Table of Contents

Preface
Preface XV

Introduction
Introduction XIX

Part I Protein Analytics

1 Protein Purification

1.1 Properties of Proteins 3
1.2 Protein Localization and Purification Strategy 6
1.3 Homogenization and Cell Disruption 7
1.4 Precipitation 9
1.5 Centrifugation 11
1.5.1 Basic Principles 12
1.5.2 Centrifugation Techniques 12
1.6 Removal of Salts and Hydrophilic Contaminants 15
1.7 Concentration 17
1.8 Detergents and their Removal 18
1.8.1 Properties of Detergents 18
1.8.2 Removal of Detergents 20
1.9 Sample Preparation for Proteome Analysis 22
Further Reading 22

2 Protein determination

2.1 Quantitative Determination by Staining Tests 23
2.1.1 Biuret Assay 25
2.1.2 Lowry Assay 26
2.1.3 Bicinchoninic Acid Assay (BCA Assay) 27
2.1.4 Bradford Assay 28
2.2 Spectroscopic Methods 28
2.2.1 Measurements in the UV Range 29
2.2.2 Fluorescence Method 31
2.3 Radioactive Labeling of Peptides and Proteins 31
2.3.1 Iodinations 33
Further Reading 33

3 Enzyme Activity Testing

3.1 The Driving Force behind Chemical Reactions 35
3.2 Rate of Chemical Reactions 36

Further Reading
Preface 22
Introduction 39
Part I Protein Analytics 61
Part II Immunological Techniques 63

Part II Immunological Techniques

5.1 Antibodies 63
5.1.1 Antibodies and Immune Defense 63
5.1.2 Antibodies as Reagents 64
5.1.3 Properties of Antibodies 64
5.1.4 Functional Structure of IgG 66
5.1.5 Antigen Interaction at the Combining Site 67
Further Reading 68

Microcalorimetry

4.1 Differential Scanning Calorimetry (DSC) 48
4.2 Isothermal Titration Calorimetry (ITC) 54
4.2.1 Ligand Binding to Proteins 54
4.2.2 Binding of Molecules to Membranes: Insertion and Peripheral Binding 58
4.3 Pressure Perturbation Calorimetry (PPC) 61
Further Reading 62

Further Reading
3.3 Catalysts 37
3.4 Enzymes as Catalysts 37
3.5 Rate of Enzyme-Controlled Reactions 38
3.6 Michaelis–Menten Theory 38
3.7 Determination of K_m and V_{max} 39
3.8 Inhibitors 40
3.8.1 Competitive Inhibitors 40
3.8.2 Non-competitive Inhibitors 41
3.9 Test System Set-up 41
3.10 Analysis of the Physiological Function 42
3.11 Selecting the Substrates 42
3.12 Detection System 42
3.13 Time Dependence 43
3.14 pH Value 43
3.15 Selecting the Buffer Substance and the Ionic Strength 43
3.16 Temperature 44
3.17 Substrate Concentration 44
3.18 Controls 45
3.19 Further Reading 45

