Index

a

Abraham model of polarity and chromatographic measurements 24
active pharmaceutical ingredients (API) 387–388
– ionic liquids, confined on silica 396
– – release studies from SILP materials 399–402
– – silica gels 48–49
– – SILP materials synthesis and characterization 396–398
adsorption 39, 395–396
agglomeration 453
alkyl chain length effects on orientation 167
alkyl substituents 149–152
AlPOs/SAPOs 54–55
amorphous materials 41
– silica-based materials 41
– – porous glass 49–51
– – precipitated silicas 49
– – silica gels 48–49
angle-resolved X-ray photoelectron spectroscopy (ARXPS) 158, 159
anion-specific ionic liquid orientational analysis 154–157
anodic oxidized materials 62–63
applications
– in catalysis 4–5
– in separation 5–6
a priori selection, of ionic liquid type 191
– COSMO-RS usage for IL solubilities prediction 202–205
– methods 191–192
– – gas solubilities experimental determination 193–198
– – gas solubilities prediction with COSMO-RS 198–200
– – reaction equilibrium and reaction kinetics 200–202
– perspective 204–205
– reaction modeling results 205
aprotic ionic liquids 409
asymmetric hydrogenations over chiral metal complexes immobilized in SILCAs 257–261
atomic force microscopy (AFM) 172, 446

b

BASF SE BASIL™ process 29
BET analysis 98–101, 128–129, 131, 133–134
Biglinelli reaction 242–243
biocatalytic processes
– based on covalently supported ionic liquid-like phases (SILLPs) 360–364
– based on supported ionic liquid phases (SILPs) 356–360
– enzymes and ionic liquids 351–353
– future trends and perspectives 365
– reactor configurations with supported ILS 355
– supported ILS 353–355
biphasic micellar systems 39
bite angle effect 311
breakthrough time 419, 420
broadband dielectric spectroscopy (BDS) 181
Brønsted acid 55
bulk fluid 212–214

c

Carman–Kozeny correlation 343
Carr–Purcell–Meiboom–Gill (CPMG) 179 catalysts 211
– advantages and drawbacks of supported ionic liquids as part of building-block system 228

Edited by Rasmus Fehrmann, Anders Riisager, and Marco Haumann.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
catalysts (contd.)
- building blocks
 - – additives and promoters 222
 - – catalysts preparation and characterization involving supported ILs 222
 - – catalytic function 218–222
 - – ionic liquid 215–216
 - – support 216–218
 - – building blocks 211
- immobilized catalysts 212–214
- and supported films of IL 223
- – hydroamination 225
- – hydrogenation reactions 224
- – supported ionic liquids 214–215
- in supported thin films of IL 222–223
cation orientational analysis 166–167
cation-specific ionic liquid orientational analysis 148
C–C coupling reactions
- Biglinelli reaction 242–243
- Diels–Alder cycloaddition 241–242
- Friedel–Crafts alkylation 235–236
- Heck coupling reactions 239–241
- methanol carbonylation 237
- Mukaiyama reaction 242
- olefin hydroformylation reaction 236–237
- olefin metathesis reaction 243
- Stille cross coupling reactions 235
- Suzuki coupling reactions 237–239
checkerboard structures 19
chemically bound ionic liquids 82–88
- IL–silica hybrid materials 89–91
chemically bound monolayers, of IL 221–222
chemical reaction and effects of ionic liquids 26–29
chemisorption 75
chloride reservoir 338
citral hydrogenation 251–252, 298–299
click chemistry 244
C–N coupling reaction
- Huisgen [3+2] cycloaddition 244
- hydromination 243
- N-arylation of N-containing heterocycles 244
e-caprolactam 30
cocatalytic effect 281
