Contents

Foreword V

Preface XXIX

List of Contributors XXXI

Part I Renewable Strategies 1

1 South Korea’s Green Energy Strategies 3
 Deokyu Hwang, Suhyeon Han, and Changmo Sung
 1.1 Introduction 3
 1.2 Government-Driven Strategies and Policies 5
 1.3 Focused R&D Strategies 7
 1.4 Promotion of Renewable Energy Industries 9
 1.5 Present and Future of Green Energy in South Korea 10
 References 10

 Hirohisa Uchida
 2.1 Introduction 13
 2.2 Energy Transition in Japan 14
 2.2.1 Economic Growth and Energy Transition 15
 2.2.2 Transition of Power Configuration 15
 2.2.3 Nuclear Power Technology 17
 2.3 Diversification of Energy Resource 17
 2.3.1 Thermal Power 18
 2.3.2 Renewable Energy Policy by Green Energy Revolution 18
 2.3.2.1 Agenda with Three NP Options 18
 2.3.2.2 Green Energy Revolution 19
 2.3.2.3 Feed-in Tariff for RE 21
3 The Impact of Renewable Energy Development on Energy and CO₂ Emissions in China 29
Xiliang Zhang, Tianyu Qi and Valerie Karplus
3.1 Introduction 29
3.2 Renewable Energy in China and Policy Context 30
3.2.1 Energy and Climate Policy Goals in China 30
3.2.2 Renewable Electricity Targets 31
3.3 Data and CGEM Model Description 31
3.3.1 Model Data 33
3.3.2 Renewable Energy Technology 33
3.4 Scenario Description 35
3.4.1 Economic Growth Assumptions 35
3.4.2 Current Policy Assumptions 37
3.4.3 Cost and Availability Assumptions for Energy Technologies 38
3.5 Results 39
3.5.1 Renewable Energy Growth Under Policy 39
3.5.2 Impact of Renewable Energy Subsidies on CO₂ Emissions Reductions 40
3.5.3 Impact of a Cost Reduction for Renewable Energy After 2020 42
3.6 Conclusion 44
References 45

4 The Scottish Government’s Electricity Generation Policy Statement 47
Colin Imrie
4.1 Introduction 47
4.2 Overview 47
4.3 Executive Summary 48
References 65

5 Transition to Renewables as a Challenge for the Industry – the German Energiewende from an Industry Perspective 67
Carsten Rolle, Dennis Rendschmidt
5.1 Introduction 67
5.2 Targets and current status of the Energiewende 67
5.3 Industry view: opportunities and challenges 69
6 The Decreasing Market Value of Variable Renewables: Integration Options and Deadlocks 75
Lion Hirth and Falko Ueckerdt
6.1 The Decreasing Market Value of Variable Renewables 75
6.2 Mechanisms and Quantification 77
6.2.1 Profile Costs 78
6.2.2 Balancing Costs 83
6.2.3 Grid-Related Costs 83
6.2.4 Findings 83
6.3 Integration Options 84
6.3.1 A Taxonomy 84
6.3.2 Profile Costs 85
6.3.3 Balancing Costs 88
6.3.4 Grid-Related Costs 89
6.4 Conclusion 90
References 90

7 Transition to a Fully Sustainable Global Energy System 93
Yvonne Y. Deng, Kornelis Blok, Kees van der Leun, and Carsten Petersdorff
7.1 Introduction 93
7.2 Methodology 94
7.2.1 Definitions 95
7.3 Results – Demand Side 97
7.3.1 Industry 97
7.3.1.1 Industry – Future activity 97
7.3.1.2 Industry – Future Intensity 98
7.3.1.3 Industry – Future Energy Demand 99
7.3.2 Buildings 99
7.3.2.1 Buildings – Future Activity 99
7.3.2.2 Buildings – Future Intensity 101
7.3.2.3 Buildings – Future Energy Demand 102
7.3.3 Transport 103
7.3.3.1 Transport – Future Activity 103
7.3.3.2 Transport – Future Intensity 105
7.3.3.3 Transport – Future Energy Demand 107
7.3.4 Demand Sector Summary 107
7.4 Results – Supply Side 108
7.4.1 Supply Potential 108
7.4.1.1 Wind 109
7.4.1.2 Water 109
7.4.1.3 Sun 110
8 The Transition to Renewable Energy Systems –
On the Way to a Comprehensive Transition Concept 119
Uwe Schneidewind, Karoline Augenstein, and Hanna Scheck
8.1 Why Is There a Need for Change? –
The World in the Age of the Anthropocene 119
8.2 A Transition to What? 121
8.3 Introducing the Concept of “Transformative Literacy” 122
8.4 Four Dimensions of Societal Transition 123
8.4.1 On the Structural Interlinkages of the Four Dimensions of Transitions 124
8.4.2 Infrastructures and Technologies – the Technological Perspective 125
8.4.3 Financial Capital – the Economic Perspective 127
8.4.4 Institutions/Policies – the Institutional Perspective 129
8.4.5 Cultural Change/Consumer Behavior – the Cultural Perspective 131
8.5 Techno-Economists, Institutionalists, and Culturalists –
Three Conflicting Transformation Paradigms 132
References 135