Copyrighted Material
15.2.2 Quadrupole Analyzer 345
15.2.3 Electric Ion Traps 348
15.2.4 Magnetic Ion Trap 349
15.2.5 Orbital Ion Trap 350
15.2.6 Hybrid Instruments 351
15.3 Ion Detectors 355
15.3.1 Secondary Electron Multiplier (SEV) 356
15.3.2 Faraday Cup 357
15.4 Fragmentation Techniques 357
15.4.1 Collision Induced Dissociation (CID) 357
15.4.2 Prompt and Metastable Decay (ISD, PSD) 358
15.4.3 Photon-Induced Dissociation (PID, IRMPD) 360
15.4.4 Generation of Free Radicals (ECD, HECED, ETD) 360
15.5 Mass Determination 362
15.5.1 Calculation of Mass 362
15.5.2 Influence of Isotopy 362
15.5.3 Calibration 365
15.5.4 Determination of the Number of Charges 365
15.5.5 Signal Processing and Analysis 366
15.5.6 Derivation of the Mass 366
15.5.7 Problems 366
15.6 Identification, Detection, and Structure Elucidation 368
15.6.1 Identification 368
15.6.2 Verification 369
15.6.3 Structure Elucidation 369
15.7 LC-MS and LC-MS/MS 375
15.7.1 LC-MS 375
15.7.2 LC-MS/MS 376
15.7.3 Ion Mobility Spectrometry (IMS) 378
15.8 Quantification 378
15.8.1 Principles of Instrumentation 410
15.8.2 Basics of Centrifugation 411
15.8.3 Sedimentation Velocity Experiments 412
15.8.4 Sedimentation–Diffusion Equilibrium Experiments 415
15.9 Protein–Protein Interactions 381
16.1 The Two-Hybrid System 381
16.1.1 Principle of Two-Hybrid Systems 381
16.1.2 Elements of the Two-Hybrid System 382
16.1.3 Construction of Bait and Prey Proteins 382
16.1.4 Which Bait Proteins can be used in a Y2H Screen? 385
16.1.5 AD Fusion Proteins and cDNA Libraries 385
16.1.6 Carrying out a Y2H Screen 386
16.1.7 Other Modifications and Extensions of the Two-Hybrid-Technology 391
16.1.8 Biochemical and Functional Analysis of Interactions 393
16.2 TAP-Tagging and Purification of Protein Complexes 394
16.3 Analyzing Interactions In Vitro: GST-Pulldown 397
16.4 Co-immunoprecipitation 398
16.5 Far-Western 399
16.6 Surface Plasmon Resonance Spectroscopy 400
16.7 Fluorescence Resonance Energy Transfer (FRET) 402
16.7.1 Introduction 402
16.7.2 Key Physical Principles of FRET 403
16.7.3 Methods of FRET Measurements 403
16.7.4 Fluorescent Probes for FRET 406
16.7.5 Alternative Tools for Probing Protein–Protein Interactions: LINC and STET 408
16.8 Analytical Ultracentrifugation 409
16.8.1 Principles of Instrumentation 410
16.8.2 Basics of Centrifugation 411
16.8.3 Sedimentation Velocity Experiments 412
16.8.4 Sedimentation–Diffusion Equilibrium Experiments 415
17 Biosensors 419
17.1 Dry Chemistry: Test Strips for Detecting and Monitoring Diabetes 420
17.2 Biosensors 420
17.2.1 Concept of Biosensors 420
17.2.2 Construction and Function of Biosensors 421
17.2.3 Cell Sensors 425
17.2.4 Immunosensors 426
17.3 Biomimetic Sensors 427
17.4 From Glucose Enzyme Electrodes to Electronic DNA Biochips 428
17.5 Resume: Biosensor or not Biosensor is no Longer the Question 429
17.6 Further Reading 429
Part II 3D Structure Determination 431
18 Magnetic Resonance Spectroscopy of Biomolecules 433
18.1 NMR Spectroscopy of Biomolecules 433
18.1.1 Theory of NMR Spectroscopy 434
18.1.2 One-Dimensional NMR Spectroscopy 438
18.1.3 Two-Dimensional NMR Spectroscopy 443
18.1.4 Three-Dimensional NMR Spectroscopy 449
18.1.5 Resonance Assignment 452
18.1.6 Protein Structure Determination 457
18.1.7 Protein Structures and more — an Overview 462
18.2 EPR Spectroscopy of Biological Systems 466
18.2.1 Basics of EPR Spectroscopy 467
18.2.2 cw- EPR Spectroscopy 468
18.2.3 g-Value 469
18.2.4 Electron Spin Nuclear Spin Coupling (Hyperfine Coupling) 469
18.2.5 g and Hyperfine Anisotropy 470
18.2.6 Electron Spin–Electron Spin Coupling 472
18.2.7 Pulsed EPR Experiments 473
18.2.8 Further Examples of EPR Applications 479
18.2.9 General Remarks on the Significance of EPR Spectra 481
18.2.10 Comparison EPR/NMR 481
Acknowledgements 482
Further Reading 482
19 Electron Microscopy 485
19.1 Transmission Electron Microscopy — Instrumentation 487
19.2 Approaches to Preparation 488
19.2.1 Native Samples in Ice 488
19.2.2 Negative Staining 490
19.2.3 Metal Coating by Evaporation 491
19.2.4 Labeling of Proteins 492
19.3 Imaging Process in the Electron Microscope 492
19.3.1 Resolution of a Transmission Electron Microscope 492
19.3.2 Interactions of the Electron Beam with the Object 493
19.3.3 Phase Contrast in Transmission Electron Microscopy 495
19.3.4 Electron Microscopy with a Phase Plate 495
19.4 Imaging Procedure for Frozen-Hydrated Specimens 496
19.4.1 Pixel Size 498
19.4.2 Fourier Transformation 499
19.4.3 Analysis of the Contrast Transfer Function and Object Features 501
19.4.4 Improving the Signal-to-Noise Ratio 504
19.4.5 Principal Component Analysis and Classification 506
19.5 Three-Dimensional Electron Microscopy 508
19.5.1 Three-Dimensional Reconstruction of Single Particles 509
19.5.2 Three-Dimensional Reconstruction of Regularly Arrayed Macromolecular Complexes 511
19.5.3 Electron Tomography of Individual Objects 512
19.6 Analysis of Complex 3D Data Sets 514
19.6.1 Hybrid Approach: Combination of EM and X-Ray Data 514
19.6.2 Segmenting Tomograms and Visualization 515
19.6.3 Identifying Protein Complexes in Cellular Tomograms 515
19.7 Perspectives of Electron Microscopy 516
Further Reading 517

