Contents

About the Editors XVII
List of Contributors XIX
Preface XXIII

1 The Design of Safer Chemicals: Past, Present, and Future Perspectives 1
 Stephen C. DeVito
 1.1 Evolution of the Concept 1
 1.1.1 In the Development of Drug Substances: Emergence of the Medicinal Chemist 2
 1.1.2 In the Development of Pesticide Substances 4
 1.1.3 In the Development of Industrial Chemical Substances 5
 1.1.3.1 Stagnation of the Concept Because of Section 5 of the TSCA 7
 1.2 Characteristics of a “Safer Chemical” 9
 1.2.1 Types of Safer Chemicals 11
 1.2.2 The Ideal Chemical 14
 1.3 The Future of the Concept 16
 1.4 Disclaimer 18
 References 18

2 Differential Toxicity Characterization of Green Alternative Chemicals 21
 Richard Judson
 2.1 Introduction 21
 2.2 Chemical Properties Related to Differential Toxicity 23
 2.3 Modeling Chemical Clearance – Metabolism and Excretion 25
 2.4 Predicting Differential Inherent Molecular Toxicity 28
 2.4.1 Cell Types/Cell Lines 28
 2.4.2 High-Throughput Screening (HTS) 29
 2.4.3 High-Content Screening (HCS) 30
 2.4.4 Whole-Genome Approaches 30
 2.5 Integrating In Vitro Data to Model Toxicity Potential 31
 2.6 Databases Relevant for Toxicity Characterization 33
 2.7 Example of Differential Toxicity Analysis 34
 2.8 Conclusion 39
3 Understanding Mechanisms of Metabolic Transformations as a Tool for Designing Safer Chemicals 47

Thomas G. Osimitz and John L. Nelson

3.1 Introduction 47
3.2 The Role of Metabolism in Producing Toxic Metabolites 47
3.2.1 Phase I Metabolism 48
3.2.2 Phase II Metabolism 48
3.3 Mechanisms by Which Chemicals Produce Toxicity 59
3.3.1 Covalent Binding to Macromolecules 59
3.3.2 Enzyme Inhibition 61
3.3.3 Ischemia/Hypoxia 63
3.3.4 Oxidative Stress 65
3.3.5 Receptor–Ligand Interactions 69
3.4 Conclusion 69

References 72

4 Structural and Toxic Mechanism-Based Approaches to Designing Safer Chemicals 77

Stephen C. DeVito

4.1 Toxicophores 77
4.1.1 Electrophilic Toxicophores 77
4.2 Designing Safer Electrophilic Substances 82
4.3 Structure–Activity Relationships 86
4.3.1 Aliphatic Carboxylic Acids 87
4.3.2 Organonitriles 90
4.4 Quantitative Structure–Activity Relationships (QSARs) 92
4.5 Isosteric Substitution as a Strategy for the Design of Safer Chemicals 95
4.5.1 Isosteric Substitution in the Design of Safer Drug Substances 97
4.5.2 Isosteric Substitution in the Design of Safer Pesticides 97
4.5.3 Isosteric Substitution in the Design of Safer Commercial Chemicals 98
4.6 Conclusion 100
4.7 Disclaimer 102

References 102

5 Informing Substitution to Safer Alternatives 107

Emma Lavoie, David DiFiore, Meghan Marshall, Chuantung Lin, Kelly Grant, Katherine Hart, Fred Arnold, Laura Morlacci, Kathleen Vokes, Carol Hetfield, Elizabeth Sommer, Melanie Vrabel, Mary Cushmac, Charles Auer, and Clive Davies

