Contents

Preface XV
List of Contributors XVII

1 Introduction 1
Rasmus Fehrmann, Marco Haumann, and Anders Riisager
1.1 A Century of Supported Liquids 1
1.2 Supported Ionic Liquids 2
1.3 Applications in Catalysis 5
1.4 Applications in Separation 5
1.5 Coating of Heterogeneous Catalysts 6
1.6 Monolayers of IL on Surfaces 7
1.7 Conclusion 7
References 8

Part I Concept and Building Blocks 11

2 Introducing Ionic Liquids 13
Tom Welton
2.1 Introduction 13
2.2 Preparation 13
2.3 Liquid Range 14
2.4 Structures 16
2.4.1 The Liquid/Solid Interface 17
2.4.2 The Liquid/Gas Interface 19
2.5 Physical Properties 20
2.5.1 The Liquid/Solid Interface 21
2.5.2 The Liquid/Gas Interface 21
2.5.3 Polarity 22
2.5.4 Chromatographic Measurements and the Abraham Model of Polarity 24
2.5.5 Infinite Dilution Activity Coefficients 24
2.6 Effects of Ionic Liquids on Chemical Reactions 26
2.7 Ionic Liquids as Process Solvents in Industry 29
2.8 Summary 30
References 31
Contents

3 **Porous Inorganic Materials as Potential Supports for Ionic Liquids** 37
Wilhelm Schwieger, Thangaraj Selvam, Michael Klumpp, and Martin Hartmann

3.1 Introduction 37
3.2 Porous Materials – an Overview 39
3.2.1 History 39
3.2.2 Pore Size 40
3.2.3 Structural Aspects 41
3.2.4 Chemistry 43
3.2.5 Synthesis 43
3.3 Silica-Based Materials – Amorphous 48
3.3.1 Silica Gels 48
3.3.2 Precipitated Silicas 49
3.3.3 Porous Glass 49
3.4 Layered Materials 51
3.5 Microporous Materials 52
3.5.1 Zeolites 52
3.5.2 AlPOs/SAPOs 54
3.5.3 Hierarchical Porosity in Zeolite Crystals 55
3.6 Ordered Mesoporous Materials 56
3.6.1 Silica-Based Classical Compounds 58
3.6.2 PMOs 60
3.6.3 Mesoporous Carbons 61
3.6.4 Other Mesoporous Oxides 61
3.6.5 Anodic Oxidized Materials 62
3.7 Structured Supports and Monolithic Materials 63
3.7.1 Monoliths with Hierarchical Porosity 64
3.7.2 Hierarchically Structured Reactors 65
3.8 Conclusions 66
References 66

4 **Synthetic Methodologies for Supported Ionic Liquid Materials** 75
Reinout Meijboom, Marco Haumann, Thomas E. Müller, and Normen Szesni

4.1 Introduction 75
4.2 Support Materials 76
4.3 Preparation Methods for Supported Ionic Liquids 77
4.3.1 Incipient Wetness Impregnation 77
4.3.2 Freeze-Drying 79
4.3.3 Spray Coating 80
4.3.4 Chemically Bound Ionic Liquids 82
4.3.5 IL–Silica Hybrid Materials 89
4.4 Summary 91
References 91
Part II Synthesis and Properties 95

5 Pore Volume and Surface Area of Supported Ionic Liquids Systems 97
Florian Heym, Christoph Kern, Johannes Thiessen, and Andreas Jess

5.1 Example I: [EMIM][NTf₂] on Porous Silica 98
5.2 Example II: SCILL Catalyst (Commercial Ni catalyst) Coated with [BMIM][OcSO₄] 99

Acknowledgments 103

Symbols 104
Abbreviations 104

References 104

6 Transport Phenomena, Evaporation, and Thermal Stability of Supported Ionic Liquids 105
Florian Heym, Christoph Kern, Johannes Thiessen, and Andreas Jess

6.1 Introduction 105
6.2 Diffusion of Gases and Liquids in ILs and Diffusivity of ILs in Gases 106

6.2.1 Diffusivity of Gases and Liquids in ILs 106
6.2.2 Diffusion Coefficient of Evaporated ILs in Gases 108

6.3 Thermal Stability and Vapor Pressure of Pure ILs 109

6.3.1 Drawbacks and Opportunities Regarding Stability and Vapor Pressure Measurements of ILs 109
6.3.2 Experimental Methods to Determine the Stability and Vapor Pressure of ILs 110

