 270, 272
definition 107
design principles to optimise 112–115
construction costs 113
consumption costs 113–114
cost variables 112–113
design variables 113–115
renovation costs 115
services costs 115
technical maintenance costs 115
eco-cost estimation using 84, 90
measures for reporting 274
minimisation of 138
steps in modelling 110–112
period under consideration 110, 116
sources of uncertainty and risks 111–112, 116
system boundary 110–111, 116
time value of money 111, 116
worked example 116–117
see also life cycle costing
Leadership in Energy and Environmental Design see LEED
leadership styles, site productivity affected by 98, 103, 104
learning curve effects, tall buildings 49, 54
LED lamps 167, 280, 281
lighting efficiency predictions 281
LEED 14, 146, 184–190, 242
and capital costs implications 177
certification fees 187, 188
characteristics 184
evolution of 186–187
examples of use 149
registration fee 187
scoring and rating procedures 184–190
energy and atmosphere category 185, 189, 190
indoor environmental quality category 185, 189, 190
innovation-in-design category 186, 189, 190
materials and resources category 185, 189, 190
regional priority category 186, 189, 190
sustainable sites category 185, 189, 190
water efficiency category 185, 189, 190
updates 186–187
see also GBCI
legislation, climate change and sustainability 13, 244, 337
leisure and entertainment sector, project management 236
leveraging knowledge systems 232–234
life cycle costing 155
budgeting 272–273
in case studies 276, 278, 281
option appraisal 271, 273
as part of design and specification selection 273
project briefing and scoping for 271–272
Standardised Method [SMLCC] 262, 269, 270, 271, 272, 273
life cycle costing standards 107, 109, 269–275
application in procurement process 271–273
see also ISO 15686-5; SMLCC
life cycle costs in LEED approach 177
see also LCC
lighting controls 267, 278
lighting equipment
energy savings 114, 167, 267, 278
life cycle costing analysis 279–282
Liverpool John Moores University, sustainability in curriculum 374
Low Carbon Buildings Sectoral Plan 155
low-carbon electricity generation, incentives for 154, 173
low-carbon heat technologies, incentives for 154
Low Carbon Transition Plan 153
LRR (land remediation relief) 156, 171, 367–368
example of claims 369
restriction on claiming 370
lump sum contract 126
main contractor, sustainability case study 339–340, 341–352
maintenance costs 22
designing to reduce 115
impact of design decisions on 83
management contracting procurement system 131–132
comparing with construction management approach 132–133
management style, site productivity affected by 96, 104
management systems, site productivity affected by 97, 103, 104
managing consultant, sustainability case study 339, 341–352
Mandatory Energy Efficiency Standards for Buildings 244
‘market value’ [RICS definition] 246
‘master builders’ 299
materials management, site productivity affected by 98
mega-tall buildings 285
see also tall buildings
‘Merton rule’ 338
microgeneration, feed-in tariffs for 173, 211–212
MINERGIE label, examples of use 149
mitigation measures see flood mitigation
monetary policies 10
motivating factors, site productivity affected by 98–99, 103, 104
motors and drives, energy savings 168
nanotechnology advances in materials 13–14
National Fire Protection Association (NFPA, US) 287
National Flood Insurance Program (NFIP, US) 223, 224
National Institute of Building Sciences (NIBS, US), definition of BIM 300–301
National Security Strategy [UK] 289
natural disasters 213
see also flooding
natural lighting 265
natural ventilation 265
NEC 3 contract 125, 129, 131
Nesbit, James 11
Netherlands
 housing market 81
 land use planning 81–82
tall buildings 54, 81, 88–89
 network-level technologies 155
New Rules of Measurement see NRM
NHS (National Health Service, UK)
 hospitals, carbon reduction strategies 269
 NHS Trusts using 4Projects Extranet system 237
 project management 236–237
NIA (net internal area) 35
cost estimates and plans based on 249–250
NPV (net present value) calculations 65, 66
 in life cycle costing 111, 116, 274
NRM (New Rules of Measurement)
 approach 12, 32–40
NRM 1 32–40
 aim and purpose 34
 Cost Estimate [preliminary estimate] 35–37
 [‘formal’] Cost Plan 37–38, 39
 [‘formal’] Elemental Cost Plan 38–39, 40
