Contents

List of Contributors xvii
Preface xxi

1 Fog Computing and Fogonomics 1
Yang Yang, Jianwei Huang, Tao Zhang, and Joe Weinman

2 Collaborative Mechanism for Hybrid Fog-Cloud Scenarios 7
Xavi Masip, Eva Marín, Jordi Garcia, and Sergi Sánchez

2.1 The Collaborative Scenario 7
2.1.1 The F2C Model 11
 2.1.1.1 The Layering Architecture 13
 2.1.1.2 The Fog Node 14
 2.1.1.3 F2C as a Service 16
2.1.2 The F2C Control Architecture 19
 2.1.2.1 Hierarchical Architecture 20
 2.1.2.2 Main Functional Blocks 24
 2.1.2.3 Managing Control Data 25
 2.1.2.4 Sharing Resources 26
2.2 Benefits and Applicability 28
2.3 The Challenges 29
 2.3.1 Research Challenges 30
 2.3.1.1 What a Resource is 30
 2.3.1.2 Categorization 30
 2.3.1.3 Identification 31
 2.3.1.4 Clustering 33
 2.3.1.5 Resources Discovery 33
 2.3.1.6 Resource Allocation 34
 2.3.1.7 Reliability 35
 2.3.1.8 QoS 36
 2.3.1.9 Security 36
 2.3.2 Industry Challenges 37
2.3.2.1 What an F2C Provider Should Be 38
2.3.2.2 Shall Cloud/Fog Providers Communicate with Each Other 38
2.3.2.3 How Multifog/Cloud Access Is Managed 39
2.3.3 Business Challenges 40
2.4 Ongoing Efforts 41
2.4.1 ECC 41
2.4.2 mF2C 42
2.4.3 MEC 42
2.4.4 OEC 44
2.4.5 OFC 44
2.5 Handling Data in Coordinated Scenarios 45
2.5.1 The New Data 46
2.5.2 The Life Cycle of Data 48
2.5.3 F2C Data Management 49
2.5.3.1 Data Collection 49
2.5.3.2 Data Storage 51
2.5.3.3 Data Processing 52
2.6 The Coming Future 52
Acknowledgments 54
References 54

3 Computation Offloading Game for Fog-Cloud Scenario 61
Hamed Shah-Mansouri and Vincent W.S. Wong
3.1 Internet of Things 61
3.2 Fog Computing 63
3.2.1 Overview of Fog Computing 63
3.2.2 Computation Offloading 64
3.2.2.1 Evaluation Criteria 65
3.2.2.2 Literature Review 66
3.3 A Computation Task Offloading Game for Hybrid Fog-Cloud Computing 67
3.3.1 System Model 67
3.3.1.1 Hybrid Fog-Cloud Computing 68
3.3.1.2 Computation Task Models 68
3.3.1.3 Quality of Experience 71
3.3.2 Computation Offloading Game 71
3.3.2.1 Game Formulation 71
3.3.2.2 Algorithm Development 74
3.3.2.3 Price of Anarchy 74
3.3.2.4 Performance Evaluation 75
3.4 Conclusion 80
References 80
5.4.4 Resource Allocation, Sharing, and Scheduling 120
5.5 Information Value and Service Quality 120
5.5.1 Precision and Accuracy 120
5.5.2 Survivability, Availability, and Reliability 122
5.6 Sovereignty, Privacy, Security, Interoperability, and Management 123
5.6.1 Data Sovereignty 123
5.6.2 Privacy and Security 123
5.6.3 Heterogeneity and Interoperability 124
5.6.4 Monitoring, Orchestration, and Management 124
5.7 Trade-Offs 125
5.8 Conclusion 126
References 126

6 Incentive Schemes for User-Provided Fog
Infrastructure 129
George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas
6.1 Introduction 129
6.2 Technology and Economic Issues in UPIs 132
6.2.1 Overview of UPI models for Network Connectivity 132
6.2.2 Technical Challenges of Resource Allocation 134
6.2.3 Incentive Issues 135
6.3 Incentive Mechanisms for Autonomous Mobile UPIs 137
6.4 Incentive Mechanisms for Provider-assisted Mobile UPIs 140
6.5 Incentive Mechanisms for Large-Scale Systems 143
6.6 Open Challenges in Mobile UPI Incentive Mechanisms 145
6.6.1 Autonomous Mobile UPIs 145
6.6.1.1 Consensus of the Service Provider 145
6.6.1.2 Dynamic Setting 146
6.6.2 Provider-assisted Mobile UPIs 146
6.6.2.1 Modeling the Users 146
6.6.2.2 Incomplete Market Information 147
6.7 Conclusions 147
References 148

7 Fog-Based Service Enablement Architecture 151
Nanxi Chen, Siobhán Clarke, and Shu Chen
7.1 Introduction 151
7.1.1 Objectives and Challenges 152
7.2 Ongoing Effort on FogSEA 153
7.2.1 FogSEA Service Description 156
9 A Decentralized Adaptation System for QoS Optimization
Nanxi Chen, Fan Li, Gary White, Siobhán Clarke, and Yang Yang

9.1 Introduction 213
9.2 State of the Art 217
9.2.1 QoS-aware Service Composition 217
9.2.2 SLA (Re-)negotiation 219
9.2.3 Service Monitoring 221
9.3 Fog Service Delivery Model and AdaptFog 224
9.3.1 AdaptFog Architecture 224
9.3.2 Service Performance Validation 227
9.3.3 Runtime QoS Monitoring 232
9.3.4 Fog-to-Fog Service Level Renegotiation 235
9.4 Conclusion and Open Issues 240
References 240