6.3.3 Data Evaluation and Modeling Methodology 110
6.3.3.1 Evaluation of Vapor Pressure and Decomposition of ILs by Ambient Pressure TG at Constant Heating Rate 110
6.3.3.2 Evaluation of Vapor Pressure of ILs by High Vacuum TG 114
6.3.4 Vapor Pressure Data and Kinetic Parameters of Decomposition of Pure ILs 116
6.3.4.1 Kinetic Data of Thermal Decomposition of Pure ILs 116
6.3.4.2 Vapor Pressure of Pure ILs 116

6.3.5 Guidelines to Determine the Volatility and Stability of ILs 118

6.3.6 Criteria for the Maximum Operation Temperature of ILs 118

6.3.6.1 Maximum Operation Temperature of ILs with Regard to Thermal Decomposition 118
6.3.6.2 Maximum Operation Temperature of ILs with Regard to Evaporation 120

6.4 Vapor Pressure and Thermal Decomposition of Supported ILs 120

6.4.1 Thermal Decomposition of Supported ILs 121
6.4.2 Mass Loss of Supported ILs by Evaporation 123
6.4.2.1 Evaporation of ILs Coated on Silica (SILP-System) 123
6.4.2.2 Evaporation of ILs Coated on a Ni-Catalyst (SCILL-System) 132
6.4.2.3 Evaluation of Internal Surface Area by the Evaporation Rate of Supported ILs 132
6.4.3 Criteria for the Maximum Operation Temperature of Supported ILs 134
6.4.3.1 Maximum Operation Temperature of Supported ILs with Regard to Thermal Stability 134
6.4.3.2 Maximum Operation Temperature of Supported ILs with Regard to Evaporation 135
6.5 Outlook 137
Acknowledgments 138
Symbols 138
Abbreviations 140
References 140

7 Ionic Liquids at the Gas–Liquid and Solid–Liquid Interface – Characterization and Properties 145
Zlata Grenoble and Steven Baldelli
7.1 Introduction 145
7.2 Characterization of Ionic Liquid Surfaces by Spectroscopic Techniques 146
7.2.1 Types of Interfacial Systems Involving Ionic Liquids 146
7.2.2 Overview of Surface Analytical Techniques for Characterization of Ionic Liquids 146
7.2.3 Structural and Orientational Analysis of Ionic Liquids at the Gas–Liquid Interface 147
7.2.3.1 Principles of Sum-Frequency Vibrational Spectroscopy 147
7.2.4 Cation-Specific Ionic Liquid Orientational Analysis 148
7.2.5 Anion-Specific Ionic Liquid Orientational Analysis 154
7.2.6 Ionic Liquid Interfacial Analysis by Other Surface-Specific Techniques 157
7.2.7 Ionic Liquid Effects on Surface Tension 162
7.2.8 Ionic Liquid Effects on Surface Charge Density 163
7.3 Orientation and Properties of Ionic Liquids at the Solid–Liquid Interface 165
7.3.1 Surface Orientational Analysis of Ionic Liquids on Dry Silica 165
7.3.2 Cation Orientational Analysis 166
7.3.3 Alkyl Chain Length Effects on Orientation 167
7.3.4 Competing Anions and Co-adsorption 168
7.3.5 Computational Simulations of Ionic Liquid on Silica 168
7.3.6 Ionic Liquids on Titania (TiO₂) 170
7.4 Comments 172
References 173

8 Spectroscopy on Supported Ionic Liquids 177
Peter S. Schulz
8.1 NMR-Spectroscopy 178
8.1.1 Spectroscopy of Support and IL 178
8.1.2 Spectroscopy of the Catalyst 183
8.2 IR Spectroscopy 186
References 189