derivative thermogravimetry (DTG) 113
designer solvents 20
designer surfaces 3
Diels–Alder cycloaddition 241–242
- reaction 27
diffusion coefficient of evaporated ILs in gases 108–109
diffusion of innovation 460, 465
diffusivity of gases and liquids 106–108
du Nouy ring 163
dye sensitized solar cells (DSSCs) 448, 451–452
dynamic kinetic resolution (DKR) 358–359, 361, 363
diffusion of innovation 460, 465
diffusivity of gases and liquids 106–108
du Nouy ring 163
dye sensitized solar cells (DSSCs) 448, 451–452
dynamic kinetic resolution (DKR) 358–359, 361, 363
educational diffusion of innovation 460, 465
diffusivity of gases and liquids 106–108
Du Nouy ring 163
dye sensitized solar cells (DSSCs) 448, 451–452
dynamic kinetic resolution (DKR) 358–359, 361, 363
effusion
- from face surface of sample 127–132
- from silica particles external surface 124–125
electrical double layer (EDL) 165
electrochemical double layer capacitors (EDLCs) (supercapacitors) 449–450
electrochemical impedance spectroscopy (EIS) 165
[EMIM][NTf₂] on porous silica 98–99
energetic ionic liquids (EILs) 387
energy dispersive X-ray spectroscopy (EDX) 343
epoxidation 370, 375–377
Ergun correlation 343
evaporation of ILs
 – coated on Ni-catalyst (SCILL-system) 132
 – coated on silica (SILP-system) 123–131
ex situ coating 65
extended X-ray absorption fine structure (EXAFS) 237
freeze-drying 79–80
Friedel–Crafts alkylation 235–236
FSM-16 (folded sheet materials) 58
gas separation 419
 – SILP materials 419–428
 – supported liquid/liquid membranes (SILMs) 428–429
 – – gas separation 429–435
 – – gas separation and reaction 435, 437–440
gauche defects 150–152, 167, 171
green catalysts for multiphase reactions 264–267
green solvents 13
Grubbs–Hoveyda catalyst 380
Haber–Bosch process 327, 332
Heck coupling reactions 239–241
heterogeneous catalysts 212, 219, 369
 – coated with IL 221
 – water–gas shift (WGS) reaction 327–329
hexagonal mesoporous silica (HMS) 59
hierarchy porosity in crystals 55–56
high-resolution electron energy loss
 spectroscopy (HREELS) 160
high-resolution Rutherford backscattering (HRBS) 161
historical development 2
HMS materials 391
homogeneous catalysts 4–5, 211, 213, 234, 369
 – and metal nanoparticles 219–221
 – coating 6
 – water–gas shift (WGS) reaction 329–332
Hughes–Ingold rules 28
Huisgen [3+2] cycloaddition 244
hydroamination 225, 243
hydrodesulfurization (HDS) 419
hydroformylation 179, 183, 186, 307
 – continuous SILP gas-phase methanol
 carboxylation 322–323
 – future potential 323–324
 – gas-phase SILP hydroformylation catalysis 311–319
 – SILP combined with scCO₂ 319–322
 – SILP materials in liquid-phase
 hydroformylation reactions 307–310
 – – pore size 391–392
 – – pore volume 392
 – – surface area 392
hydrogen oxidation reaction (HOR) 407, 409, 417
hydrogenation reactions 224
ibuprofen 392–393, 395
imidazolium-based ionic liquids 152–153, 166
immobilized catalysts 212–214
incipient wetness impregnation 77–79, 395
infinite dilution activity coefficients 24–26
infrared (IR) spectroscopy 177, 186–189
in situ coating 65
interfacial analysis (ionic liquids) 157–162
International Zeolite Association (IZA) 52
inverse gas chromatography (IGC) 197–198
isochoric solubility cell (ISC) 195–197
IUPAC 40, 41, 202
Kelvin equation 131
Kelvin probe 164
KIT-5 59
KIT-6 60
Knudsen diffusion, in fixed bed of crucible 126
layered materials 51
linear solvation energy relationships (LSERs) 28–29
liquid range 14–16
