TABLE OF CONTENTS

About the Companion Website xvii
Preface xix
Acknowledgments xxiii

1 Concepts of Simulation Modeling 1
 1.1 Overview, 1
 1.2 System Modeling, 2
 1.2.1 System Concept, 2
 1.2.2 Modeling Concept, 4
 1.2.3 Types of Models, 5
 1.3 Simulation Modeling, 11
 1.3.1 Simulation Defined, 11
 1.3.2 Simulation Taxonomy, 12
 1.4 The Role of Simulation, 15
 1.4.1 Simulation Justified, 15
 1.4.2 Simulation Applications, 16
 1.4.3 Simulation Precautions, 17
 1.5 Simulation Methodology, 20
 1.5.1 Identify Problem/Opportunity, 20
 1.5.2 Develop Solution/Improvement Alternatives, 21
 1.5.3 Evaluate Solution Alternatives, 21
 1.5.4 Select the Best Alternative, 22
 1.5.5 Implement the Selected Alternative, 22
Table of Contents

1.6 Steps in a Simulation Study
- 1.6.1 Problem Formulation, 23
- 1.6.2 Setting Study Objectives, 23
- 1.6.3 Conceptual Modeling, 25
- 1.6.4 Data Collection, 26
- 1.6.5 Model Building, 27
- 1.6.6 Model Verification, 30
- 1.6.7 Model Validation, 30
- 1.6.8 Model Analysis, 31
- 1.6.9 Study Documentation, 32

1.7 Simulation Software
- 1.7.1 WITNESS® Simulation Software, 35

1.8 Summary
- Questions and Exercises, 37
- Bibliography, 38

2 World-Views of Simulation

2.1 Overview

2.2 System Modeling with DES
- 2.2.1 System Structure, 42
- 2.2.2 System Layout, 43
- 2.2.3 System Data, 43
- 2.2.4 System Logic, 44
- 2.2.5 System Statistics, 45

2.3 Elements of Discrete Event Simulation (DES)
- 2.3.1 System Entities (EN), 45
- 2.3.2 System State (S), 46
- 2.3.3 State Variables (VR), 46
- 2.3.4 System Events (E), 47
- 2.3.5 System Activities (A), 48
- 2.3.6 System Resources (R), 48
- 2.3.7 System Delay (D), 50
- 2.3.8 System Logic (L), 50

2.4 DES Functionality
- 2.4.1 Discrete-Event Mechanism, 52
- 2.4.2 Time-Advancement Mechanism, 54
- 2.4.3 Random Sampling Mechanism, 55
- 2.4.4 Statistical Accumulation Mechanism, 58
- 2.4.5 Animation Mechanism, 59

2.5 Example of DES Mechanisms

2.6 Monte Carlo Simulation (MCS)

2.7 Continuous Simulation
- 2.7.1 WITNESS® for Continuous Simulation, 69
- 2.7.2 Hybrid Simulation, 69
TABLE OF CONTENTS

2.8 WITNESS® World-views of Simulation, 70
 2.8.1 Attribute, 72
 2.8.2 Buffer, 72
 2.8.3 Carrier, 72
 2.8.4 Conveyor, 73
 2.8.5 Fluid, 73
 2.8.6 Labor, 74
 2.8.7 Machine, 74
 2.8.8 Part, 75
 2.8.9 Path, 75
 2.8.10 Pipe, 75
 2.8.11 Processor, 75
 2.8.12 Sections, 75
 2.8.13 Station, 76
 2.8.14 Tank, 76
 2.8.15 Track, 76
 2.8.16 Vehicle, 76