9 Renewable Energy Future for the Developing World 137
Dieter Holm
9.1 Introduction 137
9.1.1 Aim 137
9.2 Descriptions and Definitions of the Developing World 138
9.2.1 The Developing World 138
9.2.2 The Developing World in Transition 138
9.2.3 Emerging Economies – BRICS 140
9.3 Can Renewable Energies Deliver? 141
9.4 Opportunities for the Developing World 142
9.4.1 Poverty Alleviation through RE Jobs 142
9.4.2 A New Energy Infrastructure Model 143
9.4.3 Great RE Potential of Developing World 144
9.4.4 Underdeveloped Conventional Infrastructure 144
9.5 Development Framework 145
9.5.1 National Renewable Energies Within Global Guard Rails 145
9.5.2 The International Context: Global Guard Rails 145
9.5.2.1 Socio-Economic Guard Rails 145
9.5.2.2 Ecological Guard Rails 146
9.6 Policies Accelerating Renewable Energies in Developing Countries 148
9.6.1 Regulations Governing Market/Electricity Grid Access and Quotas
Mandating Capacity/Generation 148
9.6.1.1 Feed-in Tariffs 149
9.6.1.2 Quotas – Mandating Capacity/Generation 149
9.6.1.3 Applicability in the Developing World 149
9.6.2 Financial Incentives 151
9.6.2.1 Tax relief 152
9.6.2.2 Rebates and Payments 152
9.6.2.3 Low-Interest Loans and Guaranties 152
9.6.2.4 Addressing Subsidies and Prices of Conventional Energy 152
9.6.3 Industry Standards, Planning Permits, and Building Codes 153
9.6.4 Education, Information, and Awareness 153
9.6.5 Ownership, Cooperatives, and Stakeholders 153
9.6.6 Research, Development, and Demonstration 154
9.7 Priorities – Where to Start 154
9.7.1 Background 154
9.7.2 Learning from Past Mistakes 154
9.8 Conclusions and Recommendations 156
References 157

10 An Innovative Concept for Large-Scale Concentrating Solar Thermal
Power Plants 159
Ulrich Hueck
10.1 Considerations for Large-Scale Deployment 159
10.1.1 Technologies to Produce Electricity from Solar Radiation 160
10.1.2 Basic Configurations of Existing CSP Plants 160
10.1.3 Review for Large-Scale Deployment 161
10.1.3.1 Robustness of Technology to Produce Electricity 161
10.1.3.2 Capability to Produce Electricity Day and Night 161
10.1.3.3 Type of Concentration of Solar Radiation 162
10.1.3.4 Shape of Mirrors for Concentration of Solar Radiation 163
10.1.3.5 Area for Solar Field 164
10.1.3.6 Technology to Capture Heat from Solar Radiation 165
10.1.3.7 Working Fluids and Heat Storage Media 165
10.1.3.8 Direct Steam Generation 168
10.1.3.9 Inlet Temperature for Power Generation 168
10.1.3.10 Type of Cooling System 169
10.1.3.11 Size of Solar Power Plants 169
10.1.3.12 Robustness of Other Technologies 169
10.1.4 Summary for Comparison of Technologies 170
10.2 Advanced Solar Boiler Concept for CSP Plants 171
10.2.1 Summary of Concept 171
10.2.2 Description of Concept 172
10.2.2.1 Direct Solar Steam Generation 172
10.2.2.2 Rankine Cycle for Steam Turbine 172
10.2.2.3 Solar Boiler for Steam Generation 174
10.2.2.4 Solar Steam Generation Inside Ducts 175
10.2.2.5 Arrangement of Heat-Transfer Sections 177
10.2.2.6 Utilization of Waste Heat 177
10.2.2.7 Thermal Storage System for Night-Time Operation 178
10.3 Practical Implementation of Concept 179
10.3.1 Technical Procedure for Implementation 179
10.3.2 Financial Procedure for Implementation 181
10.3.3 Strategic Procedure for Implementation 181
10.4 Conclusion 182