5.1 Design for Environment Approaches to Risk Reduction: Identifying and Encouraging the Use of Safer Chemistry 107
5.2 Assessment of Safer Chemical Alternatives: Enabling Scientific, Technological, and Commercial Development 108
5.3 Informed Substitution 111
5.3.1 Functional Use as an Analytical Construct 112
5.3.2 Defining Safer Chemistry – the DfE Criteria for Safer Chemical Ingredients 114
5.3.3 Continuous Improvement to Advance Green Chemistry 114
5.3.4 Best Practices to Manage Risks in the Absence of Safer Substitutes 115
5.3.5 Life-Cycle Thinking: A Holistic Approach 116
5.4 Examples that Illustrate Informed Substitution 116
5.4.1 Informing Real-Time Substitution Decisions: Chemical Alternative Assessment for Pentabromodiphenyl Ether 116
5.4.1.1 The Partnership 117
5.4.1.2 The Alternatives Assessment 118
5.4.2 Encouraging Informed Substitution: Safer Product Labeling Program 120
5.4.2.1 Substituting to Safer Surfactants 121
5.4.2.2 The Safer Detergents Stewardship Initiative 125
5.4.2.3 CleanGredients® 125
5.4.3 Developing and Applying Best Practices in the Absence of Safer Substitutes: Isocyanates 126
5.4.3.1 Best Practices as an Important Risk Management Approach 126
5.4.3.2 New Developments in Manufacturing Polyurethanes Without Using Isocyanates 127
5.4.3.3 Safer Manufacture of Diisocyanates Without Using Phosgene 127
5.4.4 Life-Cycle Assessment to Inform Alternatives to Leaded Solder for Electronics 129
5.5 Conclusion 132
5.6 Disclaimer 133

References 133

6 Design of Safer Chemicals – Ionic Liquids 137
Ian Beadham, Monika Gurbisz and Nicholas Gathergood

6.1 Introduction 137
6.2 Environmental Considerations 137
6.3 Ionic Liquids – a Historical Perspective 138
6.3.1 First-Generation ILs 139
6.4 From Ionic Liquid Stability to Biodegradability 141
6.4.1 Overcoming the Inertness of 1-Substituted-3-Methylimidazolium Cation 147
6.5 Conclusion 152
References 155

7 Designing Safer Organocatalysts – What Lessons Can Be Learned When the Rebirth of an Old Research Area Coincides with the Advent of Green Chemistry? 159
Ian Beadham, Monika Gurbisz and Nicholas Gathergood

7.1 Introduction 159
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>A Brief History of Organocatalysis</td>
<td>159</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Pre-1950s: From Humble Beginnings</td>
<td>159</td>
</tr>
<tr>
<td>7.2.2</td>
<td>1950s–1960s</td>
<td>160</td>
</tr>
<tr>
<td>7.2.3</td>
<td>1970s: Organocatalysis Begins in Earnest</td>
<td>160</td>
</tr>
<tr>
<td>7.2.4</td>
<td>1980s</td>
<td>160</td>
</tr>
<tr>
<td>7.2.5</td>
<td>1990s</td>
<td>161</td>
</tr>
<tr>
<td>7.2.6</td>
<td>2000–Present</td>
<td>162</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Advantages of Organocatalysts</td>
<td>162</td>
</tr>
<tr>
<td>7.3</td>
<td>Catalysts from the Chiral Pool</td>
<td>163</td>
</tr>
<tr>
<td>7.4</td>
<td>“Rules of Thumb” for Small Molecule Biodegradability Applied to Organocatalysts</td>
<td>167</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Selecting Simple Guidelines for Biodegradability</td>
<td>169</td>
</tr>
<tr>
<td>7.5</td>
<td>Cinchona Alkaloids – Natural Products as a Source of Organocatalysts:</td>
<td>174</td>
</tr>
<tr>
<td>7.6</td>
<td>Proline, the Most Extensively Studied Organocatalyst:</td>
<td>175</td>
</tr>
<tr>
<td>7.7</td>
<td>Process of Catalyst Development</td>
<td>177</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Analogy Between Organocatalyst Development and Drug Design</td>
<td>178</td>
</tr>
<tr>
<td>7.8</td>
<td>Analogs of Nornicotine – an Aldol Catalyst Exemplifying "Natural" Toxicity</td>
<td>179</td>
</tr>
<tr>
<td>7.9</td>
<td>Pharmaceutically Derived Organocatalysts and the Role of Cocatalysts</td>
<td>180</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Criteria to Assess the Environmental Impact of an Organocatalyst</td>
<td>184</td>
</tr>
<tr>
<td>7.10</td>
<td>Conclusion</td>
<td>185</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Life-Cycle Concepts for Sustainable Use of Engineered Nanomaterials in Nanoproducts</td>
<td>227</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>8.2</td>
<td>Life-Cycle Perspectives in Green Nanotechnologies</td>
<td>228</td>
</tr>
<tr>
<td>8.3</td>
<td>Release of Nanomaterials from Products</td>
<td>230</td>
</tr>
<tr>
<td>8.4</td>
<td>Exposure Modeling of Nanomaterials in the Environment</td>
<td>237</td>
</tr>
<tr>
<td>8.5</td>
<td>Designing Safe Nanomaterials</td>
<td>243</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Drugs</td>
<td>251</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>9.2</td>
<td>Pharmaceuticals – What They Are</td>
<td>251</td>
</tr>
<tr>
<td>9.3</td>
<td>Pharmaceuticals in the Environment – Sources, Fate, and Effects</td>
<td>252</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Sources</td>
<td>252</td>
</tr>
</tbody>
</table>
9.3.2 Fate 254
9.3.3 Effects 255
9.4 Risk Management 257
9.4.1 (Advanced) Effluent Treatment and Its Limitations 258
9.4.2 Role of Patients, Pharmacists, and Doctors 259
9.4.3 Role of the Drugs 259
9.5 Designing Environmentally Safe Drugs 259
9.5.1 What are Safe Drugs? 259
9.5.2 Improvements Related to Use and After-Use Life 260
9.5.2.1 Lower Activity Thresholds 260
9.5.2.2 Prodrugs 260
9.5.2.3 Drug Targeting, Drug Delivery, Degree of Metabolism 261
9.5.2.4 Biopharmaceuticals 261
9.5.3 Benign by Design 262
9.5.3.1 Why? 262
9.5.3.2 How? 262
9.5.3.3 Degradable Drugs – a Contradiction per se? 264
9.5.3.4 Structure Matters 264
9.5.3.5 Stability Versus Reactivity – How Stable Is Reactive Enough 267
9.5.3.6 Examples Demonstrating Feasibility 268
9.6 Conclusion 271
References 272

