Index

Note: Page numbers with italicized f’s and t’s refer to figures and tables, respectively.

Ablatherm®, 107–8
ablation, focal
 brachytherapy, 127–9
cryoablation, 87–96
external beam irradiation, 130
focal salvage cryoablation, 88–104
image registration, 132–40
photodynamic therapy, 114–24
radiation, 126–30
real-time feedback, 154–6
verification, 156
Accuracy, 130
active surveillance, 5–6
aminolevulinic acid (ALA), 117, 119, 123
anterior hockey stick, 95
anticoagulation, 92
apparent diffusion coefficient (ADC), 66, 68, 70–71, 77
argon gas, 88
Arnott, James, 87
ASTRO criteria, 94
Barzell zones, modified, 42, 45
bevel tracking, 42
biochemical disease free status (bDFS), 102–3, 147
biomolecular imaging, 75–83
11C-choline PET, 80–81
18F-FDHT PET, 81
18F-fluoride PET, 81–2
lymphotropic superparamagnetic nanoparticle-enhanced MRI, 79–80
magnetic resonance imaging-based, 76–8
positron-emitted tomography, 78–9
PSMA-PET, 81
biopsies, 39–45
before focal salvage cryoablation, 99–100
image registration, 137–8
specimen organization in, 43f
transperineal, 34, 40–45
transrectal saturation, 40
transrectal systematic, 39–40
transrectal ultrasound, 33–4
B-mode ultrasound, 47
brachytherapy, 127–9
cost of, 5
dose, 128
high dose rate, 127, 129
low dose rate, 127–8
minimally invasive techniques in, 6–7
rapid dose fall-off in, 127
b-values, 68
calcification, 107
calcium chloride brine, 87
cancer therapy, 3–7. See also focal therapy
 conservative management in, 5–6
 cost of, 5
 goals of, 3
 minimally invasive therapies, 4, 6–7
 morbidity associated with, 4
 overtreatment in, 5
 surveillance in, 5–6
 therapeutic dilemma in, 4–5
candidates. See also selection criteria
 high-risk, 31–2
 low-risk, 31–2
 selection of, 34
CaPSURE database, 4–5
11C-choline, 79
11C-choline positron-emitted tomography, 80–81
cell death, 107, 115
choice of treatment, 11–16
competency of healthcare system, 14
decision-making process, 14–15
degression of decisions, 14
process issues, 13–14
and quality of life, 13
side effects vs. efficacy, 11–13
citrate, 76
clonality, 25–6
computer-aided diagnosis (CAD), 59
contrast agents, 49–50
contrast-enhanced ultrasound (CEUS), 49–50
Cooper, Irving, 87–8
costs of treatment, 5
cryoaugmentation, 87–96. See also focal ablation
complications, 98, 99:
direct cellular injury in, 91–2
eyearly techniques, 87
focal salvage, 98–104
hypothermia in, 92
organ-preserving, 92–6
partial, 98
real-time feedback, 154–6
second generation, 88
subtotal prostate parenchyma-sparing, 20
third generation, 88–9
tissue injuries in, 89–92
vascular injury in, 91–2
cryobiology, 89–92
cryogens, 87
Cryomedical Sciences, 88
cryoprobes, 88–9, 90–1, 101
cryotherapy, 6–7
appearances after, 159
cost of, 5
curves (semiquantitative) analysis, 58–9
CyberKnife™, 130
cytoplasm, supercooling of, 91
decision, delegation of, 14
dehydration
osmotic, 91
perivascular cellular, 92
Denonvilliers’ fascia, 101
diagnostic ultrasound, 106
diffusion-weighted MRI, 66–73
analysis, 69–70
apparent diffusion coefficient, 71, 77
hardware, 69
histological correlates, 70–71
imaging sequences, 66–8
tumor detection, 71–2
direct cellular injury, 91–2
Doppler ultrasound, 49–50
dynamic contrast-enhanced MRI, 55–64, 76–8
accuracy, 61–3
cancer size, 62–3
curves (semiquantitative) analysis, 58–9
enhancement analysis, 58
pathophysiologic basis, 56–8
prebiopsy MRI, 60
protocol, 60–61
quantitative analysis, 59–60
tissue necrosis efficiency, 64
tumor mapping, 61
visual (qualitative) analysis, 58
echo planar imaging (EPI), 66–9
echo time, 68
efficacy of treatment, 11–13
elastography, 48–9
European Randomized Study of Screening for
Prostate Cancer (ERSPC), 5
external beam irradiation, 130
extravascular extracellular space (EES), 56–7
2-18F-2-deoxy-D-glucose (FDG), 78–9
feature-based registration, 135–6
feromoxtran-10, 79
18F-fluoride PET, 81–2
18F-fluorine, 79
fibroblast growth factor, 92
finite element model (FEM), 136
focal ablation
brachytherapy, 127–9
cryotherapy, 87–96
eexternal beam irradiation, 130
focal salvage cryoablation, 88–104
image registration, 132–40
photodynamic therapy, 114–24
radiation, 126–30
real-time feedback, 154–6
verification, 156
focal salvage cryoablation, 98–104
complications, 103
freeze-thaw cycles, 101–2
metastatic work-up, 100–101
oncological effect, 102–3
operative technique, 101–2
patient selection, 99–101
preoperative evaluation, 99–101
prostate biopsy, 99–100
prostate-specific antigen, 99
focal therapy, 33–5
candidates for, 31–2
cure vs. control in, 32–3
definition of, 7
detection after focal therapy, 71–2
follow-up protocols, 146t
future perspectives, 170–77
goals of, 30–31
curative intent, 30
disease control, 30–31
noncurative intent, 31
high-intensity focused ultrasound in, 110–12
index lesion, 32–3
mapping methods, 33–5
imaging, 34–5
transperineal biopsy, 34
TRUS biopsy, 33–4
prolonging natural history of disease in, 30–31
randomized controlled trials (RCTs), 170–77
selection criteria, 29–35
strategies, 8
success of, 145–52
biochemical recurrence, 146–9
follow-up strategy, 150–51
Index