References 182

11 Status of Fuel Cell Electric Vehicle Development and Deployment:
Hyundai’s Fuel Cell Electric Vehicle Development as a Best Practice Example 183
Tae Won Lim
11.1 Introduction 183
11.2 Development of the FCEV 183
11.2.1 Fuel Cell Stack Durability and Driving Ranging of FCEVs 184
11.2.2 Packing of FCEVs 184
11.2.3 Cost of FCEVs 185
11.3 History of HMC FCEV Development 185
11.4 Performance Testing of FCEVs 188
11.4.1 Crashworthiness and Fire Tests 188
11.4.2 Sub-Zero Conditions Tests 189
11.4.3 Durability Test 190
11.4.4 Hydrogen Refueling 190
11.5 Cost Reduction of FCEV 191
11.6 Demonstration and Deployment Activities of FCEVs in Europe 192
11.7 Roadmap of FCEV Commercialization and Conclusions 194

12 Hydrogen as an Enabler for Renewable Energies 195
Detlef Stolten, Bernd Emonts, Thomas Grube, and Michael Weber
12.1 Introduction 195
12.2 Status of CO₂ Emissions 196
12.3 Power Density as a Key Characteristic of Renewable Energies and Their Storage Media 197
12.4 Fluctuation of Renewable Energy Generation 199
12.5 Strategic Approach for the Energy Concept 200
12.6 Status of Electricity Generation and Potential for Expansion of Wind Turbines in Germany 200
Contents

12.7 Assumptions for the Renewable Scenario with a Constant Number of Wind Turbines 202
12.8 Procedure 205
12.9 Results of the Scenario 206
12.10 Fuel Cell Vehicles 207
12.11 Hydrogen Pipelines and Storage 208
12.12 Cost Estimate 210
12.13 Discussion of Results 212
12.14 Conclusion 213

References 214

13 Pre-Investigation of Hydrogen Technologies at Large Scales for Electric Grid Load Balancing 217
Fernando Gutiérrez-Martín

13.1 Introduction 217
13.2 Electrolytic Hydrogen 218
13.2.1 Electrolyzer Performance 219
13.2.2 Hydrogen Production Cost Estimate by Water Electrolysis 221
13.2.3 Simulation of Electrolytic Hydrogen Production 224
13.3 Operation of the Electrolyzers for Electric Grid Load Balancing 226
13.3.1 The Spanish Power System 228
13.3.2 Integration of Hydrogen Technologies at Large Scales 230
13.3.2.1 Hourly Average Curves 230
13.3.2.2 Annual Curves 232
13.4 Conclusion 236
13.5 Appendix 238

References 238

Part II Power Production 241

14 Onshore Wind Energy 243
Po Wen Cheng

14.1 Introduction 243
14.2 Market Development Trends 244
14.3 Technology Development Trends 246
14.3.1 General Remarks About Future Wind Turbines 246
14.3.2 Power Rating 247
14.3.3 Number of Blades 247
14.3.4 Rotor Materials 248
14.3.5 Rotor Diameter 249
14.3.6 Upwind or Downwind 250
14.3.7 Drive train Concept 250
14.3.8 Tower Concepts 253
14.3.9 Wind Turbine and Wind Farm Control 254
17 Solar Thermal Power Production 307
Robert Pitz-Paal, Reiner Buck, Peter Heller, Tobias Hirsch, and Wolf-Dieter Steinmann

17.1 General Concept of the Technology 307
17.1.1 Introduction 307
17.1.2 Technology Characteristics and Options 308
17.1.3 Environmental Profile 311
17.2 Technology Overview 312
17.2.1 Parabolic Trough Collector systems 312
17.2.1.1 Parabolic Trough Collector Development 312
17.2.2 Linear Fresnel Collector Systems 317
17.2.3 Solar Tower Systems 320
17.2.4 Thermal Storage Systems 324
17.2.4.1 Basic Storage Concepts 325
17.2.4.2 Commercial Storage Systems 327
17.2.4.3 Current Research Activities 327
17.3 Cost Development and Perspectives 328
17.3.1 Cost Structure and Actual Cost Figures 328
17.3.2 Cost Reduction Potential 331
17.3.2.1 Scaling Up 331
17.3.2.2 Volume Production 331
17.3.2.3 Technology Innovations 331
17.4 Conclusion 332

References 332

18 Geothermal Power 339
Christopher J. Bromley and Michael A. Mongillo

18.1 Introduction 339
18.2 Geothermal Power Technology 341
18.3 Global Geothermal Deployment: the IEA Roadmap and the IEA-GIA 342
18.4 Relative Advantages of Geothermal 343
18.5 Geothermal Reserves and Deployment Potential 344
18.6 Economics of Geothermal Energy 346
18.7 Sustainability and Environmental Management 346