2.9 Summary, 77

Questions and Exercises, 78
Bibliography, 80

3 WITNESS® Environment
 3.1 Overview, 83
 3.2 The WITNESS® Environment, 83
 3.3 Menus, 85
 3.3.1 General Menu Operation, 86
 3.4 Tool Bars, 86
 3.4.1 Standard Tool Bar, 86
 3.4.2 Views Toolbar, 87
 3.4.3 Element Tool Bar, 89
 3.4.4 Model Tool Bar, 92
 3.4.5 Assistant Toolbar, 92
 3.4.6 Run Toolbar, 93
 3.4.7 Reporting Toolbar, 95
 3.4.8 Display Edit Toolbar, 96
 3.4.9 Creating a New Toolbar, 99
 3.5 Dialog Boxes and Property Sheets, 100
 3.5.1 Entry/Field Types, 100
 3.6 Windows, 102
 3.7 Layers, 103
 3.8 The WITNESS® Editor, 103
 3.8.1 Editor Features, 103
 3.8.2 Manipulating a Window, 105
3.9 Window Operations, 105
 3.9.1 Windows Options, 105
 3.9.2 The Interact Box, 106
 3.9.3 The Clock (Time), 107
 3.9.4 The Analog Clock, 107
 3.9.5 Copying, Cutting, and Pasting, 107
 3.9.6 Copy and Cut Element’s Display or Detail Features, 108
3.10 The Help Facility, 108
3.11 The Basic Elements, 109
Questions and Exercises, 109
Bibliography, 110

4 Basic WITNESS® Modeling Techniques 111
4.1 Overview, 111
4.2 Step-by-Step Model Building, 111
4.3 Modeling a Simple Manufacturing Process, 112
 4.3.1 Define: Specifying Elements of the Manufacturing
 Process Simulation Model, 114
 4.3.2 Detail: Adding Specifications for Elements to the Model, 114
 4.3.3 Display: Modifying the Appearance of Elements
 in the Layout Window, 118
4.4 Modeling a Service Process, 126
 4.4.1 Service Model Example, 126
4.5 WITNESS® Code, 141
4.6 An Extended Example, 141
Questions and Exercises, 143
Bibliography, 146

5 Modeling Material Handling Systems 149
5.1 Overview, 149
5.2 Material Handling Systems, 149
5.3 Material Handling Systems in WITNESS®, 150
5.4 Modeling Conveyors, 152
5.5 Modeling Paths for Labor and Parts Transit, 156
5.6 Modeling Vehicles and Tracks, 161
5.7 Modeling Power-&-Free Systems, 167
Questions and Exercises, 176
Bibliography, 176

6 Basic Probability and Statistics for Simulation 179
6.1 Overview, 179
6.2 Random Variables (RVs), 179
 6.2.1 Examples of Discrete Random Variables, 180
 6.2.2 Examples of Continuous Random Variables, 181
Table of Contents

6.3 Point Estimation, 182
6.4 Confidence Intervals for the Population Mean, 182
6.5 Confidence Intervals for the Population Variance and Standard Deviation, 184
6.6 Sample Size Determination when Estimating Population Mean, 185
6.7 Theoretical Probability Distributions, 186
 6.7.1 The Uniform Distribution, 187
 6.7.2 The Normal Distribution, 187
 6.7.3 The Exponential Distribution, 190
 6.7.4 The Erlang Distribution, 190
 6.7.5 The Gamma Distribution, 192
 6.7.6 The Weibull Distribution, 193
 6.7.7 Triangular Distribution, 193
Questions and Exercises, 197
Bibliography, 198

7 Simulation Input Modeling 199
7.1 Overview, 199
7.2 Determining Data Requirements, 200
7.3 Methods of Data Collection, 202
7.4 Representing Collected Data, 211
7.5 Validating Collected Data, 213
 7.5.1 Filtering the Data from Outliers and Wrong Measures, 215
 7.5.2 Testing the Data for Independence, 215
 7.5.3 Testing if Data are Identically Distributed, 218
7.6 Fitting Probability Distributions to Collected Data, 219
 7.6.1 Using Empirical Distributions, 225
7.7 WITNESS® Input Modeling, 226
 7.7.1 WITNESS® RNG, 227
 7.7.2 Incorporating Collected Data in WITNESS®, 229
 7.7.3 Using Databases with WITNESS®, 233
7.8 Practical Aspects of Input Modeling, 234
 7.8.1 Example of Input Modeling: Auto Service Center, 236
 7.8.2 Example of Input Modeling: ER Simulation, 243
7.9 Summary, 249
Questions and Exercises, 249
Bibliography, 252