10 Greener Chelating Agents 281
Nicholas J. Dixon
10.1 Introduction 281
10.2 Chelants 282
10.3 Common Chelants 284
10.3.1 Aminocarboxylates 284
10.3.2 Phosphonates 284
10.3.3 Carboxylates 285
10.4 Issues with Current Chelants 285
10.4.1 EDTA and DTPA 285
10.4.2 NTA 288
10.4.3 Phosphonates 288
10.4.4 Ecolabels 289
10.5 Green Design Part 1 – Search for Biodegradable Chelants 290
10.5.1 10th Principle of Green Chemistry: Design Chemicals and Products to Degrade After Use 290
10.5.2 Aminocarboxylate NTA Variants 291
10.5.3 Polysuccinates 291
10.5.3.1 Ethylenediaminedisuccinic Acid [(S,S)-EDDS] 291
10.5.3.2 Iminodisuccinic Acid (IDS) 293
10.6 Comparing Chelating Agents 293
10.6.1 Stability Constants 293
10.6.2 Selectivity 294
10.6.3 pH 295
10.6.4 Speciation Modeling 295
10.6.5 Comparison of Strengths and Weaknesses 296
10.6.6 Application Chemistry 298
10.7 Six Steps to Greener Design 299
10.7.1 2nd Principle of Green Chemistry: Design Safer Chemicals and Products 299
10.7.2 Step 1. What is the Role of the Incumbent Chemical in the Application? 299
10.7.3 Step 2. What Environmental and Regulatory Constraints Exist? 300
10.7.4 Step 3. What are the Performance and Cost Requirements? 300
10.7.5 Step 4. How Do the Properties of Alternatives Compare with the Incumbent? 301
10.7.6 Step 5. Can Combinations of “Greener” Chemicals Be Used? 301
10.7.7 Step 6. Choose Likely Solutions and Test in the Application 301
10.8 Case Study – Six Steps to Greener Chelants for Laundry 302
10.8.1 Step 1. Role of Incumbent Chelant 302
10.8.2 Step 2. Environmental and Regulatory Constraints 303
10.8.3 Step 3. Performance and Cost Requirements 303
10.8.4 Step 4. Comparison of Phosphonates with Biodegradable Chelants 303
10.8.5 Step 5. Combinations of Chelants 304
10.8.6 Step 6. Test in Application 304
10.9 Conclusion 305
10.10 Abbreviations 305