References 350

19 Catalyzing Growth: an Overview of the United Kingdom’s Burgeoning Marine Energy Industry 351
David Krohn

19.1 Development of the Industry 351
19.2 The Benefits of Marine Energy 352
19.3 Expected Levels of Deployment 354
19.4 Determining the Levelized Cost of Energy Trajectory 357
19.4.1 The Cost of Energy Trajectory 357
20 Hydropower 381
 Ånund Killingtveit
 20.1 Introduction – Basic Principles 381
 20.1.1 The Hydrological Cycle – Why Hydropower Is Renewable 382
 20.1.2 Computing Hydropower Potential 383
 20.1.3 Hydrology – Variability in Flow 383
 20.2 Hydropower Resources/Potential Compared with Existing System 385
 20.2.1 Definition of Potential 385
 20.2.2 Global and Regional Overview 385
 20.2.3 Barriers – Limiting Factors 387
 20.2.4 Climate-Change Impacts 387
 20.3 Technological Design 388
 20.3.1 Run-of-River Hydropower 388
 20.3.2 Storage Hydropower 388
 20.3.3 Pumped Storage Hydropower 389
 20.4 Cutting Edge Technology 389
 20.4.1 Extending the Operational Regime for Turbines 390
 20.4.2 Utilizing Low or Very Low Head 391
 20.4.3 Fish-Friendly Power Plants 391
 20.4.4 Tunneling and Underground Power Plants 391
 20.5 Future Outlook 394
 20.5.1 Cost Performance 394
 20.5.2 Future Energy Cost from Hydropower 396
20.5.3 Carbon Mitigation Potential 396
20.5.4 Future Deployment 397
20.6 Systems Analysis 398
20.6.1 Integration into Broader Energy Systems 398
20.6.2 Power System Services 398
20.7 Sustainability Issues 398
20.7.1 Environmental Impacts 399
20.7.2 Lifecycle Assessment 399
20.7.3 Greenhouse Gas Emissions 399
20.7.4 Energy Payback Ratio 400
20.8 Conclusion 400
References 401

21 The Future Role of Fossil Power Plants –
Design and Implementation 403
Erland Christensen and Franz Bauer
21.1 Introduction 403
21.2 Political Targets/Regulatory Framework 403
21.3 Market Constraints – Impact of RES 406
21.4 System Requirements and Technical Challenges for the Conventional
Fleet 407
21.4.1 Flexibility Requirements with Load Following and Gradients 408
21.4.2 Delivery of System Services 410
21.4.2.1 Primary Reserve/Control 411
21.4.2.2 Secondary Reserve/Control 411
21.4.2.3 Tertiary or Manual Reserve 411
21.4.2.4 “Short-Circuit Effect,” Reactive Reserves, and Voltage Regulation,
Inertia of the System 412
21.4.2.5 Secure Power Supply When Wind and Solar Are Not Available 412
21.4.3 District Heating 413
21.4.4 Co-combustion of Biomass 414
21.5 Technical Challenges for Generation 416
21.6 Economic Challenges 418
21.6.1 Principles Underlying the Data on CAPEX and OPEX 418
21.7 Future Generation Portfolio – RES Versus Residual Power 421

Part III Gas Production 423

22 Status on Technologies for Hydrogen Production
by Water Electrolysis 425
Jürgen Mergel, Marcelo Carmo, and David Fritz
22.1 Introduction 425
22.2 Physical and Chemical Fundamentals 426
22.3 Water Electrolysis Technologies 430
22.3.1 Alkaline Electrolysis 430
22.3.2 PEM Electrolysis 433
22.3.3 High-Temperature Water Electrolysis 436
22.4 Need for Further Research and Development 438
22.4.1 Alkaline Water Electrolysis 440
 22.4.1.1 Electrocatalysts for Alkaline Water Electrolysis 441
22.4.2 PEM Electrolysis 442
 22.4.2.1 Electrocatalysts for the Hydrogen Evolution Reaction (HER) 442
 22.4.2.2 Electrocatalysts for the Oxygen Evolution Reaction (OER) 443
 22.4.2.3 Separator Plates and Current Collectors 443
22.5 Production Costs for Hydrogen 446
22.6 Conclusion 446
References 447

23 Hydrogen Production by Solar Thermal Methane Reforming 451
Christos Agrafiotis, Henrik von Storch, Martin Roeb, and Christian Sattler
23.1 Introduction 451
23.2 Hydrogen Production Via Reforming of Methane Feedstocks 453
 23.2.1 Thermochemistry and Thermodynamics of Reforming 453
 23.2.2 Current Industrial Status 455
23.3 Solar-Aided Reforming 456
 23.3.1 Coupling of Solar Energy to the Reforming Reaction: Solar Receiver/Reactor Concepts 456
 23.3.2 Worldwide Research Activities in Solar Thermal Methane Reforming 460
 23.3.2.1 Indirectly Heated Reactors 461
 23.3.2.2 Directly Irradiated Reactors 468
23.4 Current Development Status and Future Prospects 476
References 478