9 A Priori Selection of the Type of Ionic Liquid 191
Wolfgang Arlt and Alexander Buchele
9.1 Introduction and Objective 191
9.2 Methods 191
9.2.1 Experimental Determination of Gas Solubilities 192
9.2.1.1 Magnetic Suspension Balance 192
9.2.1.2 Isochoric Solubility Cell 194
9.2.1.3 Inverse Gas Chromatography 195
9.2.2 Prediction of Gas Solubilities with COSMO-RS 196
9.2.3 Reaction Equilibrium and Reaction Kinetics 197
9.3 Usage of COSMO-RS to Predict Solubilities in IL 198
9.4 Results of Reaction Modeling 201
9.5 Perspectives of the A Priori Selection of ILs 202
References 205

Part III Catalytic Applications 209

10 Supported Ionic Liquids as Part of a Building-Block System for Tailored Catalysts 211
Thomas E. Müller
10.1 Introduction 211
10.2 Immobilized Catalysts 212
10.3 Supported Ionic Liquids 214
10.4 The Building Blocks 215
10.4.1 Ionic Liquid 215
10.4.2 Support 216
10.4.3 Catalytic Function 218
10.4.3.1 Type A1 – Task Specific IL 219
10.4.3.2 Type A2 – Immobilized Homogeneous Catalysts and Metal Nanoparticles 219
10.4.3.3 Type B – Heterogeneous Catalysts Coated with IL 221
10.4.3.4 Type C – Chemically Bound Monolayers of IL 221
10.4.4 Additives and Promoters 222
10.4.5 Preparation and Characterization of Catalysts Involving Supported ILs 222
10.5 Catalysis in Supported Thin Films of IL 222
10.6 Supported Films of IL in Catalysis 223
10.6.1 Hydrogenation Reactions 224
10.6.2 Hydroamination 225
10.7 Advantages and Drawbacks of the Concept 228
10.8 Conclusions 229
Acknowledgments 229
References 229

11 Coupling Reactions with Supported Ionic Liquid Catalysts 233
Zhenshan Hou and Buxing Han

11.1 Introduction 233
11.2 A Short History of Supported Ionic Liquids 234
11.3 Properties of SIL 234
11.4 Application of SIL in Coupling Reactions 235
11.4.1 C–C Coupling Reactions 235
11.4.1.1 Stille Cross Coupling Reactions 235
11.4.1.2 Friedel–Crafts Alkylation 235
11.4.1.3 Olefin Hydroformylation Reaction 236
11.4.1.4 Methanol Carbonylation 237
11.4.1.5 Suzuki Coupling Reactions 237
11.4.1.6 Heck Coupling Reactions 239
11.4.1.7 Diels–Alder Cycloaddition 241
11.4.1.8 Mukaiyama reaction 242
11.4.1.9 Biglinelli Reaction 242
11.4.1.10 Olefin Metathesis Reaction 243
11.4.2 C–N Coupling Reaction 243
11.4.2.1 Hydroamination 243
11.4.2.2 N-Arylation of N-Containing Heterocycles 244
11.4.2.3 Huisgen [3+2] Cycloaddition 244
11.4.3 Miscellaneous Coupling Reaction 244
11.5 Conclusion 246
References 246

12 Selective Hydrogenation for Fine Chemical Synthesis 251
Pasi Virtanen, Eero Salminen, Päivi Mäki-Arvela, and Jyri-Pekka Mikkola

12.1 Introduction 251
12.2 Selective Hydrogenation of α,β-Unsaturated Aldehydes 251
12.3 Asymmetric Hydrogenations over Chiral Metal Complexes Immobilized in SILCAs 257
12.4 Conclusions 261
References 261