181

histological local recurrence, 149–50
imaging, 153–68

targeted focal, 95

tumor detection after, 71–2
vs. whole-gland therapy, 7–9
follow-up, 150–51

Gleason score, 18, 33, 94, 128
goals, of focal therapy
curative intent, 30
disease control, 30–31
noncurative intent, 31
prolonging natural history of disease, 30–31
gradient recalled echo (GRE), 60–61
healthcare system, competency of, 14
heat-sink effect, 107
hematoporphyrin derivative (HpD), 117, 122

tumor, 122
hemiacblation, 18, 95
hemiacblative therapy (HAT), 29
high dose rate (HDR) brachytherapy, 102, 127, 129
high-intensity focused ultrasound (HIFU), 7, 106–12
Ablatherm®, 107–8
calcification in, 107
cell death in, 107
devices, 107–10
in focal therapy, 110–12
frequencies, 106
heat-sink effect, 107
of necrotic tissues, 159
physical properties of ultrasound, 106–7
pulse delivery in, 110
Sonablate®, 109–10
temperatures, 107
volume of ablation, 106–7
high-risk candidates, 31–2
histological local recurrence, 149–50
Histoscanning™, 35, 50–52
hockey-stick ablation, 20
hyoscine butylbromide, 69
hypothermia, 92
ice probes, 88–9
IDEAL guidelines, 170
image fusion, 132–3
image registration, 132–40. See also focal ablation
accuracy validation, 138–9
applications, 137–8
definition of, 132