Part IV Biomass 483

24 Biomass – Aspects of Global Resources and Political Opportunities 485
Gustav Melin
24.1 Our Perceptions: Are They Misleading Us? 485
24.2 Biomass – Just a Resource Like Other Resources – Price Gives Limitations 485
24.3 Global Food Production and Prices 487
 24.3.1 Production Capacity per Hectare in Different Countries 488
24.4 Global Arable Land Potential 490
 24.4.1 Global Forests Are Carbon Sinks Assimilating One-Third of Total Carbon Emissions 491
 24.4.2 Forest Supply – the Major Part of Sweden's Energy Supply 492
24.5 Lower Biomass Potential If No Biomass Demand 493
24.6 Biomass Potential Studies 494
24.7 The Political Task 494
24.8 Political Measures, Legislation, Steering Instruments, and Incentives 495
24.8.1 Carbon Dioxide Tax: the Most Efficient Steering Instrument 495
24.8.2 Less Political Damage 496
24.8.3 Use Biomass 496
References 497

25 Flexible Power Generation from Biomass – an Opportunity for a Renewable Sources-Based Energy System? 499
Daniela Thrän, Marcus Eichhorn, Alexander Krautz, Subhashree Das, and Nora Szarka
25.1 Introduction 499
25.2 Challenges of Power Generation from Renewables in Germany 500
25.3 Power Generation from Biomass 507
25.4 Demand-Driven Electricity Commission from Solid Biofuels 510
25.5 Demand-Driven Electricity Commission from Liquid Biofuels 511
25.6 Demand-Driven Electricity Commission from Gaseous Biofuels 512
25.7 Potential for Flexible power Generation – Challenges and Opportunities 515
References 518

26 Options for Biofuel Production – Status and Perspectives 523
Franziska Müller-Langer, Arne Gröngröft, Stefan Majer, Sinéad O’Keeffe, and Marco Klemm
26.1 Introduction 523
26.2 Characteristics of Biofuel Technologies 524
26.2.1 Biodiesel 528
26.2.2 HVO and HEFA 529
26.2.3 Bioethanol 529
26.2.4 Synthetic BTL 530
26.2.5 Biomethane 532
26.2.5.1 Upgraded Biochemically Produced Biogas 532
26.2.5.2 Thermochemically Produced Bio-SNG (Synthetic Natural Gas) 532
26.2.6 Other Innovative Biofuels 532
26.2.6.1 BTL Fuels Such as Methanol and Dimethyl Ether 533
26.2.6.2 Biohydrogen 533
26.2.6.3 Sugars to Hydrocarbons 533
26.2.6.4 Biobutanol 534
26.2.6.5 Algae-Based Biofuels 534
26.3 System Analysis on Technical Aspects 534
26.3.1 Capacities of Biofuel Production Plants 534
26.3.2 Overall Efficiencies of Biofuel Production Plants 535
26.4 System Analysis on Environmental Aspects 537
Contents

26.4.1 Differences in LCA Studies for Biofuel Options 537
26.4.2 Drivers for GHG Emissions: Biomass Production 538
26.4.3 Drivers for GHG Emissions: Biomass Conversion 540
26.4.4 Perspectives for LCA Assessments 541
26.5 System Analysis on Economic Aspects 542
26.5.2 Total Capital Investments for Biofuel Production Plants 542
26.5.3 Biofuel Production Costs 543
26.6 Conclusion and Outlook 545
26.6.1 Technical Aspects 545
26.6.2 Environmental Aspects 545
26.6.3 Economic Aspects 546
26.6.4 Future R&D needs 546
References 547

Part V Storage 555

27 Energy Storage Technologies – Characteristics, Comparison, and Synergies 557
 Andreas Hauer, Josh Quinnell, and Eberhard Lävemann
27.1 Introduction 557
27.2 Energy Storage Technologies 558
27.2.1 Energy Storage Properties 558
27.2.2 Electricity Storage 559
27.2.3 Storage of Thermal Energy 561
27.2.4 Energy Storage by Chemical Conversion 564
27.2.5 Technical Comparison of Energy Storage Technologies 565
27.3 The Role of Energy Storage 567
27.3.1 Balancing Supply and Demand 568
27.3.2 Distributed Energy Storage Systems and Energy Conversion 570
27.3.2.1 Distributed Energy Storage Systems 570
27.3.2.2 In/Out Storage Versus One-Way Storage 571
27.3.2.3 Example: Power-to-Gas Versus Long-Term Hot Water Storage 571
27.4 Economic Evaluation of Energy Storage Systems 572
27.4.1 Top-Down Approach for Maximum Energy Storage Costs 572
27.4.2 Results 573
27.5 Conclusion 575
References 576