13 Hydrogenation with Nanoparticles Using Supported Ionic Liquids 263
Jackson D. Scholten and Jairton Dupont

13.1 Introduction 263
13.2 MNPs Dispersed in ILs: Green Catalysts for Multiphase Reactions 264
13.3 MNPs Immobilized on Supported Ionic Liquids: Alternative Materials for Catalytic Reactions 267
13.4 Conclusions 275
References 275
14
Solid Catalysts with Ionic Liquid Layer (SCILL)
Wolfgang Korth and Andreas Jess
14.1
Introduction
14.2
Classification of Applications of Ionic Liquids in Heterogeneous
Catalysis
14.3
Preparation and Characterization of the Physical Properties of the
SCILL Systems
14.3.1
Preparation of SCILL Catalysts
14.3.2
Nernst Partition Coefficients
14.3.3
Pore Volume and Surface Area of the SCILL Catalyst with
[BMIM][OcSO4] as IL
14.4
Kinetic Studies with SCILL Catalysts
14.4.1
Experimental
14.4.2
Hydrogenation of 1,5-Cyclooctadiene (COD)
14.4.2.1
Reaction Steps of 1,5-COD Hydrogenation on the Investigated Ni
Catalyst
14.4.2.2
Influence of IL Coating of the Ni Catalyst on the Selectivity of COD
Hydrogenation
14.4.2.3
Influence of IL Coating of the Catalyst on the Rate of COD
Hydrogenation
14.4.2.4
Influence of Pore Diffusion on the Effective Rate of COD
Hydrogenation
14.4.2.5
Influence of Pore Diffusion on the Selectivity of COD
Hydrogenation
14.4.2.6
Stability of the IL Layer and Deactivation of IL-Coated
Catalyst
14.4.3
Hydrogenation of Octine, Ginnamaldehyde, and Naphthalene with
SCILL Catalysts
14.4.4
Hydrogenation of Citral with SCILL Catalysts
14.5
Conclusions and Outlook
Acknowledgments
Symbols Used
Greek Symbols
Abbreviations and Subscripts
References

15
**Supported Ionic Liquid Phase (SILP) Materials in Hydroformylation
Catalysis**
Andreas Schönweiz and Robert Franke
15.1
SILP Materials in Liquid-Phase Hydroformylation
Reactions
15.2
Gas-Phase SILP Hydroformylation Catalysis
15.3
SILP Combined with scCO2 – Extending the Substrate
Range
15.4
Continuous SILP Gas-Phase Methanol Carbonylation
15.5 Conclusion and Future Potential 323
References 324

16 Ultralow Temperature Water–Gas Shift Reaction Enabled by Supported Ionic Liquid Phase Catalysts 327
Sebastian Werner and Marco Haumann
16.1 Introduction to Water–Gas Shift Reaction 327
16.1.1 Heterogeneous WGS Catalysts 327
16.1.2 Homogeneous WGS Catalysts 329
16.2 Challenges 332
16.3 SILP Catalyst Development 332
16.4 Building-Block Optimization 333
16.4.1 Catalyst Precursor 334
16.4.2 Support Material 335
16.4.3 IL Variation 337
16.4.4 Catalyst Loading 338
16.4.5 IL Loading 339
16.4.6 Combination of Optimized Parameters 340
16.5 Application-Specific Testing 341
16.5.1 Restart Behavior 341
16.5.2 Industrial Support Materials 343
16.5.3 Elevated Pressure 345
16.5.4 Reformate Synthesis Gas Tests 346
16.6 Conclusion 348
References 348

17 Biocatalytic Processes Based on Supported Ionic Liquids 351
Eduardo García-Verdugo, Pedro Lozano, and Santiago V. Luis
17.1 Introduction and General Concepts 351
17.1.1 Enzymes and Ionic Liquids 351
17.1.2 Supported ILs for Biocatalytic Processes 353
17.1.3 Reactor Configurations with Supported ILs for Biocatalytic Processes 355
17.2 Biocatalysts Based on Supported Ionic Liquid Phases (SILPs) 356
17.3 Biocatalysts Based on Covalently Supported Ionic Liquid-Like Phases (SILLPs) 360
17.4 Conclusions/Future Trends and Perspectives 365
Acknowledgments 365
References 365

18 Supported Ionic Liquid Phase Catalysts with Supercritical Fluid Flow 369
Rubén Duque and David J. Cole-Hamilton
18.1 Introduction 369
18.2 SILP Catalysis 369
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2.1</td>
<td>Liquid-Phase Reactions</td>
<td>369</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Gas-Phase Reactions</td>
<td>370</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Supercritical Fluids</td>
<td>371</td>
</tr>
<tr>
<td>18.2.4</td>
<td>SCF IL Biphasic Systems</td>
<td>372</td>
</tr>
<tr>
<td>18.2.5</td>
<td>SILP Catalysis with Supercritical Flow</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>381</td>
</tr>
</tbody>
</table>