dissection-based, 135–6
future work, 140
vs. image fusion, 132–3
intensity-based, 136
in interventions, 137–8
non-rigid, 135
practical aspects, 134–7
in prostate biopsy, 137–8
source image, 134
target image, 134
target registration errors, 139
imaging, 153–68
in cancer mapping, 34–5
detection of residual disease, 165–6
early assessment of necrosis, 156
histological correlation, 166–7
magnetic resonance, 157–64
real-time feedback, 154–6
recurrence monitoring, 165–6
ultrasound, 156–7
impotence, 103
index lesion, 32–3
index tumor, 20–25
inertial cavitation, 107
intensity-based registration, 136
interleukin-8, 92
iodine-125, 127
Joule-Thomson effect, 88
ksp, 75–83
Kohonen maps, 51
Ktrans, 75–83
Lee, Arnold, 87
lesion-ablative therapy (LAT), 29
localization of cancer. See also focal ablation
biopsies, 39–45
before local salvage cryoablation, 99–100
image registration, 137–8
specimen organization in, 43f
transperineal, 34
transrectal saturation, 40
transrectal systematic, 39–40
transrectal ultrasound, 33–4
diffusion-weighted MRI, 66–73
dynamic contrast-enhanced MRI, 55–64
molecular imaging, 75–83
ultrasound imaging, 47–53
contrast-enhanced, 49–50
Doppler, 49–50
elastography, 48–9
sonohistology, 50–52
localized prostate cancer, 5–6
choice of treatment, 11–16
competency of healthcare system, 14
decision-making process, 14–15
delegation of decisions, 14
process issues, 13–14
disease control, 30
and quality of life, 13
and side effects vs. efficacy, 11–13
clonal origin of, 25–6
conservative management of, 5–6
curative intent, 30
cure vs. control, 32–3
disease control, 30–31
focal therapy for, 3–9
index tumor, 20–25
low- vs. high-risk disease, 31–2
localized prostate cancer (Continued)
mapping methods, 33–5
imaging, 34–5
transperineal biopsy, 34
TRUS biopsy, 33–4
minimally invasive therapies for, 6–7
multifocal, 17–20
noncurative intent, 31
prolonging natural history of disease, 30–31
selection criteria for focal therapy, 29–36
treatment costs, 5
ultrasound imaging, 47–53
unifocal, 17–20
low dose rate (LDR) brachytherapy, 127–8
low-risk candidates, 31–2
lymphotropic superparamagnetic iron oxide particles, 77
lymphotropic superparamagnetic nanoparticle-enhanced MRI (LN-MRI), 77, 79–80
magnetic resonance imaging (MRI), 35, 162–8
appearance after focal treatment, 157–9
diffusion-weighted, 66–73
ADC values, 71
analysis, 69–70
hardware, 69
histological correlates, 70–71
imaging sequences, 66–8
visualization, 71–2
dynamic contrast-enhanced, 55–64
accuracy, 61–3
cancer size, 62–3
curves (semiquantitative analysis, 58–9
enhancement analysis, 58
pathophysiological basis, 56–8
prebiopsy MRI, 60
protocol, 60–61
quantitative analysis, 59–60
tissue necrosis efficiency, 64
tumor mapping, 61
visual (qualitative) analysis, 58
histological correlates, 157–9, 161–2, 166–7
image registration in, 157–9
molecular imaging, 76–8
of necrotic tissues, 157–9
prebiopsy MRI, 60
prognostic value of, 162–8
appearances at 6 months, 164
complications, 162
detecting residual disease, 165–6
findings at 2–5 months, 164
recurrence monitoring, 165–6
six months onward, 165–6
tumor treatment, 162
protocol, 60–61
real-time feedback, 154–6
scanning protocol, 157–9
T2-weighted, 77
magnetic resonance spectroscopy imaging (MRSI), 76–8
malignancy, 76
mapping methods, 33–5
imaging, 34–5
transperineal biopsy, 34
TRUS biopsy, 33–4
Medical Research Council, 170
meso-tetra hydroxyphenyl chlorin (mTHPC), 117f, 119–20
metastasis, risk of, 6
microvessel density, 49
minimally invasive therapies, 7–8
cost of, 6
principles, 4–5
whole-gland techniques, 7–8
modified Barzell zones, 42, 45f
molecular imaging, 75–83
11C-choline PET, 80–81
18F-FDHT PET, 81
18F-fluoride PET, 81–2
lymphotropic superparamagnetic nanoparticle-enhanced MRI, 79–80
magnetic resonance imaging-based, 76–8
positron-emitted tomography, 78–9
PSMA-PET, 81