liquid/gas interface 19–22
liquid/solid interface 17–19, 21
lubricants 452–453
magnetic suspension balance (MSB) 193–195
MCM materials 58
mesocellular foams (MCFs) 59
mesopores 98–103
mesoporous carbons 61
mesoporous materials 76, 83, 86, 89–91, 389
– adsorptive materials 76
– surface functionalization 392–394
mesoporous materials (ordered) 56
– anodic oxidized materials 62–63
– mesoporous carbons 61
– mesoporous oxides 61–62
– periodic mesoporous organosilicates (PMOs) 60
– silica-based classical compounds 58–60
mesoporous oxides 61–62
metal nanoparticles (MNP)s 219–221, 263–264, 272–273
– dispersed in ionic liquids 264–267
– immobilized on supported ionic liquids 267–275
metal oxide–ionic liquid interface 165
metal-organic framework materials (MOFs) 37
mesoporous materials 76, 83, 86, 89–91, 389
– adsorptive materials 76
– surface functionalization 392–394
mesoporous materials (ordered) 56
– anodic oxidized materials 62–63
– mesoporous carbons 61
– mesoporous oxides 61–62
– periodic mesoporous organosilicates (PMOs) 60
– silica-based classical compounds 58–60
mesoporous oxides 61–62
metal nanoparticles (MNP)s 219–221, 263–264, 272–273
– dispersed in ionic liquids 264–267
– immobilized on supported ionic liquids 267–275
metal oxide–ionic liquid interface 165
metal-organic framework materials (MOFs) 37
mesoporous materials 76, 83, 86, 89–91, 389
– adsorptive materials 76
– surface functionalization 392–394
mesoporous materials (ordered) 56
– anodic oxidized materials 62–63
– mesoporous carbons 61
– mesoporous oxides 61–62
– periodic mesoporous organosilicates (PMOs) 60
– silica-based classical compounds 58–60
mesoporous oxides 61–62
metal nanoparticles (MNP)s 219–221, 263–264, 272–273
– dispersed in ionic liquids 264–267
– immobilized on supported ionic liquids 267–275
metal oxide–ionic liquid interface 165
metal-organic framework materials (MOFs) 37
metastable ion impact spectroscopy (MIES) 160–161
methanol carbonylation 237
mica–ionic liquid interface 172
microporous materials
 – AlPOs/SAPOs 54–55
 – hierarchy porosity in zeolite crystals 55–56
 – zeolites 52–54
Mizoroki–Heck reactions 239–241
Mobil Research and Development Corporation 58
monolayers of ionic liquids, on surfaces 6
monolithic glass scaffolds 50
monolithic materials and structured supports 63
 – hierarchically structured reactors 65
 – monoliths with hierarchical porosity 64–65
Mukaiyama reaction 242
multiwalled carbon nanotubes (MWCNT)s 86

N-arlyation of N-containing heterocycles 244
nanoparticles synthesis and dispersions 453–454
Nernst partition coefficients 284–286
nuclear magnetic resonance (NMR) spectroscopy 78–79, 177, 237
 – of catalyst 183–186
 – of support and IL 178–183

o
octine, cinnamaldehyde, and naphthalene hydrogenation 297
olefin hydroformylation reaction 236–237
olefin metathesis reaction 243
onset temperature 109
organosilica 83, 84, 89, 91
oxygen reduction reaction (ORR) 407, 409, 415

p
palladium metal nanoparticles system 270, 272–274
periodic mesoporous organosilicates (PMOs) 60
pharmaceutically active supported ionic liquids
 – active pharmaceutical ingredients (API) 387–388
 – factors influencing loading and release of drugs 391
 – adsorptive properties of mesoporous materials 391–392
 – drug loading procedures 394–395
 – surface functionalization of mesoporous materials 392–394
 – silica materials for drug delivery 389–391
 – API-ILs confined on silica 396–402
 – ILs confined on silica 395–396