20 Atomic Force Microscopy 519
20.1 Introduction 519
20.2 Principle of the Atomic Force Microscope 520
20.3 Interaction between Tip and Sample 521
20.4 Preparation Procedures 522
20.5 Mapping Biological Macromolecules 522
20.6 Force Spectroscopy of Single Molecules 524
20.7 Detection of Functional States and Interactions of Individual Proteins 526
Further Reading 527

21 X-Ray Structure Analysis 529
21.1 X-Ray Crystallography 530
21.1.1 Crystallization 531
21.1.2 Crystals and X-Ray Diffraction 533
21.1.3 The Phase Problem 538
21.1.4 Model Building and Structure Refinement 542
21.2 Small Angle X-Ray Scattering (SAXS) 543
21.2.1 Machine Setup 544
21.2.2 Theory 545
21.2.3 Data Analysis 547
21.3 X-Ray Free Electron LASER (XFEL) 549

21.3.1 Machine Setup and Theory 549
Acknowledgement 550
Further Reading 551

Part III Peptides, Carbohydrates, and Lipids 553

22 Analytics of Synthetic Peptides 555
22.1 Concept of Peptide Synthesis 555
22.2 Purity of Synthetic Peptides 560
22.3 Characterization and Identity of Synthetic Peptides 562
22.4 Characterization of the Structure of Synthetic Peptides 564
22.5 Analytics of Peptide Libraries 567
Further Reading 569

23 Carbohydrate Analysis 571
23.1 General Stereocheinical Basics 572
23.1.1 The Series of D-Sugars 572
23.1.2 Stereochemistry of D-Glucose 573
23.1.3 Important Monosaccharide Building Blocks 574
23.1.4 The Series of L-Sugars 574
23.1.5 The Glycosidic Bond 574
23.2 Protein Glycosylation 579
23.2.1 Structure of the N-Glycans 580
23.2.2 Structure of the O-Glycans 580
23.3 Analysis of Protein Glycosylation 581
23.3.1 Analysis on the Basis of the Intact Glycoprotein 582
23.3.2 Mass Spectrometric Analysis on the Basis of Glycopeptides 588
23.3.3 Release and Isolation of the N-Glycan Pool 590
23.3.4 Analysis of Individual N-Glycans 599
23.4 Genome, Proteome, Glycome 610
23.5 Final Considerations 611
Further Reading 612

24 Lipid Analysis 613
24.1 Structure and Classification of Lipids 613
24.2 Extraction of Lipids from Biological Sources 615
24.2.1 Liquid Phase Extraction 616
24.2.2 Solid Phase Extraction 616
24.3 Methods for Lipid Analysis 618
24.3.1 Chromatographic Methods 618
24.3.2 Mass Spectrometry 622
24.3.3 Immunoassays 622
24.3.4 Further Methods in Lipid Analysis 623
24.3.5 Combining Different Analytical Systems 623
24.4 Analysis of Selected Lipid Classes 626
24.4.1 Whole Lipid Extracts 626
24.4.2 Fatty Acids 627
24.4.3 Nonpolar Neutral Lipids 628
24.4.4 Polar Ester Lipids 630
24.4.5 Lipid Hormones and Intracellular Signaling Molecules 633
24.5 Lipid Vitamins 638
24.6 Lipidome Analysis 640
24.7 Perspectives 642
Further Reading 644