References 306

11 Improvements to the Environmental Performance of Synthetic-Based Drilling Muds 309
Sajida Bakhtyar and Marthe Monique Gagnon

11.1 Introduction 309
11.2 Drilling Mud Composition 310
11.2.1 Water or Saline Brine 311
11.2.2 Weighting Agent 311
11.2.3 Viscosifiers 311
11.2.4 Emulsifiers and Wetting Agents 311
11.2.5 Base Fluids/Oils 312
11.3 Characteristics and Biodegradability of SBFs 312
11.4 Case Study: Improvements in the Environmental Performance of Synthetic-Based Drilling Muds 314
11.4.1 Importance of Study 314
11.4.2 Origins of Drilling Muds and Emulsifiers 315
11.4.3 Aquatic Toxicity 315
11.4.3.1 Study Organism and Conditions 315
11.4.3.2 Biomarkers and Physiological Indices 316
11.4.3.3 Results 316
11.4.4 Biodegradation 321
11.4.5 Conclusions of Study 323
11.5 Conclusion 323
References 323

12 Biochemical Pesticides: Green Chemistry Designs by Nature 329
Russell S. Jones
12.1 Introduction 329
12.2 The Historical Path to Safer Pesticides 329
12.3 Reduced-Risk Conventional Pesticides 331
12.4 The Biopesticide Alternative: an Overview 331
12.5 Biochemical Pesticides 333
12.5.1 Natural Occurrence 333
12.5.2 Nontoxic Mode of Action Against the Target Pest 334
12.5.2.1 Plant Regulators 336
12.5.2.2 Semiochemicals 336
12.5.2.3 Biological Barriers 338
12.5.2.4 Induced Plant Resistance 338
12.5.3 History of Nontoxic Exposure to Humans and the Environment 340
12.6 Are Biochemical Pesticides the Wave of the Future? 340
12.7 Conclusion 343
12.8 Disclaimer 343
References 344

13 Property-Based Approaches to Design Rules for Reduced Toxicity 349
Adelina Voutchkova, Jakub Kostal, and Paul Anastas
13.1 Possible Approaches to Systematic Design Guidelines for Reduced Toxicity 349
13.2 Analogy with Medicinal Chemistry 354
13.3 Do Chemicals with Similar Toxicity Profiles Have Similar Physical/Chemical Properties? 356
13.4 Proposed Design Guidelines for Reduced Human Toxicity 358
13.4.1 Considerations for Reducing Human Absorption 358
13.4.1.1 Example: Reducing Carcinogenicity by Decreasing Oral Bioavailability 358
13.5 Using Property Guidelines to Design for Reducing Acute Aquatic Toxicity 362
13.6 Predicting the Physicochemical Properties and Attributes Needed for Developing Design Rules 365
13.6.1 Solvent-Related Properties 365
13.6.1.1 Hydrophobicity 365
13.6.1.2 Solubility 367
13.6.1.3 pK_a 367
13.6.2 Electronic Properties 368
 13.6.2.1 Orbital Energies 368
 13.6.2.2 Molecular Dipole Moment and Polarizability 369
 13.6.2.3 Molecular Surface Area 370
13.7 Conclusion 371
References 371