 and OGC Gateways 34, 38
 and RIBA Plan of Work stages 34, 35, 38
 standard templates used 36, 39, 40
NTV (net terminal value) approach 65
office developments, value engineering [in case studies] 330–335, 365
office façade, LCC worked example 116–117
office market, Netherlands 80–81
OGC (Office of Government Commerce)
 gateways, and NRM 1 Parts 34, 38
open-place workspace settings
 misconceptions about 192
trend towards 192
‘optioneering’ 257
order-of-cost estimate 35–37, 251
 example 256
 guidelines on 37, 42
organisational performance
 effect of innovative work settings 192–199
 factors affecting 192
OTS (office of tax simplification) 152
overhead ventilation 266
owners and occupiers, key drivers 153
Pareto’s law 24
passive stack ventilation 265, 278
payable credits 171–172
performance approach [performance based building] 145–146
performance measurement, basis of 146
performance targets 21
PFI/PPP procurement approaches 122, 133–135
phase-change materials 266
photovoltaic (PV) installations 259
 in case study 268, 278
 valuation of 246–247
pipework insulation, energy savings 168
planning obligations
 cost of [in case study] 73–74
 for site-specific transport 74
 see also environmental costs; Section 106
planning agreements; social costs
Planning Policy Statement 25 (PPS 25) 214, 224
‘plant’, meaning of term 163, 364
plant and machinery allowances 163, 164
 main pool 163, 164
 restriction on claiming 370
 special rate pool 163, 164
Plymouth University, sustainability in
curriculum 374
policy environment 9–11
‘polluter pays’ principle 370
Porritt, Jonathon 338
Power Purchase Agreement (PPA) 359–360
 benefits/advantages 360
pre-construction activities, site productivity
 affected by 101, 102, 103, 104
 pre-construction mockups, comparison
 between physical and virtual mock-ups 309
present value (PV) 64, 274
private finance initiative see PFI/PPP
process innovation 339, 348, 349
procurement and contract strategy 121–136
procurement strategy
 and contract selection 122–123
 interaction of key actors 122
procurement systems
 construction management
 approach 132–133
 and contract issues 128–133
 design-and-build approach 122, 129–131, 135
 management contracting approach 131–132
 PFI/PPP projects 122, 133–135
 traditional [architect-led] system 122, 128–129
product innovation 339, 348, 350
productivity
 definition 93
 factors affecting 12, 93
 literature on 94–100
 measurement of 94
 see also labour productivity; site productivity
 professional training of design economists 15
profitability
 factors affecting 339
 in case studies 352, 353
Index 401

project briefing, for life cycle costing 271–272
project goals, formulation of 138–142
project management
 1970s view 301
 case studies 236–237
property investment, key factors influencing 241
property valuation
 effect of building characteristics 142–143
 effect of sustainable credentials 148–150
 and renewable energy infrastructure 246–247
 and sustainable design economics 240–243
 UK valuation process 245–247
public–private partnership see PFI/PPP
PV see photovoltaic...; present value
quality assurance [in BIM] 306
quantity surveying firms
 new and emerging services 15, 230
 traditional services 230
quantity surveyors
 challenges facing 374–376
 responsibilities in terms of sustainability 375
 role of 11–12, 374
radiant heaters, energy savings 169
reference projects model 85–86
 in EVR calculations 86
refrigeration equipment, energy savings 168
renewable energy infrastructure, valuation of 246–247
renewable energy sources 165, 166, 169, 259, 268, 278
 smart use of 201, 202
renewable heat incentive (RHI) payments 154, 173–174, 211–212, 370
renewable heat premium payments (RHPPs) 154
Renewables Obligation (RO) 170, 174
renovation
 EVRs compared with new construction 86, 87, 88
 reduction of costs, life-cycle cost optimised by 115
rental income
 determination of 67
 in case study 69
 data and assumptions sheet for 75
 development value quantified using 67
 factors affecting 68
 of ‘green’ buildings 68
residual land value 65, 77
 sensitivity [scenario] analysis 77
residual profit 65
residual valuation technique
 appraisal of design using 67–69
 example in case study 69–78
 rental value determination 67–68
 yield calculations 68–69
residual value, of building after intervention 84