 – solid-supported pharmaceuticals 389
 – phase transfer 264
 – physical properties 20–21
 – chromatographic measurements and Abraham model of polarity 24
 – infinite dilution activity coefficients 24–26
 – liquid/gas interface 21–22
 – liquid/solid interface 21
 – polarity 22–24
 – physical solvent effect 281, 285
 – physical trapping and drug molecules 394
 – physicochemical characteristics 3, 177, 186, 188, 189
 – physiosorption 75, 77, 91
 – polarization null angle (PNA) measurement 156–157
 – polymer electrolyte fuel cells (PEFCs) 407, 411
 – polymer electrolyte membrane (PEM) 407, 411
 – polymer membranes for electrolytes of nonhumidified fuel cells 407–408
 – protic ILs 409
 – membrane preparation 411–414
 – preferable for fuel cell applications 411
– thermal stability 410–411
– proton conducting mechanism during fuel cell operation 415–417
polymer-supported ionic liquid (PSIL) 242
polyethylene-divinylbenzene (PS-DVB) 355, 360, 361
pore diffusion
– effect 297
– influence on COD hydrogenation selectivity 295–297
– influence on effective rate of COD hydrogenation 293–295
pore volume and surface area, of supported ionic liquid systems 97–98
– [EMIM][NTf2] on porous silica 98–99
porous glass 49–51
porous materials 37–38
– chemistry 43
– history 39–40
– layered materials 51
– AlPOs/SAPOs 54–55
– hierarchy porosity in zeolite crystals 55–56
– zeolites 52–54
– microporous materials 37
– ordered mesoporous materials 56
– anodic oxidized materials 62–63
– mesoporous carbons 61
– mesoporous oxides 61–62
– periodic mesoporous organosilicates (PMOs) 60
– silica-based classical compounds 58–60
– pore size 40–41
– porous glass 49–51
– precipitated silicas 49
– silica gels 48–49
– silica-based amorphous materials 37
– structured supports and monolithic materials 63
– hierarchically structured reactors 65
– monoliths with hierarchical porosity 64–65
precipitated silicas 49
preferential oxidation (PROX) 327
preparation, of ionic liquids 13–14
pressure swing adsorption (PSA) 327
process solvents 29–30
protic ILs 409
– fuel cell operation using supported PILs in membranes 414
– membrane preparation 411–414
– preferable for fuel cell applications 411
– thermal stability 410–411
pulsed field gradient (PFG) NMR measurements 181
pulsed-gradient spin-echo (PGSE) NMR technique 415
pyrene 23
q
quantitative structure–property relationships (QSPR) 15, 25
r
ranitidine 388
reformate synthesis gas tests 346–348
Rutherford backscattering (RBS) 161
ryoporometry 179
s
SBA materials
– SBA-15 materials 391
scanning electron microscopy (SEM) 80, 343
– energy dispersive X-ray spectroscopy (SEM-EDX) 343
scCO2 372, 375, 377, 379–380
selective hydrogenation 251
– asymmetric hydrogenations over chiral metal complexes immobilized in SILCAs 257–261
– of α,β-unsaturated aldehydes 251–257
sensors 447–448
silica gels 48–49
silica surfaces 172
silica-based amorphous materials
– porous glass 49–51
– precipitated silicas 49
– silica gels 48–49
– silica-based classical compounds 58–60
solid catalyst with ionic liquid layer (SCILL) system 6, 188
– evaporation of ILs coated on Ni-catalyst 132
solid catalysts with ionic liquid layer (SCILL) 279
– ionic liquids application classification in heterogeneous catalysis 280–282
– 1,5-cyclooctadiene (COD) hydrogenation 288–297
– citral hydrogenation 298–299
– experimental 287–288
– octine, cinnamaldehyde, and naphthalene hydrogenation 297
solid catalysts with ionic liquid layer (SCILL) (contd.)