8 Simulation Output Analysis 253
8.1 Overview, 253
8.2 Terminating Versus Steady-State Simulation, 254
 8.2.1 Terminating Simulation, 254
 8.2.2 Steady-State Simulation, 257
8.3 Determining Simulation Run Controls, 259
- **8.3.1 Determining Warm-Up Period, 260**
- **8.3.2 Determining Simulation Run Length, 263**
- **8.3.3 Determining the Number of Simulation Runs, 266**

8.4 Variability in Simulation Outputs, 267
- **8.4.1 Variance Reduction Techniques, 269**

8.5 Simulation Output Analysis, 270
- **8.5.1 Statistical Analysis of Simulation Outputs, 272**
- **8.5.2 Experimental Design, 285**

8.6 Example: Output Analyses of a Clinic Simulation, 291

8.7 WITNESS® Modules for Simulation Output Analysis, 296
- **8.7.1 WITNESS® Outputs and Charts, 296**
- **8.7.2 WITNESS® Costing, 297**
- **8.7.3 WITNESS® Scenario Manager, 299**
- **8.7.4 WITNESS® Documentor, 299**
- **8.7.5 WITNESS® Optimizer, 300**

8.8 Summary, 300
- **Questions and Exercises, 301**
- **Bibliography, 303**

9 Model Verification and Validation Techniques 305

9.1 Overview, 305

9.2 Model Verification Techniques, 306
- **9.2.1 Verifying Model Inputs, 308**
- **9.2.2 Verifying Model Logic, 309**
- **9.2.3 Verifying Model Outputs, 314**

9.3 Model Validation Techniques, 314
- **9.3.1 Validating Model Inputs, 316**
- **9.3.2 Validating Model Behavior, 318**
- **9.3.3 Validating Model Outputs, 319**

9.4 Verifying WITNESS® Models, 320

9.5 Summary, 330
- **Question and Exercise, 330**
- **Bibliography, 332**

10 Simulation Project Management 331

10.1 Overview, 331

10.2 Define the Problem, 332
- **10.2.1 Define the Objectives of the Study, 332**
- **10.2.2 List the Specific Issues to Be Addressed, 334**
- **10.2.3 Determine the Boundary or Domain of the Study, 334**
- **10.2.4 Determine the Level of Detail or Proper Abstraction Level, 334**

10.3 Design the Study, 335
- **10.3.1 Selecting and Defining the Methods or Techniques, 336**
- **10.3.2 Defining the Tools and Computational Resources Needed, 337**
- **10.3.3 Designing the Study, 338**

10.4 Build the Model, 340
- **10.4.1 Developing the Model, 342**
- **10.4.2 Testing the Model, 343**

10.5 Test the Model, 344
- **10.5.1 Validating the Model, 346**
- **10.5.2 Implementing the Model, 347**

10.6 Run the Study, 349
- **10.6.1 Analyzing the Results, 351**
- **10.6.2 Generating the Documentation, 352**

10.7 Assess the Results, 353
- **10.7.1 Evaluating the Results, 355**
- **10.7.2 Improving the Model or Study, 356**

10.8 Communicate the Results, 357
- **10.8.1 Presenting the Results, 359**
- **10.8.2 Concluding the Study, 360**

10.9 Project Management, 361
- **10.9.1 Planning the Simulation Project, 363**
- **10.9.2 Implementing the Simulation Project, 364**
- **10.9.3 Controlling the Simulation Project, 365**
- **10.9.4 Monitoring the Simulation Project, 366**