25 Analysis of Post-translational Modifications: Phosphorylation and Acetylation of Proteins 645
25.1 Functional Relevance of Phosphorylation and Acetylation 645
25.1.1 Phosphorylation 645
25.1.2 Acetylation 646
25.2 Strategies for the Analysis of Phosphorylated and Acetylated Proteins and Peptides 647
25.3 Separation and Enrichment of Phosphorylated and Acetylated Proteins and Peptides 649
25.4 Detection of Phosphorylated and Acetylated Proteins and Peptides 651
25.4.1 Detection by Enzymatic, Radioactive, Immunochemical, and Fluorescence Based Methods 651
25.4.2 Detection of Phosphorylated and Acetylated Proteins by Mass Spectrometry 653
25.5 Localization and Identification of Post-translationally Modified Amino Acids 653
25.5.1 Localization of Phosphorylated and Acetylated Amino Acids by Edman Degradation 654
25.5.2 Localization of Phosphorylated and Acetylated Amino Acids by Tandem Mass Spectrometry 654
25.6 Quantitative Analysis of Post-translational Modifications 659
25.7 Future of Post-translational Modification Analysis 661
Further Reading 661

Part IV Nucleic Acid Analytics 663

26 Isolation and Puriﬁcation of Nucleic Acids 665
26.1 Puriﬁcation and Determination of Nucleic Acid Concentration 665
26.1.1 Phenolic Puriﬁcation of Nucleic Acids 665
26.1.2 Gel Filtration 666
26.1.3 Precipitation of Nucleic Acids with Ethanol 667
26.1.4 Determination of the Nucleic Acid Concentration 668
26.2 Isolation of Genomic DNA 669
26.3 Isolation of Low Molecular Weight DNA 670
26.3.1 Isolation of Plasmid DNA from Bacteria 670
26.3.2 Isolation of Eukaryotic Low Molecular Weight DNA 674
26.4 Isolation of Viral DNA 674
26.4.1 Isolation of Phage DNA 674
26.4.2 Isolation of Eukaryotic Viral DNA 675
26.5 Isolation of Single-Stranded DNA 676
26.5.1 Isolation of M13 Phage DNA 676
26.5.2 Separation of Single- and Double-Stranded DNA 676
26.6 Isolation of RNA 676
26.6.1 Isolation of Cytoplasmic RNA 677
26.6.2 Isolation of Poly(A) RNA 678
26.6.3 Isolation of Small RNA 679
26.7 Isolation of Nucleic Acids using Magnetic Particles 679
26.8 Lab-on-a-chip 680
Further Reading 680

27 Analysis of Nucleic Acids 681
27.1 Restriction Analysis 681
27.1.1 Principle of Restriction Analyses 681
27.1.2 Historical Overview 682
27.1.3 Restriction Enzymes 682
27.1.4 In Vitro Restriction and Applications 685
27.2 Electrophoresis 690
27.2.1 Gel Electrophoresis of DNA 691
27.2.2 Gel Electrophoresis of RNA 697
27.2.3 Pulsed-Field Gel Electrophoresis (PFGE) 698
27.2.4 Two-Dimensional Gel Electrophoresis 700
27.2.5 Capillary Gel Electrophoresis 701
27.3 Staining Methods 702
27.3.1 Fluorescent Dyes 702
27.3.2 Silver Staining 704
27.4 Nucleic Acid Blotting 704
27.4.1 Nucleic Acid Blotting Methods 704
27.4.2 Choice of Membrane 704
27.4.3 Southern Blotting 705
27.4.4 Northern Blotting 706
27.4.5 Dot- and Slot-Blotting 707
27.4.6 Colony and Plaque Hybridization 707
27.5 Isolation of Nucleic Acid Fragments 708
27.5.1 Purification using Glass Beads 708
27.5.2 Purification using Gel Filtration or Reversed Phase 708
27.5.3 Purification using Electroelution 708
27.5.4 Other Methods 709
27.6 LC-MS of Oligonucleotides 709
27.6.1 Principles of the Synthesis of Oligonucleotides 709
27.6.2 Investigation of the Purity and Characterization of Oligonucleotides 711
27.6.3 Mass Spectrometric Investigation of Oligonucleotides 712
27.6.4 IP-RP-HPLC-MS Investigation of a Phosphorothioate Oligonucleotide 714
Further Reading 717