14 Reducing Carcinogenicity and Mutagenicity Through Mechanism-Based Molecular Design of Chemicals 375
 David Y. Lai and Yin-tak Woo
14.1 Introduction 375
14.2 Mechanisms of Chemical Carcinogenesis and Structure–Activity Relationship (SAR) 376
14.3 General Molecular Parameters Affecting the Carcinogenic and Mutagenic Potential of Chemicals 378
 14.3.1 Physicochemical Properties 379
 14.3.1.1 Molecular Weight 379
 14.3.1.2 Molecular Size and Shape 379
 14.3.1.3 Solubility 379
 14.3.1.4 Volatility 380
 14.3.2 Nature and Position of Substituents 381
 14.3.3 Molecular Flexibility, Polyfunctionality, and Spacing/Distance Between Reactive Groups 381
 14.3.4 Resonance Stabilization of the Electrophilic Metabolites 381
14.4 Specific Structural Criteria of Different Classes of Chemical Carcinogens and Mutagens 382
 14.4.1 Aromatic Amines and Azo Dyes/Pigments 383
 14.4.2 Polycyclic Aromatic Hydrocarbons (PAHs) 385
 14.4.3 N-Nitrosamines 386
 14.4.4 Hydrazo, Aliphatic Azo and Azoxy Compounds, and Arydialkyltriazenes 388
 14.4.5 Organophosphorus Compounds 388
 14.4.6 Carbamates 389
 14.4.7 Epoxides and Aziridines 390
 14.4.8 Lactones and Sultones 391
 14.4.9 Alkyl Esters of Moderately Strong and Strong Acids 391
 14.4.10 Haloalkanes and Substituted Haloalkanes 392
 14.4.11 N-Mustards and S-Mustards 393
 14.4.12 N-Nitrosamides 394
 14.4.13 Aldehydes and Substituted Aldehydes 395
 14.4.14 Michael Addition Acceptors 395
 14.4.15 Arylating Agents 396
 14.4.16 Acylating Agents and Isocyanates 396
 14.4.17 Organic Peroxides 397
 14.4.18 Quinones and Quinoid Compounds 397
14.5 Molecular Design of Chemicals of Low Carcinogenic and Mutagenic Potential

14.5.1 General Approaches

14.5.2 Specific Approaches

- **14.5.2.1 Aromatic Amines and Azo Dyes/Pigments**
- **14.5.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)**
- **14.5.2.3 N-Nitrosamines**
- **14.5.2.4 Hydrazo, Aliphatic Azo and Azoxy Compounds, and Aryldialkyltriazenes**
- **14.5.2.5 Organophosphorus Compounds**
- **14.5.2.6 Carbamates**
- **14.5.2.7 Epoxides and Aziridines (Ethilenimines)**
- **14.5.2.8 Lactones and Sultones**
- **14.5.2.9 Alkyl Esters of Moderately Strong and Strong Acids**
- **14.5.2.10 Haloalkanes and Substituted Haloalkanes**
- **14.5.2.11 N-Mustards and S-Mustards**
- **14.5.2.12 N-Nitrosamides**
- **14.5.2.13 Aldehydes and Substituted Aldehydes**
- **14.5.2.14 Michael Addition Acceptors**
- **14.5.2.15 Arylating Agents**
- **14.5.2.16 Acylating Agents and Isocyanates**
- **14.5.2.17 Organic Peroxides**
- **14.5.2.18 Quinones and Quinoid Compounds**

14.6 Conclusion

14.7 Disclaimer

15 Reducing Ecotoxicity

Keith R Solomon and Mark Hanson

15.1 Introduction to Key Aspects of Ecotoxicology

15.1.1 Protection Goals and Assessment Endpoints

15.1.2 Structure and Function in Ecosystems

15.1.3 Diversity of Sensitivity in Ecosystems

15.2 Environmental Fate and Pathways of Exposure to Chemicals in the Environment

15.2.1 Properties Affecting Bioavailability

15.2.2 Properties Affecting Bioconcentration and Biomagnification

15.2.3 Absorption, Distribution, Metabolism, and Excretion of Chemicals

15.2.4 Modeling Exposure

15.3 Mechanisms of Toxic Action

15.3.1 Properties Affecting Toxicity

15.3.2 Modeling Toxicity

15.4 Examples of Methods That Can Be Used in Designing Chemicals with Reduced Ecological Risks
15.4.1 Fluorinated Surfactants 425
15.4.2 Pesticides 426
15.4.2.1 Designing Pesticides for Lack of Persistence 427
15.4.2.2 Designing Specific Isomers to Reduce Risk in the Environment 429
15.4.2.3 Developing Pesticides That Are More Specific to the Target Organism 431
15.4.2.4 Ranking and Prioritizing Pesticides in Terms of Risk to the Environment 432
15.4.3 Pharmaceuticals 433
15.4.4 Macro- and Micro-Contaminants Produced During Manufacture 435
15.5 Overview, Conclusions, and the Path Forward 437
References 440