28 Advanced Batteries for Electric Vehicles and Energy Storage Systems 579
 Seung Mo Oh, Sa Heum Kim, Youngjoon Shin, Dongmin Im, and Jun Ho Song
28.1 Introduction 579
28.2 R&D Status of Secondary Batteries 581
Contents

28.2.1 Lithium-Ion Batteries 581
28.2.2 Redox-Flow Batteries 582
28.2.3 Sodium–Sulfur Batteries 583
28.2.4 Lithium–Sulfur Batteries 584
28.2.5 Lithium–Air Batteries 585
28.3 Secondary Batteries for Electric Vehicles 587
28.4 Secondary Batteries for Energy Storage Systems 590
28.4.1 Lithium-Ion Batteries for ESS 591
28.4.2 Redox-Flow Batteries for ESS 592
28.4.3 Sodium–Sulfur Batteries for ESS 593
28.5 Conclusion 594

References 595

29 Pumped Storage Hydropower 597
Atle Harby, Julian Sauterleute, Magnus Korpås, Ånund Killingtveit, Eivind Solvang, and Torbjørn Nielsen
29.1 Introduction 597
29.1.1 Principle and Purpose of Pumped Storage Hydropower 597
29.1.2 Deployment of Pumped Storage Hydropower 598
29.2 Pumped Storage Technology 599
29.2.1 Operational Strategies 601
29.2.2 Future Pumped Storage Plants 602
29.3 Environmental Impacts of Pumped Storage Hydropower 602
29.4 Challenges for Research and Development 604
29.5 Case Study: Large-Scale Energy Storage and Balancing from Norwegian Hydropower 605
29.5.1 Demand for Energy Storage and Balancing Power 606
29.5.2 Technical Potential 607
29.5.3 Water Level Fluctuations in Reservoirs 609
29.5.4 Environmental Impacts 611
29.6 System Analysis of Linking Wind and Flexible Hydropower 612
29.6.1 Method 612
29.6.2 Results 613
29.7 Conclusion 616

References 617

30 Chemical Storage of Renewable Electricity via Hydrogen – Principles and Hydrocarbon Fuels as an Example 619
Georg Schaub, Hilko Eilers, and Maria Iglesias González
30.1 Integration of Electricity in Chemical Fuel Production 619
30.2 Example: Hydrocarbon Fuels 621
30.2.1 Hydrocarbon Fuels Today 621
30.2.2 Hydrogen Demand in Hydrocarbon Fuel Upgrading/Production 622
30.2.3 Hydrogen in Petroleum Refining 623
30.2.4 Hydrogen in Synfuel Production 624
31 Geological Storage for the Transition from Natural to Hydrogen Gas 629

Jürgen Wackerl, Martin Streibel, Axel Liebscher, and Detlef Stolten

31.1 Current Situation 629
31.2 Natural Gas Storage 631
31.3 Requirements for Subsurface Storage 633
31.4 Geological Situation in Central Europe and Especially Germany 636
31.5 Types of Geological Gas Storage Sites 639
31.5.1 Pore-Space Storage Sites 639
31.5.2 Oil and Gas Fields 640
31.5.3 Aquifers 642
31.5.4 Abandoned Mining Sites 644
31.5.5 Salt Caverns 646
31.6 Comparisons with Other Locations and Further Considerations with Focus on Hydrogen Gas 652
31.7 Conclusion 653
References 654

32 Near-Surface Bulk Storage of Hydrogen 659

Vanessa Tietze and Sebastian Luhr

32.1 Introduction 659
32.2 Storage Parameters 661
32.3 Compressed Gaseous Hydrogen Storage 662
32.3.1 Thermodynamic Fundamentals 662
32.3.2 Hydrogen Compressors 662
32.3.3 Hydrogen Pressure Vessels 663
32.4 Cryogenic Liquid Hydrogen Storage 669
32.4.1 Thermodynamic Fundamentals 669
32.4.2 Liquefaction Plants 670
32.4.3 Liquid Hydrogen Storage Tanks 671
32.5 Metal Hydrides 675
32.5.1 Characteristics of Materials 675
32.6 Cost Estimates and Economic Targets 677
32.7 Technical Assessment 679
32.8 Conclusion 684
References 685
33 Energy Storage Based on Electrochemical Conversion of Ammonia 691