 – kinetic studies 279
 – Nernst partition coefficients 284–286
 – pore volume and surface area with
 [BMIM][OcSO₄] as IL 287
 – preparation of catalysts 283–284
solid-supported pharmaceuticals 389
solid–liquid interface
 – alkyl chain length effects on orientation
 167
 – cation orientational analysis 166–167
 – competing anions and co-adsorption 168
 – computational simulation on silica
 168–170
ionic liquids surface orientational analysis
 – on dry silica 165–166
 – titania (TiO₂) structures 170–172
sour gas-shift catalysts 328
spectroscopic techniques and ionic liquids
 characterization
 – anion-specific ionic liquid orientational
 analysis 154–157
 – cation-specific ionic liquid orientational
 analysis 148
 – interfacial system types 146
 – ionic liquid interfacial analysis 157–162
 – sum-frequency generation (SFG) vibrational
 spectroscopy 147–148
 – surface analytical techniques 146–147
 – surface charge density 163–165
 – surface tension 162–163
spectroscopy, on supported ionic liquids 177
 – IR spectroscopy 186–189
 – of catalyst 183–186
 – of support and IL 178–183
 – NMR spectroscopy 177
spray coating 80–81
sputtering deposition 264
Stille cross coupling reactions 235
structures 16–17
 – liquid/gas interface 19–20
 – liquid/solid interface 17–19
 – gas-phase reactions 370–371
 – liquid-phase reactions 369–370
 – SCF IL biphasic systems 372–376
 – SILP catalysis with supercritical flow
 376–380
sulfonated polyimide (SPI) 412–414, 418
sum-frequency generation (SFG) vibrational
 spectroscopy 147–154, 156–159, 162, 164,
 167, 170, 171
supercritical fluids (SCFs) 352, 355–356,
 371–372
 – SILP catalysis 352
 – supported aqueous phase (SAP) 1
 – supported liquid phase (SLP) 1
 – surface analytical techniques 146–147
 – surface charge density 163–165
 – surface potential 164
 – surface tension
 – anion effects 163
 – data 163
 – lowering trends 162–163
 – measurements 162–163
surfaces 445
 – dry sensitized solar cells (DSSCs) 451–452
 – electrochemical double layer capacitors
 (EDLCs) (supercapacitors) 449–450
 – ionic liquid influence on solid-state surfaces
 445
 – ionic liquid layers on solid-state surfaces
 446
 – lubricants 452–453
 – nanoparticles synthesis and dispersions
 453–454
 – selected applications 446
 – sensors 447–448
Suzuki coupling reactions 237–239
SYLOID® 49
synthetic methodologies 75
 – chemically bound ionic liquids 82–88
 – IL–silica hybrid materials 89–91
 – support materials 76–77
 – supported ionic liquids preparation methods
 77
 – freezedrying 79–80
 – incipient wetness impregnation 77–79
 – spray coating 80–81
t
 – technical prospects, of supported ionic liquid
 materials 459–460
 – compatibility 463
 – competitive advantage 460–462
 – complexity 463–464
 – observability 462
 – perceived risk 464
 – trialability 462
thermal decomposition 121–123
thermal stability and vapor pressure
 – data evaluation and modeling methodology
 110–115
 – drawbacks and opportunities regarding
 measurements 109–110
 – experimental methods 110
 – maximum operation temperature criteria
 118–120
<table>
<thead>
<tr>
<th>Index</th>
<th>473</th>
</tr>
</thead>
<tbody>
<tr>
<td>ultra-high vacuum (UHV) techniques</td>
<td>146–147, 157, 162, 172</td>
</tr>
<tr>
<td>ultraviolet photoelectron spectroscopy (UPS)</td>
<td>160, 161</td>
</tr>
<tr>
<td>α, β-unsaturated aldehydes selective hydrogenation</td>
<td>251–257</td>
</tr>
<tr>
<td>vapor pressure data and kinetic parameters of decomposition</td>
<td>116</td>
</tr>
<tr>
<td>volatility and stability determination guidelines</td>