16 Designing for Non-Persistence 453
Philip H. Howard and Robert S. Boethling

16.1 Introduction 453
16.2 Finding Experimental Data 454
16.2.1 Chemical Identity 454
16.2.1.1 Discrete Substances 454
16.2.1.2 Ionic Substances 455
16.2.2 Database Resources for Chemical Design 456
16.2.2.1 CleanGredients® 459
16.2.2.2 UMBBD 459
16.2.2.3 Other Databases 460
16.2.3 AFAR: the Aggregated Fate Assessment Resource 460
16.3 Predicting Biodegradation from Chemical Structure 461
16.3.1 Rules of Thumb That Relate Chemical Structure and Biodegradability 461
16.3.2 Identifying Analogs and Using Them to Estimate Biodegradability 464
16.3.3 The BIOWIN and BioHCwin Models 465
16.3.4 Pathways and Their Prediction: UMBBD/PPS and CATABOL 466
16.3.4.1 CATABOL 466
16.3.4.2 UMB-BBD Pathway Prediction System 466
16.4 Predicting Chemical Hydrolysis 467
16.5 Predicting Atmospheric Degradation by Oxidation and Photolysis 469
16.6 Designing for Biodegradation I: Musk Fragrances Case Study 470
16.7 Designing for Biodegradation II: Biocides Case Study 472
16.8 Designing for Abiotic Degradation: Case Studies for Hydrolysis and Atmospheric Degradation 477
16.9 Conclusion 479
16.10 Disclaimer 479
Abbreviations 480
References 480
Reducing Physical Hazards: Encouraging Inherently Safer Production
Nicholas A. Ashford

17.1 Introduction
17.2 Factors Affecting the Safety of a Production System [1]
17.2.1 The Scale of Production
17.2.2 The Quantity of Hazardous Chemicals Involved
17.2.3 The Hazardousness of the Chemicals Involved
17.2.4 Batch Versus Continuous Processing
17.2.5 The Presence of High Pressures or Temperatures
17.2.6 Storage of Intermediates versus Closed-Loop Processing
17.2.7 Multi-Stream Versus Single-Stream Plants
17.3 Chemical Safety and Accident Prevention: Inherent Safety and Inherently Safer Production
17.4 Incentives, Barriers, and Opportunities for the Adoption of Inherently Safer Technology
17.5 Elements of an Inherently Safer Production Approach [2, 3]
17.5.1 Timing and Anticipation of Decisions to Adopt (or Develop) Inherent Safety
17.5.2 Life-Cycle Aspects
17.6 A Methodology for Inherently Safer Production

Interaction of Chemicals with the Endocrine System
Thomas G. Osimitz

18.1 Interaction with the Endocrine System
18.1.1 Introduction
18.1.2 Importance of SAR and QSAR in Understanding the Chemical Nature of Endocrine Active Chemicals
18.2 Estrogens
18.2.1 General
18.2.2 Features of the Natural Ligand E₂ That Contribute to ER Binding
18.2.3 Features of Xenobiotics That Contribute to ER Binding
18.2.4 Criteria for Binding With the Estradiol Template
18.2.5 Prediction of Potential ER Binding
18.2.5.1 Initial Filters
18.2.5.2 Structural Alerts
18.2.6 Predictive Approach for Priority Setting
18.2.6.1 Phase I: Rejection Filters
18.2.7 Alkylphenols
18.2.8 Polybrominated Diphenyl Ethers (PBDEs)
18.2.9 Phytoestrogens and Mycoestrogens
18.2.10 Hydroxylated Triphenylacrylonitrile Derivatives
18.3 Androgens
Contents

18.3.1 General 515
18.3.2 General Structure–Activity Relationships 515
18.4 Hypothalamic-Pituitary-Thyroid (HPT) Axis 516
18.4.1 General 516
18.4.2 General Structure–Activity Relationships 518
18.4.3 Brominated Flame Retardants 519
18.4.4 Monohydroxylated Polychlorinated Biphenyls (PCBs) 519
18.5 Endocrine Disruptor Data Development Efforts 519
18.6 Research Needs and Future 521
References 522

Index 525