resilience [flood mitigation] measures 217, 221, 224
resistance [flood mitigation] measures 216–217, 221, 224
resource-based theory 11, 27–29
resource management, site productivity affected by 98–99, 103, 104
resource scarcity 16
retail developments, VM/VE applied [case study] 319–320
RFID technology 317
RHI (renewable heat incentive) payments 154, 173–174, 211–212, 370
RHPP (renewable heat premium payments) 154
RIBA outline plan of work [2007]
 Work Stages 34–40, 251
 and BREEAM assessment stages 181, 182
 cost planning phase 37–40, 255–257
 evolution of cost plan through 37–40, 255–257
 preliminary estimate phase 35–37, 255
 and RICS cost estimating and planning stages 35–40, 251
 and RICS NRM 34–35, 251, 260
RIBA plan of work [2013]
 BIM included 35
 Stages 231
RICS
 Building Cost Information Service 31, 32, 40
 Code of Measuring Practice 35
 Cost Analysis and Benchmarking
 publication 38
 guidance on financial viability in planning 67, 69, 72, 76, 77
 on sustainability and property valuation 246
 New Rules of Measurement 32, 34–40, 248
 and RIBA Work Stages 34–40, 251, 260
 see also NRM 1
 review on QS skills and responsibilities 375–376
 Standard Method of Measurements 32
 Valuation Standards 246
 see also IPD/RICS sustainability inspection checklist
risk allowances 37
risk assessments, effect of sustainable building features 143, 144
risk response strategy 127
risk transfer, valuation in PFI/PPP projects 134–135
risks
allocation of 124–125
and construction costs 125–127
examples 127
operational [in PFI/PPP projects] 134
risks mitigating instruments 127
risks and uncertainties
and forms of contract 125
in life-cycle costing 111–112, 116
RMIT University [Australia], sustainability in curriculum 374
RO (Renewables Obligation) 170
technologies supported 174
ROCs (Renewables Obligation Certificates) 174
Rotterdam, brown field development 81
scheduling, BIM-based 314–317
scoping, of life cycle costing 272
Section 106 agreements 73–74
Section 106 Supplementary Planning Document (SPD) 74, 75
sensitivity [scenario] analysis 77
services costs, reduction of, life-cycle cost optimised by 115
settlement types
and location of energy clusters 206
peak energy consumption times 205
SFCA (Standard Form of Cost Analysis) 34, 40–41, 270
Shanghai, tall buildings
cost vs. height 53–59
doors and windows costs 55, 57
electrical costs 58, 59
plumbing costs 58, 59
roof costs 55, 56
services costs 56–59
substructure costs 55, 59
upper floors costs 55, 56, 59
simple interest 64
Singapore, tall buildings 290–291
site management, site productivity affected by 101, 102, 103, 104
site productivity
and design variation orders 97
factors affecting
literature on 94–100
survey on 100–102
and information technology 100
and labour characteristics 95–96, 103, 104
and leadership styles 98, 103, 104
and management of activities 103, 104
and management style 96, 103, 104
and management systems 97, 103, 104
and materials management 98
and motivating factors 98–99, 103, 104
and pre-construction activities 101, 102, 103, 104
and project characteristics 95
proposed framework for 102–104
and resource management 98–99, 101, 102, 103, 104
and site management 101, 102, 103, 104
and technological advancement 99–100
and training 99
and ‘waste management’ 101, 102
and ‘work groups’ 101, 102
site value, calculations [in case study] 76–77
Skandia AFS, knowledge management systems used by 233
smart meters 154
SMLCC (Standardised Method of Life Cycle Costing) 262, 269, 270, 271
social costs [of construction projects] 18, 26, 63, 75
social infrastructure 4
social performance requirements 138, 139, 141
social value [of design] 25
solar cells see photovoltaic (PV) installations
solar energy 202
conversion to power density 202
solar gain, limiting excess 114, 265
solar power purchase agreement, for Star Island 359
solar technology, small-scale 211
solar thermal systems 169, 268
space-efficient planning, life-cycle cost optimised by 113
space planning 192
organisational performance affected by 192–199
spearman correlation rank test 101
specialist contractor, sustainability case study 340, 341–352
stakeholders [in property investment] 241
standardisation of cost estimation and cost planning process 32–40, 44–45
Egan report recommendation 28
Standardised Method of Life Cycle Costing (SMLCC) 262, 269, 270