28 Techniques for the Hybridization and Detection of Nucleic Acids 719
28.1 Basic Principles of Hybridization 720
28.1.1 Principle and Practice of Hybridization 721
28.1.2 Specificity of the Hybridization and Stringency 722
28.1.3 Hybridization Methods 723
28.2 Probes for Nucleic Acid Analysis 729
28.2.1 DNA Probes 730
28.2.2 RNA Probes 731
28.2.3 PNA Probes 732
28.2.4 LNA Probes 732
28.3 Methods of Labeling 733
28.3.1 Labeling Positions 733
Part V Functional and Systems Analytics 873

33 Sequence Data Analysis 875

- 33.1 Sequence Analysis and Bioinformatics 875
- 33.2 Sequence: An Abstraction for Biomolecules 876
- 33.3 Internet Databases and Services 877
- 33.3.1 Sequence Retrieval from Public Databases 878
- 33.3.2 Data Contents and File Format 879
- 33.3.3 Nucleotide Sequence Management in the Laboratory 881
- 33.4 Sequence Analysis on the Web 881
- 33.4.1 EMBOSS 881
- 33.5 Sequence Composition 882
- 33.6 Sequence Patterns 882
- 33.6.1 Transcription Factor Binding Sites 884
- 33.6.2 Identification of Coding Regions 885
- 33.6.3 Protein Localization 886
- 33.7 Homology 887
- 33.7.1 Identity, Similarity, Homology 887
- 33.7.2 Optimal Sequence Alignment 888
- 33.7.3 Alignment for Fast Database Searches: BLAST 890
- 33.7.4 Profile-Based Sensitive Database Search: PSI-BLAST 890
- 33.7.5 Homology Threshold 891
- 33.8 Multiple Alignment and Consensus Sequences 891
- 33.9 Structure Prediction 892
- 33.10 Outlook 893

34 Analysis of Promoter Strength and Nascent RNA Synthesis 895

- 34.1 Methods for the Analysis of RNA Transcripts 895
- 34.1.1 Overview 895
- 34.1.2 Nuclease S1 Analysis of RNA 896
- 34.1.3 Ribonuclease-Protection Assay (RPA) 898
- 34.1.4 Primer Extension Assay 901
- 34.1.5 Northern Blot and Dot- and Slot-Blot 902
- 34.1.6 Reverse Transcription Polymerase Chain Reaction (RT-PCR and RT-qPCR) 904
- 34.2 Analysis of RNA Synthesis In Vivo 905
- 34.2.1 Nuclear-run-on Assay 905
- 34.2.2 Labeling of Nascent RNA with 5-Fluoro-uridine (FUrId) 906
- 34.3 In Vitro Transcription in Cell-Free Extracts 907
- 34.3.1 Components of an In Vitro Transcription Assay 907
- 34.3.2 Generation of Transcription-Competent Cell Extracts and Protein Fractions 908
- 34.3.3 Template DNA and Detection of In Vitro Transcripts 908
- 34.4 In Vivo Analysis of Promoter Activity in Mammalian Cells 911
- 34.4.1 Vectors for Analysis of Gene-Regulatory cis-Elements 911
- 34.4.2 Transfer of DNA into Mammalian Cells 912
- 34.4.3 Analysis of Reporter Gene Expression 914

35 Fluorescent In Situ Hybridization in Molecular Cytogenetics 917

- 35.1 Methods of Fluorescent DNA Hybridization 917
- 35.1.1 Labeling Strategy 917
- 35.1.2 DNA Probes 918
- 35.1.3 Labeling of DNA Probes 918
- 35.1.4 In Situ Hybridization 919
- 35.1.5 Evaluation of Fluorescent Hybridization Signals 920
- 35.2 Application: FISH and CGH 920
- 35.2.1 FISH Analysis of Genomic DNA 920
- 35.2.2 Comparative Genomic Hybridization (CGH) 921