<td>117–118</td>
</tr>
<tr>
<td>thermogravimetric analysis (TGA)</td>
<td>105, 109–110, 113, 115, 119</td>
</tr>
<tr>
<td>tiglic acid hydrogenation</td>
<td>375</td>
</tr>
<tr>
<td>tilt angles</td>
<td>148–150, 153–157, 166–168</td>
</tr>
<tr>
<td>titania (TiO$_2$) structures</td>
<td>170–172</td>
</tr>
<tr>
<td>transmembrane pressure</td>
<td>432–433, 435, 439</td>
</tr>
<tr>
<td>transport phenomena, evaporation, and thermal stability</td>
<td>105–106</td>
</tr>
<tr>
<td>– diffusion coefficient of evaporated ILs in gases</td>
<td>108–109</td>
</tr>
<tr>
<td>– diffusivity of gases and liquids</td>
<td>106–108</td>
</tr>
<tr>
<td>– evaporation of ILs coated on Ni-catalyst (SCILL-system)</td>
<td>132</td>
</tr>
<tr>
<td>– evaporation of ILs coated on silica (SILP-system)</td>
<td>123–131</td>
</tr>
<tr>
<td>– internal surface area evaluation</td>
<td>133–135</td>
</tr>
<tr>
<td>– with regard to evaporation</td>
<td>136</td>
</tr>
<tr>
<td>– with regard to thermal stability</td>
<td>135–136</td>
</tr>
<tr>
<td>– maximum operation temperature</td>
<td>105</td>
</tr>
<tr>
<td>– thermal decomposition</td>
<td>121–123</td>
</tr>
<tr>
<td>– data evaluation and modeling methodology</td>
<td>110–115</td>
</tr>
<tr>
<td>– drawbacks and opportunities regarding measurements</td>
<td>109–110</td>
</tr>
<tr>
<td>– experimental methods</td>
<td>110</td>
</tr>
<tr>
<td>– maximum operation temperature criteria</td>
<td>118–120</td>
</tr>
<tr>
<td>– vapor pressure data and kinetic parameters of decomposition</td>
<td>116</td>
</tr>
<tr>
<td>– volatility and stability determination guidelines</td>
<td>117–118</td>
</tr>
<tr>
<td>– thermal stability and vapor pressure</td>
<td>105</td>
</tr>
<tr>
<td>vapor–liquid equilibria (VLE)</td>
<td>25–26</td>
</tr>
<tr>
<td>vibrating plate method</td>
<td>164</td>
</tr>
<tr>
<td>vinyl propionate and citronellol transesterification reaction</td>
<td>380</td>
</tr>
<tr>
<td>volatile organic compound (VOC)</td>
<td>352</td>
</tr>
<tr>
<td>volume drop “method and surfaced tension measurements</td>
<td>162–163</td>
</tr>
<tr>
<td>Vycor porous glass (VPG)</td>
<td>50–51</td>
</tr>
<tr>
<td>water–gas shift (WGS) reaction</td>
<td>327</td>
</tr>
<tr>
<td>– application-specific testing</td>
<td>341</td>
</tr>
<tr>
<td>– – elevated pressure</td>
<td>345</td>
</tr>
<tr>
<td>– – industrial support materials</td>
<td>343–345</td>
</tr>
<tr>
<td>– – reformate synthesis gas tests</td>
<td>346–348</td>
</tr>
<tr>
<td>– – restart behavior</td>
<td>341–343</td>
</tr>
<tr>
<td>– – building-block optimization</td>
<td>333</td>
</tr>
<tr>
<td>– – catalyst loading</td>
<td>338–339</td>
</tr>
<tr>
<td>– – catalyst precursor</td>
<td>334–335</td>
</tr>
<tr>
<td>– – IL loading</td>
<td>339–340</td>
</tr>
<tr>
<td>– – IL variation</td>
<td>337–338</td>
</tr>
<tr>
<td>– – optimized parameters combination</td>
<td>340–341</td>
</tr>
<tr>
<td>– – support material</td>
<td>335–336</td>
</tr>
<tr>
<td>– challenges</td>
<td>332</td>
</tr>
<tr>
<td>– heterogeneous catalysts</td>
<td>327–329</td>
</tr>
<tr>
<td>– homogeneous catalysts</td>
<td>329–332</td>
</tr>
<tr>
<td>– SILP catalyst development</td>
<td>332–333</td>
</tr>
<tr>
<td>Wilke–Chang equation</td>
<td>106–107</td>
</tr>
<tr>
<td>X-ray diffraction (XRD)</td>
<td>177, 258</td>
</tr>
<tr>
<td>X-ray photoemission spectroscopy (XPS)</td>
<td>19, 158–162, 299</td>
</tr>
<tr>
<td>X-ray reflectivity</td>
<td>162</td>
</tr>
<tr>
<td>– surface analysis</td>
<td>157–158</td>
</tr>
<tr>
<td>zeolites</td>
<td>52–54</td>
</tr>
</tbody>
</table>