Star Island 356
alternative energy systems 358, 359, 360–361
case study 356–361
energy generation costs 358, 360
reliability of power supply 360–361
Index 403

Star Island Corporation (SIC) 356
Capital Improvement Plan 357
funding for 358
facility issues 357
initial analysis to identify problems 357
key challenges 357
new CEO appointed 357
Stern Review 338, 344
sub-contractor, sustainability case study 340, 341–352
subsidies and incentives [for carbon emissions reduction] 173–175
super-tall buildings 284–285
see also tall buildings
supermarket development, VM/VE case study 319–329
supply and demand factors affecting 10
mismatching 5
supply-side policies 10
Surrey, University of, sustainability in curriculum 373
sustainability in Dutch land use planning 81–82
economic benefits 14, 67
impact on cost plans 258–259
lack of graduates’ knowledge 375
sustainability assessment of buildings effect of building characteristics 143
EN standard 138
overall concept 141
sustainability assessment certificates 145–146
aggregated assessment results 145–146
disaggregated assessment results 146
sustainability assessment systems 146–148, 242
adjustment [over time] of criteria and weighting 243
data collection for 242, 243–244
EVR tool embedded in 89–90
information flows between investors/banks/designers 147–148
see also BREEAM; Energy Star; EVR; GreenCalc; GREENSTAR; LEED
sustainability budgeting, cost issues affecting 273–274
sustainability checklist [IPD/RICS] 390–391
sustainability considerations at design stage 263–269
sustainability education framework [for QS degree programme]
appropriate strategy 376
background knowledge and concept 377, 378
coverage of sustainability 380, 381
economic issues 378, 379
environmental issues 378, 377, 379
policies and regulations 378, 377
social issues 378, 379
technology and innovation 378, 379
input required from various stakeholders 384, 385
mapping in four case studies 380, 381
sustainability issues, literature review on 373–376
sustainability strategies [of various firms], case studies 342–343
sustainable building features, risk assessments affected by 143, 144
sustainable communities activity-based design approach to creating 201, 202, 204–206
definition 201
energy requirements 211
land requirements 210, 211
space requirements 209
see also decentralised energy networks
sustainable construction, business benefits of 338
sustainable credentials, relationship with property values 148–150
sustainable design economics, and property valuation 240–243
sustainable development effect on procedures and processes, case studies 344, 347
key drivers in UK construction sector 337–339
case studies 344, 345–346
economic costs/benefits 338
legislation 337
planning policies and building regulations 338
meaning of term 337
sustainable projects, key economic aspects 275
tacit knowledge 231
takeoff process, in BIM 310, 311
tall buildings in Australia 290, 291
comparison of Hong Kong with Shanghai 53–54
cost–height relationship 12, 19–20, 20, 47–60, 286–287
counter-terrorism design measures 288–291, 293
cost consequences of new approaches 293, 295, 296
new approaches 292, 294
demand for higher design standards 289–290
tall buildings (cont’d)
eco-cost associated with 88–89
evacuation and fire escape management 290, 291, 296
factors influencing design and cost 285–288
core design and size of floor plate 286
elevator/lift systems 287
embodied energy and building services 287
fire protection 287–288
height of buildings 285–286
location and land prices 288
shape of buildings 285
structure and frame construction 288
in Hong Kong 50–52
need for increased resilience 285
in the Netherlands 54, 81, 88–89
risks associated with 289
in Shanghai 53–59
in Singapore 290–291
structural changes [post-9/11] 290–291, 294
see also cost–height relationship; eco-costs/value ratio concept
target cost contract 126
task performance innovative work settings, organisational performance affected by 194, 196–197, 198
tax losses, restrictions on 370
tax planning 370
opportunities for 363
tax relief 23, 152, 155
tax reliefs and allowances 161–172
capital allowances 161–162
enhanced capital allowances 152, 155, 163–164
enterprise zone allowances 162, 171
land remediation relief 156, 171
plant and machinery allowances 163, 164
strategic considerations 362–364