36 Physical and Genetic Mapping of Genomes 925

- 36.1 Genetic Mapping: Localization of Genetic Markers within the Genome 925
- 36.1.1 Recombination 925
- 36.1.2 Genetic Markers 927
- 36.1.3 Linkage Analysis – the Generation of Genetic Maps 929
- 36.1.4 Genetic Map of the Human Genome 931
- 36.1.5 Genetic Mapping of Disease Genes 932
- 36.2 Physical Mapping 932
- 36.2.1 Restriction Mapping of Whole Genomes 932
- 36.2.2 Mapping of Recombinant Clones 934
- 36.2.3 Generation of a Physical Map 935
- 36.2.4 Identification and Isolation of Genes 937
- 36.2.5 Transcription Maps of the Human Genome 939
- 36.2.6 Genes and Hereditary Disease – Search for Mutations 940
- 36.3 Integration of Genome Maps 940
37 DNA-Microarray Technology
37.1 RNA Analyses
37.1.1 Transcriptome Analysis
37.1.2 RNA Splicing
37.1.3 RNA Structure and Functionality
37.2 DNA Analyses
37.2.1 Genotyping
37.2.2 Methylation Studies
37.2.3 DNA Sequencing
37.2.4 Comparative Genomic Hybridization (CGH)
37.3 Molecule Synthesis
37.3.1 DNA Synthesis
37.3.2 RNA Production
37.3.3 On-Chip Protein Expression
37.4 Other Approaches
37.4.1 Barcode Identification
37.4.2 A Universal Microarray Platform
37.5 New Avenues
37.5.1 Structural Analyses
37.5.2 Beyond Nucleic Acids

38 The Use of Oligonucleotides as Tools in Cell Biology
38.1 Antisense Oligonucleotides
38.1.1 Mechanisms of Antisense Oligonucleotides
38.1.2 Triplex-Forming Oligonucleotides
38.1.3 Modifications of Oligonucleotides to Decrease their Susceptibility to Nucleases
38.1.4 Use of Antisense Oligonucleotides in Cell Culture and in Animal Models
38.1.5 Antisense Oligonucleotides as Therapeutics
38.2 Ribozymes
38.2.1 Discovery and Classification of Ribozymes
38.2.2 Use of Ribozymes
38.3 RNA Interference and MicroRNAs
38.3.1 Basics of RNA Interference
38.3.2 RNA Interference Mediated by Expression Vectors
38.3.3 Uses of RNA Interference
38.3.4 microRNAs
38.4 Aptamers: High-Affinity RNA- and DNA-Oligonucleotides
38.4.1 Selection of Aptamers
38.4.2 Uses of Aptamers
38.5 Genome Editing with CRISPR/Cas9
38.6 Outlook

39 Proteome Analysis
39.1 General Aspects in Proteome Analysis
39.2 Definition of Starting Conditions and Project Planning
39.3 Sample Preparation for Proteome Analysis
39.4 Protein Based Quantitative Proteome Analysis (Top-Down Proteomics)

40 Metabolomics and Peptidomics
40.1 Systems Biology and Metabolomics
40.2 Technological Platforms for Metabolomics
40.3 Metabolomic Profiling
40.4 Peptidomics
40.5 Metabolomics – Knowledge Mining
40.6 Data Mining
40.7 Fields of Application
40.8 Outlook

41 Interactomics – Systematic Protein–Protein Interactions
41.1 Protein Microarrays
41.1.1 Sensitivity Increase through Miniaturization – Ambient Analyte Assay
41.1.2 From DNA to Protein Microarrays
41.1.3 Application of Protein Microarrays

42 Chemical Biology
42.1 Chemical Biology – Innovative Chemical Approaches to Study Biological Phenomena
42.2 Chemical Genetics – Small Organic Molecules for the Modulation of Protein Function
42.2.1 Study of Protein Functions with Small Organic Molecules
42.2.2 Forward and Reverse Chemical Genetics
42.2.3 The Bump-and-Hole Approach of Chemical Genetics
42.2.4 Identification of Kinase Substrates with ASKA Technology