Part IV Special Applications 385

19 **Pharmacologically Active Supported Ionic Liquids** 387
O. Andreea Cajocaru, Amal Siriwardana, Gabriela Gurau, and Robin D. Rogers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Active Pharmaceutical Ingredients in Ionic Liquid Form</td>
</tr>
<tr>
<td>19.2</td>
<td>Solid-Supported Pharmaceuticals</td>
</tr>
<tr>
<td>19.3</td>
<td>Silica Materials for Drug Delivery</td>
</tr>
<tr>
<td>19.4</td>
<td>Factors That Influence the Loading and Release Rate of Drugs</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Adsorptive Properties (Pore Size, Surface Area, Pore Volume) of Mesoporous Materials</td>
</tr>
<tr>
<td>19.4.1.1</td>
<td>Pore Size</td>
</tr>
<tr>
<td>19.4.1.2</td>
<td>Surface Area</td>
</tr>
<tr>
<td>19.4.1.3</td>
<td>Pore Volume</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Surface Functionalization of Mesoporous materials</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Drug Loading Procedures</td>
</tr>
<tr>
<td>19.4.3.1</td>
<td>Covalent Attachment</td>
</tr>
<tr>
<td>19.4.3.2</td>
<td>Physical Trapping</td>
</tr>
<tr>
<td>19.4.3.3</td>
<td>Adsorption</td>
</tr>
<tr>
<td>19.5</td>
<td>SILPs Approach for Drug Delivery</td>
</tr>
<tr>
<td>19.5.1</td>
<td>ILs Confined on Silica</td>
</tr>
<tr>
<td>19.5.2</td>
<td>API-ILs Confined on Silica</td>
</tr>
<tr>
<td>19.5.2.1</td>
<td>Synthesis and Characterization of SILP Materials</td>
</tr>
<tr>
<td>19.5.2.2</td>
<td>Release Studies of the API-ILs from the SILP Materials</td>
</tr>
<tr>
<td>19.6</td>
<td>Conclusions</td>
</tr>
<tr>
<td>References</td>
<td>402</td>
</tr>
</tbody>
</table>

20 **Supported Protic Ionic Liquids in Polymer Membranes for Electrolytes of Nonhumidified Fuel Cells** 407
Tomohiro Yasuda and Masayoshi Watanabe

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>20.2</td>
<td>Protic ILs as Electrolytes for Fuel Cells</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Protic ILs</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Thermal Stability of Protic IL</td>
</tr>
<tr>
<td>20.2.3</td>
<td>PILs Preferable for Fuel Cell Applications</td>
</tr>
<tr>
<td>20.3</td>
<td>Membrane Fabrication Including PIL and Fuel Cell Operation</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Membrane Preparation</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Fuel Cell Operation Using Supported PILs in Membranes</td>
</tr>
<tr>
<td>20.4</td>
<td>Proton Conducting Mechanism during Fuel Cell Operation</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>20.5</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

21 Gas Separation Using Supported Ionic Liquids

Marco Haumann

<table>
<thead>
<tr>
<th>21.1</th>
<th>SILP Materials</th>
<th>419</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.1</td>
<td>SILP-Facilitated GC</td>
<td>423</td>
</tr>
<tr>
<td>21.2</td>
<td>Supported Ionic Liquid Membranes (SILMs)</td>
<td>428</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Gas Separation</td>
<td>429</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Gas Separation and Reaction</td>
<td>437</td>
</tr>
<tr>
<td>21.3</td>
<td>Conclusion</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>441</td>
</tr>
</tbody>
</table>

22 Ionic Liquids on Surfaces – a Plethora of Applications

Thomas J. S. Schubert

22.1	Introduction	445
22.2	The Influence of ILs on Solid-State Surfaces	445
22.3	Layers of ILs on Solid-State Surfaces	446
22.4	Selected Applications	446
22.5	Sensors	447
22.6	Electrochemical Double Layer Capacitors (Supercapacitors)	449
22.7	Dye Sensitized Solar Cells	451
22.8	Lubricants	452
22.9	Synthesis and Dispersions of Nanoparticles	453
	References	454

Part V Outlook

23 Outlook – the Technical Prospect of Supported Ionic Liquid Materials

Peter Wasserscheid

23.1	Competitive Advantage	460
23.2	Observability	462
23.3	Trialability	462
23.4	Compatibility	463
23.5	Complexity	463
23.6	Perceived Risk	464
	References	465

Index

467