10.10 Report the Results, 368
- **10.10.1 Writing the Simulation Project Report, 370**

Bibliography, 377
TABLE OF CONTENTS

10.2.5 Determine if a Simulation Model is Actually Needed, 335
10.2.6 Estimate the Required Resources Needed to Do the Study, 335
10.2.7 Perform a Cost-Benefit Analysis, 335
10.2.8 Create a Planning Chart of the Proposed Project, 336
10.2.9 Write a Formal Proposal, 336

10.3 Design the Study, 337
10.3.1 Estimate the Life Cycle of the Model, 338
10.3.2 List Broad Assumptions, 338
10.3.3 Estimate the Number of Models Required, 338
10.3.4 Determine the Animation Requirements, 338
10.3.5 Select the Tool, 339
10.3.6 Determine the Level of Data Available and What Data is Needed, 339
10.3.7 Determine the Human Requirements and Skill Levels, 339
10.3.8 Determine the Audience (Levels of Management), 340
10.3.9 Identify the Deliverables, 340
10.3.10 Determine the Priority of the Study in Relationship to Other Studies, 340
10.3.11 Set Milestone Dates, 341
10.3.12 Write the Project Functional Specifications, 341

10.4 Design the Conceptual Model, 341
10.4.1 Decide on Continuous, Discrete, or Combined Modeling, 342
10.4.2 Determine the Elements that Drive the System, 342
10.4.3 Determine the Entities that Should Represent the System Elements, 343
10.4.4 Determine the Level of Detail Needed to Describe the System Components, 343
10.4.5 Determine the Graphics Requirements of the Model, 343
10.4.6 Identify the Areas That Utilize Special Control Logic, 344
10.4.7 Determine How to Collect Statistics in the Model and Communicate Results to the Customer, 344

10.5 Formulate Inputs, Assumptions, and Process Definition, 344
10.5.1 Specify the Operating Philosophy of the System, 345
10.5.2 Describe the Physical Constraints of the System, 345
10.5.3 Describe the Creation and Termination of Dynamic Elements, 345
10.5.4 Describe the Process in Detail, 345
10.5.5 Obtain the Operation Specifications, 346
10.5.6 Obtain the Material Handling Specifications, 346
10.5.7 List All the Assumptions, 346
10.5. Analyze the Input Data, 346
10.5.9 Specify the Runtime Parameters, 347
10.5.10 Write the Detailed Project Functional Specifications, 347
10.5.11 Validate the Conceptual Model, 347

10.6 Build, Verify, and Validate the Model, 348

10.7 Experiment with the Model, 348

10.8 Documentation and Presentation, 349
- 10.8.1 Project Book, 350
- 10.8.2 Documentation of Model Input, Code, and Output, 350
- 10.8.3 Project Functional Specifications, 350
- 10.8.4 User Manual, 350
- 10.8.5 Maintenance Manual, 351
- 10.8.6 Discussion and Explanation of Model Results, 351
- 10.8.7 Recommendations for Further Areas of Study, 351
- 10.8.8 Final Project Report and Presentation, 351

10.9 Define the Model Life Cycle, 352
- 10.9.1 Construct User-Friendly Model Input and Output Interfaces, 353
- 10.9.2 Determine Model and Training Responsibility, 353
- 10.9.3 Establish Data Integrity and Collection Procedures, 354
- 10.9.4 Perform Field Data Validation Tests, 354

10.10 Summary, 354

Bibliography, 354

11 Manufacturing Simulation Case Studies, 357

11.1 Overview, 357

11.2 Hybrid Simulation of Titanium Manufacturing Process, 358
- 11.2.1 Model Description, 358
- 11.2.2 Model Assumptions, 360
- 11.2.3 Process Logic, 360
- 11.2.4 Start-up Conditions and Model Run Length, 361
- 11.2.5 Model Input Data, 361
- 11.2.6 Model Outputs, 363
- 11.2.7 The WITNESS® Model, 363
- 11.2.8 Model Verification and Validation, 366
- 11.2.9 Model Experiments, 367
- 11.2.10 Project Results and Conclusions, 371