monoclonality, 25–6
mortality rate, 4, 6
motexafin lutetium, 117f, 119, 121f
multifocal tumors, 17–20. See also unifocal tumors
age distribution in, 22f
change by time period, 22f
distribution of, 21f
vs. index tumor, 21f
Kaplan-Meier PSA recurrence-free survival plot, 24f
recurrence-free survival in, 23f
multimodal therapy, 31
necrosis
cryotherapy, 159
early assessment of, 156
magnetic resonance imaging of, 157–9
photodynamic therapy, 159–61
thermal ablation, 159
ultrasound imaging, 156–7
verification of, 156
nerve-sparing prostate ablation, 95f
neural networks, 51
non-rigid image registration, 135
osmotic dehydration, 91
outcome, 153
overtreatment, 5
padoporfin, 121f
palladium bacteriopeorphorobide, 117f, 119
palladium-103, 127
partial cryoablation, 98
perivascular cellular dehydration, 92
phosphatidylcholine, 79
phosphodiesterase-5 inhibitors, 92
photodynamic therapy, 114–24
clinical studies, 119–24
in focal treatment of prostate cancer, 120–24
mechanism of action, 114–16
of necrotic tissues, 159–61
photosensitizers, 114–16, 117f
preclinical studies, 116–19
for primary prostate cancer, 120, 122–3f
for radiocurrent prostate cancer, 119–20, 121f
technique, 116
photofrin, 117f, 122f
photosensitizers, 114–16, 117f
PIVOT trial, 171
porphimer derivative, 117f
positron-emitted tomography (PET), 78–82
11C-choline, 80–81
18F-FDG, 78–9
18F-FDHT, 81
18F-fluoride, 81–2
PSMA, 81
posterior hockey stick, 95f
pragmatic-explanatory continuum indicator summary (PRECIS), 176
pragmatogram, 176f
prebiopsy MRI, 60
process issues, 13–14
prostate cancer, 17–20
active surveillance, 6
biomolecular imaging, 75–83
choice of treatment, 11–16
competency of healthcare system, 14
decision-making process, 14–15
delegation of decisions, 14
process issues, 13–14
and quality of life, 13
side effects vs. efficacy, 11–13
clonal origin of, 25–6
conservative management of, 5–6
curative intent, 30
cure vs. control, 32–3
disease control, 30–31
focal therapy for, 3–9
index tumor, 20–25
low- vs. high-risk disease, 31–2
mapping methods, 33–5
imaging, 34–5
transperineal biopsy, 34
TRUS biopsy, 33–4
minimally invasive therapies for, 6–7
mortality rate, 4, 6
multifocal, 17–20
noncurative intent, 31
prolonging natural history of disease, 30–31
selection criteria for focal therapy, 29–36
treatment costs, 5
ultrasound imaging, 47–53
unifocal, 17–20
unilateral, 17–20
prostate malignancy, 76
prostate-specific antigen (PSA), 146–50
ASTRO criteria, 94
biochemical recurrence, 146–9
and biochemical recurrence, 147–9
doubling time, 99
histological recurrence, 149–50
screening, 5, 18
prostate-specific membrane antigen (PSMA), 79
ProTect trial, 171
protoporphyrin IX, 123f
PSMA-PET, 81
qualitative analysis, 58
quality assurance, 153
quality of life, 13
quantitative analysis, 59–60
radical prostatectomy
candidates for, 31–2
cost of, 5
morbidity associated with, 4
radiocurrent prostate cancer, 119–20, 121f
radiotherapy
brachytherapy, 127–9
cost of, 5
external beam irradiation, 130
in focal therapy, 126–30
morbidity associated with, 4
salvage cryoablation after, 102
randomized controlled trials (RCTs), 170–77
ablation strategy, 173–4
ablative technology, 173
adaptive design, 171
comparators, 174
flow diagram, 175f
IDEAL guidelines, 170
Medical Research Council guidelines, 170
outcomes, 175–7
pragmatic design, 171
risk category, 172
timing of disease localization, 172–3
time to decision, 173–4
real-time feedback, 153–6
receiver operating characteristic (ROC) curve, 51
rectal fistula, 162
rectal wall necrosis, 162
redo-cryoablation, 94
salvage cryoablation, 98–104
complications, 103
freeze-thaw cycles, 101–2
metastatic work-up, 100–101
oncological effect, 102–3
operative technique, 101–2
patient selection, 99–101
preoperative evaluation, 99–101
prostate biopsy, 99–100
prostate-specific antigen, 99
Index