Jürgen Fuhrmann, Marlene Hülsebrock, and Ulrike Krewer

33.1 Introduction 691
33.2 Ammonia Properties and Historical Uses as an Energy Carrier 692
33.3 Pathways for Ammonia Conversion: Synthesis 693
 33.3.1 Haber–Bosch Process 694
 33.3.2 Electrochemical Synthesis 697
33.4 Pathways for Ammonia Conversion: Energy Recovery 698
 33.4.1 Combustion 698
 33.4.2 Direct Ammonia Fuel Cells 699
 33.4.3 Energy Recovery via Hydrogen 699
33.5 Comparison of Pathways 700
33.6 Conclusions 702

References 703

Part VI Distribution 707

34 Introduction to Transmission Grid Components 709

Armin Schnettler

34.1 Introduction 709
34.2 Classification of Transmission System Components 710
 34.2.1 Transmission Technologies 710
 34.2.1.1 Overhead Lines 710
 34.2.1.2 Underground Lines 711
 34.2.2 Conversion Technologies 712
 34.2.2.1 Switchgears/Substations 712
 34.2.2.2 Power Transformers 714
 34.2.2.3 FACTS Devices 714
 34.2.2.4 HVDC Converters 715
34.2.3 System Integration of Transmission Technologies 717
34.3 Recent Developments of Transmission System Components 720

References 721

35 Introduction to the Transmission Networks 723

Göran Andersson, Thilo Krause, and Wil Kling

35.1 Introduction 723
35.2 The Transmission System – Development, Role, and Technical Limitations 724
 35.2.1 The Development Stages of the Transmission System 724
 35.2.2 Tasks of the Transmission System 727
 35.2.3 Technical Limitations of Power Transmission 728
35.3 The Transmission Grid in Europe – Current Situation and Challenges 729
 35.3.1 Historical Evolution of the UCTE/ENTSO-E Grid 729
 35.3.2 Transmission Challenges Driven by Electricity Trade 730
35.3.3 Transmission Challenges Driven by the Production Side 731
35.3.4 Transmission Challenges Driven by the Demand Side and Developments in the Distribution Grid 731
35.3.5 Conclusion 732
35.4 Market Options for the Facilitation of Future Bulk Power Transport 732
35.4.1 Cross-Border Trading and Market Coupling 732
35.4.2 Cross-Border Balancing 733
35.4.3 Technological Options for the Facilitation of Future Bulk Power Transport 733
35.5 Case Study 735
References 739

36 Smart Grid: Facilitating Cost-Effective Evolution to a Low-Carbon Future 741
Goran Strbac, Marko Aunedi, Danny Pudjianto, and Vladimir Stanojevic
36.1 Overview of the Present Electricity System Structure and Its Design and Operation Philosophy 741
36.2 System Integration Challenges of Low-Carbon Electricity Systems 743
36.3 Smart Grid: Changing the System Operation Paradigm 744
36.4 Quantifying the Benefits of Smart Grid Technologies in a Low-Carbon future 746
36.5 Integration of Demand-Side Response in System Operation and Planning 749
36.5.1 Control of Domestic Appliances 750
36.5.2 Integration of EVs 755
36.5.3 Smart Heat Pump Operation 761
36.5.4 Role and Value of Energy Storage in Smart Grid 762
36.6 Implementation of Smart Grid: Distributed Energy Marketplace 768
References 770

37 Natural Gas Pipeline Systems 773
Gerald Linke
37.1 Physical and Chemical Fundamentals 773
37.2 Technological Design 776
37.3 Cutting Edge Technology of Today 780
37.4 Outlook on R&D Challenges 784
37.5 System Analysis 791
References 794

38 Introduction to a Future Hydrogen Infrastructure 795
Joan Ogden
38.1 Introduction 795
38.2 Technical Options for Hydrogen Production, Delivery, and Use in Vehicles 796
38.2.1 Hydrogen Vehicles 796
38.2.2 Hydrogen Production Methods 797
38.2.3 Options for Producing Hydrogen with Near-Zero Emission 800
38.2.4 Hydrogen Delivery Options 800
38.2.5 Hydrogen Refueling Stations 801
38.3 Economic and Environmental Characteristics of Hydrogen Supply Pathways 802
38.3.1 Economics of Hydrogen Supply 802
38.3.2 Environmental Impacts of Hydrogen Pathways 805
38.3.2.1 Well-to-Wheels Greenhouse Gas Emissions, Air Pollution, and Energy Use 805
38.3.2.2 Resource Use and Sustainability 805
38.3.2.3 Infrastructure Compatibility 806
38.4 Strategies for Building a Hydrogen Infrastructure 806
38.4.1 Design Considerations for Hydrogen Refueling Infrastructure 806
38.4.2 Hydrogen Transition Scenario for the United States 807
38.5 Conclusion 809