11.3 Paint Capacity Study of an Aviation Company, 373
- 11.3.1 Paint Shop Layout, 373
- 11.3.2 Study Assumptions, 373
- 11.3.3 Data Collection, 375
- 11.3.4 The WITNESS® Model, 375
- 11.3.5 Study Results, 375
- 11.3.6 Throughput Improvement Opportunities, 375
TABLE OF CONTENTS

11.4 Simulation of a Seamless Pipe Facility, 376
 11.4.1 Study Objectives Include, 377
 11.4.2 System Description, 379
 11.4.3 Input Parameters, 379
 11.4.4 Schedule Data, 381
 11.4.5 The WITNESS® Model, 381
 11.4.6 Base Model–Worst-Case Schedule, 381
 11.4.7 Results Summary, 387
 11.4.8 Observations Summary, 389
 11.4.9 Conclusions, 393

11.5 Summary, 393
Bibliography, 393

12 Service Simulation Case Studies 395
 12.1 Overview, 395
 12.2 Elements of Service Systems, 396
 12.2.1 System Entities, 396
 12.2.2 Service Providers, 396
 12.2.3 Customer Service, 397
 12.2.4 Staff and Human Resources, 397
 12.2.5 Facility Layout and Physical Structure, 397
 12.2.6 Operating Policies, 398
 12.3 Characteristics of Service Systems, 398
 12.4 Modeling Service Systems, 399
 12.4.1 Modeling Considerations, 399
 12.4.2 Model Elements, 401
 12.4.3 Model Control Factors, 401
 12.4.4 Model Performance Measures, 402
 12.5 Applications of Service System Simulation, 402
 12.5.1 Examples of Service Systems Simulation, 403
 12.6 Case Studies on Service Systems Simulation, 404
 12.6.1 Car Wash, 404
 12.6.2 Harbor Traffic Simulation, 406
 12.6.3 Bank Simulation Example, 409
 12.6.4 Clinic Simulation Example, 411
 12.6.5 Public Service Office Simulation, 417
 12.7 Summary, 423
Bibliography, 423

13 Simulation-Based Optimization Methods 425
 13.1 Overview, 425
 13.2 Optimization Approaches in Simulation Studies, 426
 13.3 Simulation-Based Optimization, 427
 13.4 WITNESS® Experimenter, 429
13.4.1 Comparison of Multiple Alternatives with WITNESS® Experimenter, 429
13.4.2 More Advanced Use of the Experimenter, 435
13.5 Optimization within the WITNESS® Experimenter, 440
 13.5.1 Productivity-Cost Tradeoffs Explored with the Experimenter, 444
13.6 Summary, 447
 Questions and Exercises, 447
 Bibliography, 448

14 Simulation for Lean Systems 449
 14.1 Overview, 449
 14.2 Basics of Lean Systems, 450
 14.2.1 Lean Principles, 450
 14.2.2 Lean Techniques, 453
 14.2.3 Value Stream Mapping, 454
 14.3 Simulation-Based Lean Systems, 457
 14.3.1 Lean Simulation Example, 459
 14.4 Lean Using WITNESS®, 477
 14.5 Summary, 485
 Questions and Exercises, 485
 Bibliography, 487

15 Simulation for Six Sigma 489
 15.1 Overview, 489
 15.2 Six Sigma Quality, 490
 15.2.1 Six Sigma Capability, 493
 15.2.2 Determining Process Sigma Rating, 494
 15.3 Six Sigma Methods, 496
 15.3.1 DMAIC Process, 497
 15.3.2 Design for Six Sigma (DFSS), 499
 15.4 WITNESS® for Six Sigma, 501
 15.4.1 Sigma Ratings in WITNESS®, 504
 15.5 Simulation-Based Six Sigma, 520
 15.5.1 Simulation-Based DMAIC, 520
 15.5.2 Simulation-Based DFSS, 526
 15.5.3 Lean Six Sigma (LSS), 537
 15.6 Summary, 545
 Questions and Exercises, 546
 Bibliography, 547

Appendix 549
Index 553