taxation anti-avoidance provisions 370
taxation system [UK] 156–160
taxes and levies 156–160, 161
direct taxes 157–158, 157
indirect taxes 157, 158–160, 161
versus incentives 156
technical lifespan of building, factors affecting 143
technical maintenance costs, reduction of, life-cycle cost optimised by 115
technical performance requirements 139
relationships with other building characteristics 141, 142
technological advancement, site productivity affected by 99–100
technology
use in productivity/efficiency improvement 13
see also BIM
templates, cost plan 39, 40, 253
terrorist attacks
counter-terrorism design measures 288–291, 293
person-borne suicide attacks 291
type and impact of current threat 291–292
Texas Instruments, knowledge management systems used by 233
three-dimensional (3D) modelling 305, 308, 309, 310
time value of money 63–64
in life-cycle costing 111, 116
see also NPV calculations
trade cost plan 251–252
trade infrastructure 4
traditional [architect-led] procurement system 122, 128–129
training, site productivity affected by 99
transport, site-specific, planning obligation contribution costs for 74
triple bottom line [economics/environmental/social] 153, 337
UK
building costs compared with other countries 21, 42, 44
Climate Change Act [2008] 13, 244
flood insurance 223
National Planning Policy Framework 213–214
National Security Strategy 289
reduction of emissions 152, 153, 178
taxation system 156–160
anti-avoidance provisions 370
zero-carbon target 179, 245
UN Framework Convention on Climate Change 10
uncertainties and risks, in life-cycle costing 111–112, 116
uninterruptible power supplies, energy savings 169
‘unnecessary costs’, meaning of term 23
urban regeneration strategy 171
US
flood insurance 223
Green Building Council (USGBC) see GBCI; LEED
National Fire Protection Association 287
National Flood Insurance Program 223, 224
National Institute of Building Sciences 300
useful economic life of building, factors affecting 143
value added tax see VAT
value engineering (VE) 257
in BIM 304, 312
case studies 319–335
contrasted with cost cutting 320
elements of savings 25, 325, 334
examples of savings 325, 334
report to client 328, 333
results from VE workshop 324–327, 333–335
steps in VE process
identifying value opportunity areas 321
investigating value opportunity areas 321–322
preparing for VE workshop 322–323, 332–333
VE workshop 323, 332–333
value management (VM) 12, 23–24
definitions 24, 319
implementation 320–324
reason for use 319–320, 330–331
when and where VM is applied 320, 331–332
value-of-design theory 24–26
value-related characteristics,
identifying 142–143
VAT (value added tax) 157, 158–160, 161, 368–370
exempt 158–159, 159, 172
rates 157, 159
reduced rate 157, 158, 159, 159, 172, 173, 369–370
zero rate 157, 158, 159, 172, 173
ventilated ceiling slab 266
viability of development schemes, assessment of [in case study] 69
Vico software 302, 303, 313
Virtual Construction Technology [in BIM] 302, 307
warm air heaters, energy savings 169
waste
factors affecting 101, 102
reduction techniques 114
‘waste management’, site productivity affected by 101, 102
waste water, treatment and re-use of 114
water consumption, per person [listed] 203
water-reuse systems 170
water-saving technologies 114, 170
waterproofing, as flood mitigation measure 217
Wembley Stadium [London] case study 123–124, 135
key parties 123
procurement system used 123, 135
project implementation 124
wind power 202, 268, 359
wind speed, conversion to power density 203, 205
wind turbines 202, 268, 359
WLC (whole-life cost)
compared with LCC 91, 108, 270, 272
elements of 91, 107, 108, 119, 270, 272
factors affecting 5, 108–109
measures for reporting 274
WLC (whole-life cost) theory 12, 21–23, 107, 108–109
data collection and analysis 22
inclusion of CO2 emissions 118
limitations 119
performance specification 22
period of analysis 22
reasons for increased use 22
see also LCC
‘work groups’, site productivity affected by 101, 102
work settings, effect on organisational performance 191–199
World Trade Center attacks [New York, 2001], effect on design of tall buildings 289, 290, 291–292
Worldwatch Institute 178
yield 68–69
UK data 245, 388
variables affecting 69
zero-carbon development(s) 201–204
additional costs 201–204
UK target 179, 245