References 810

39 Power to Gas 813
Sebastian Schiebahn, Thomas Grube, Martin Robinius, Li Zhao, Alexander Otto, Bhunesh Kumar, Michael Weber, and Detlef Stolten

39.1 Introduction 813
39.2 Electrolysis 814
39.2.1 Alkaline Water Electrolysis 814
39.2.2 Proton Exchange Membrane Electrolysis 817
39.2.3 High-Temperature Water Electrolysis 818
39.2.4 Integration of Renewable Energies with Electrolyzers 819
39.3 Methanation 820
39.3.1 Catalytic Hydrogenation of CO₂ to Methane 820
39.3.2 Methanation Plants 821
39.3.3 CO₂ Sources 823
39.3.3.1 CO₂ via Carbon Capture and Storage 823
39.3.3.2 CO₂ Obtained from Biomass 824
39.3.3.3 CO₂ from Other Industrial Processes 825
39.3.3.4 CO₂ Recovery from Air 826
39.4 Gas Storage 828
39.4.1 Porous Rock Storage 829
39.4.2 Salt Cavern Storage 830
39.5 Gas Pipelines 831
39.5.1 Natural Gas Pipeline System 831
39.5.2 Hydrogen Pipeline System 833
39.6 End-Use Technologies 834
39.6.1 Stationary End Use 835
39.6.1.1 Central Conversion of Natural Gas Mixed with Hydrogen in Combustion Turbines 835
39.6.1.2 Decentralized Conversion of Natural Gas Mixed with Hydrogen in Gas Engines 835
39.6.1.3 Conversion of Hydrogen Mixed with Natural Gas in Combustion Heating Systems 835
39.6.2 Passenger Car Powertrains with Fuel Cells and Internal Combustion Engines 836
39.6.2.1 Direct-Hydrogen Fuel Cell Systems 836
39.6.2.2 Internal Combustion Engines 837
39.7 Evaluation of Process Chain Alternatives 838
39.8 Conclusion 841
References 843

Part VII Applications 849

40 Transition from Petro-Mobility to Electro-Mobility 851
David L. Greene, Changzheng Liu, and Sangsoo Park
40.1 Introduction 851
40.2 Recent Progress in Electric Drive Technologies 853
40.3 Energy Efficiency 854
40.4 The Challenge of Energy Transition 856
40.5 A New Environmental Paradigm: Sustainable Energy Transitions 858
40.6 Status of Transition Plans 859
40.7 Modeling and Analysis 862
40.8 Conclusion 870
References 871

Karsten Voss, Eike Musall, Igor Sartori and Roberto Lollini
41.1 Introduction 875
41.2 Physical and Balance Boundaries 876
41.3 Weighting Systems 878
41.4 Balance Types 879
41.5 Transient Characteristics 881
41.6 Tools 882
41.7 Examples and Experiences 883
41.8 Conclusion 887
References 888

42 China Road Map for Building Energy Conservation 891
Peng Chen, Yan Da, and Jiang Yi
42.1 Introduction 891
42.2 The Upper Bound of Building Energy Use in China 892
42.2.1 Limitation of the Total Amount of Carbon Emissions 893
42.2.2 Limitation of the Total Amount of Available Energy in China 894
42.2.3 Limitation of the Total Amount of Building Energy Use in China 895
42.3 The Way to Realize the Targets of Building Energy Control in China 897
42.3.1 Factors Affecting Building Energy Use 897
42.3.1.1 The Total Building Floor Area 897
42.3.1.2 The Energy Use Intensity 899
42.3.2 The Energy Use of Northern Urban Heating 900
42.3.3 The Energy Use of Urban Residential Buildings (Excluding Heating in the North) 902
42.3.4 The Energy Use of Commercial and Public Buildings (Excluding Heating in the North) 904
42.3.5 The Energy Use of Rural Residential Buildings 906
42.3.6 The Target of Buildings Energy Control in China in the Future 908
42.4 Conclusions 909
References 910

43 Energy Savings Potentials and Technologies in the Industrial Sector: Europe as an Example 913
Tobias Bossmann, Rainer Elsland, Wolfgang Eichhammer, and Harald Bradke
43.1 Introduction 913
43.2 Electric Drives 916
43.2.1 E-Drive System Optimization 919
43.2 Steam and Hot Water Generation 922
43.3 Other Industry Sectors 926
43.4 Overall Industry Sector 931
References 935

Subject Index 937