Scandinavian SPCG-4 trial, 171
secondary tumors, 20
SeedNet system, 101
selection criteria, 29–35. See also focal therapy
 curative intent, 30
cure vs. control, 32–3
disease control, 30–31
 low- vs. high-risk disease, 31–2
 mapping methods, 33–5
 imaging, 34–5
 transperineal biopsy, 34
 TRUS biopsy, 33–4
 noncurative intent, 31
 prolonging natural history of disease, 30–31
seminal vesicles, 100
semiquantitative analysis, 58–9
side effects, 11–13
singlet stage, 114, 115
sodium chloride brine, 87
Sonablate®, 109–12
sonohistology, 50–52
source image, 134
strain imaging, 48–9, 176
subtotal ablative therapy (STAT), 29
success, technical, 153
sum-of-squared-differences, 136
therapeutic ultrasound, 106
thermal ablation, 159
thermoablation, 154
thermometry, 154–6
three-dimensional template-guided pathologic
 mapping (3D-TPM), 40–45
tin ethyl etiopurin (SnET2), 116
tissue necrosis
cryotherapy, 127–9
cryoablation, 87–96
external beam irradiation, 130
focal salvage cryoablation, 88–104
image registration, 132–40
photodynamic therapy, 114–24
radiation, 126–30
TMPRSS2-ETS, 25–6
transperineal biopsies, 34, 40–45
transrectal real-time elastography (TRTE), 48–9
treatment, 11–16. See also focal therapy
 choice of, 11–16
 competency of healthcare system, 14
decision-making process, 14–15
delegation of decisions, 14
 process issues, 13–14
 and quality of life, 13
 side effects vs. efficacy, 11–13
 costs, 5
 overtreatment, 5
 selection criteria, 29–35
 curative intent, 30
cure vs. control, 32–3
 disease control, 30–31
 low- vs. high-risk disease, 31–2
 mapping methods, 33–5
 noncurative intent, 31
 prolonging natural history of disease, 30–31
verification of, 153, 156
triplet stage, 115
tumors, 17–20
 clonal origin of, 25–6
 detection of, 71–2
 index, 20–25
 mapping, 61
 multifocal, 21f., 22–4
 prognosis, 162
 secondary, 20
 unifocal, 17–20, 21–4f.
ultrasound, 106
ultrasound, high-intensity focused, 7, 106–12
Ablatherm®, 107–8
calcification in, 107
cell death in, 107
devices, 107–10
in focal therapy, 110–12
frequencies, 106
heat-sink effect, 107
of necrotic tissues, 159
physical properties of ultrasound, 106–7
pulse delivery in, 110f.
Sonablate®, 109–10
temperatures, 107
volume of ablation, 106–7
ultrasound imaging, 47–53
B-mode, 47
contrast-enhanced, 49–50
Doppler, 49–50
elastography, 48–9
of necrotic tissues, 156–7
sonohistology, 50–52
ultrasound tissue characterization, 50–52
unifocal tumors, 17–20. See also multifocal
tumors
 age distribution in, 22f.
distribution of, 21f.
Kaplan-Meier PSA recurrence-free survival
 plot, 24f.
recurrence-free survival in, 23f.
Index 185

unilaterality, 17–20
urinary incontinence, 103
variability, 14–15
vascular endothelial growth factors, 92
vascular injury, 91–2
vascular-targeted photodynamic therapy (VTP), 7
verification of treatment, 153, 156
visual (qualitative) analysis, 58
wash-in phase, 56
wash-out phase, 56
WST-09, 117; 119
WST-11, 117f
zonal ablation, 95f