10 Efficient Task Scheduling for Performance Optimization
Yang Yang, Shuang Zhao, Kunlun Wang, and Zening Liu

10.1 Introduction 249
10.2 Individual Delay-minimization Task Scheduling 251
10.2.1 System Model 251
10.2.2 Problem Formulation 251
10.2.3 POMT Algorithm 253
10.3 Energy-efficient Task Scheduling 255
10.3.1 Fog Computing Network 255
10.3.2 Medium Access Protocol 257
10.3.3 Energy Efficiency 257
10.3.4 Problem Properties 258
10.3.5 Optimal Task Scheduling Strategy 259
10.4 Delay Energy Balanced Task Scheduling 260
10.4.1 Overview of Homogeneous Fog Network Model 260
10.4.2 Problem Formulation and Analytical Framework 261
10.4.3 Delay Energy Balanced Task Offloading 262
10.4.4 Performance Analysis 262
10.5 Open Challenges in Task Scheduling 265
10.5.1 Heterogeneity of Mobile Nodes 265
10.5.2 Mobility of Mobile Nodes 265
10.5.3 Joint Task and Traffic Scheduling 265
10.6 Conclusion 266
References 266
11 Noncooperative and Cooperative Computation Offloading

Xu Chen and Zhi Zhou

11.1 Introduction 269
11.2 Related Works 271
11.3 Noncooperative Computation Offloading 272
 11.3.1 System Model 272
 11.3.1.1 Communication Model 272
 11.3.1.2 Computation Model 273
 11.3.2 Decentralized Computation Offloading Game 275
 11.3.2.1 Game Formulation 275
 11.3.2.2 Game Property 276
 11.3.3 Decentralized Computation Offloading Mechanism 280
 11.3.3.1 Mechanism Design 280
 11.3.3.2 Performance Analysis 282
11.4 Cooperative Computation Offloading 283
 11.4.1 HyFog Framework Model 283
 11.4.1.1 Resource Model 283
 11.4.1.2 Task Execution Model 284
 11.4.2 Inadequacy of Bipartite Matching–Based Task Offloading 285
 11.4.3 Three-Layer Graph Matching Based Task Offloading 287
11.5 Discussions 289
 11.5.1 Incentive Mechanisms for Collaboration 290
 11.5.2 Coping with System Dynamics 290
 11.5.3 Hybrid Centralized–Decentralized Implementation 291
11.6 Conclusion 291
References 292

12 A Highly Available Storage System for Elastic Fog

Jaeyoon Chung, Carlee Joe-Wong, and Sangtae Ha

12.1 Introduction 295
12.1.1 Fog Versus Cloud Services 296
12.1.2 A Fog Storage Service 297
12.2 Design 299
 12.2.1 Design Considerations 299
 12.2.2 Architecture 300
 12.2.3 File Operations 301
12.3 Fault Tolerant Data Access and Share Placement 303
 12.3.1 Data Encoding and Placement Scheme 303
 12.3.2 Robust and Exact Share Requests 304
 12.3.3 Clustering Storage Nodes 305

References 292
12.3.4 Storage Selection 306
12.3.4.1 File Download Times 307
12.3.4.2 Optimizing Share Locations 307
12.4 Implementation 309
12.4.1 Metadata 310
12.4.2 Access Counting 311
12.4.3 NAT Traversal 312
12.5 Evaluation 312
12.6 Discussion and Open Questions 318
12.7 Related Work 319
12.8 Conclusion 320
Acknowledgments 320
References 320

13 Development of Wearable Services with Edge Devices 325
Yuan-Yao Shih, Ai-Chun Pang, and Yuan-Yao Lou
13.1 Introduction 325
13.2 Related Works 328
13.2.1 Without Developer’s Effort 329
13.2.2 Require Developer’s Effort 330
13.3 Problem Description 331
13.4 System Architecture 332
13.4.1 End Device 332
13.4.2 Fog Node 333
13.4.3 Controller 333
13.5 Methodology 333
13.5.1 End Device 334
13.5.1.1 Localization 334
13.5.1.2 Speech Recognition 335
13.5.1.3 Retrieving Google Calendar Information 336
13.5.2 Fog Node 337
13.5.3 Controller 338
13.6 Performance Evaluation 339
13.6.1 Experiment Setup 339
13.6.2 Different Computation Loads 340
13.6.3 Different Types of Applications 342
13.6.4 Remote Wearable Services Provision 344
13.6.5 Estimation of Power Consumption 346
13.7 Discussion 348
13.8 Conclusion 349
References 350
14 Security and Privacy Issues and Solutions for Fog 353
Mithun Mukherjee, Mohamed Amine Ferrag, Leandros Maglaras, Abdelouahid Derhab, and Mohammad Aazam

14.1 Introduction 353
14.1.1 Major Limitations in Traditional Cloud Computing 353
14.1.2 Fog Computing: An Edge Computing Paradigm 354
14.1.3 A Three-Tier Fog Computing Architecture 357

14.2 Security and Privacy Challenges Posed by Fog Computing 360

14.3 Existing Research on Security and Privacy Issues in Fog Computing 361
14.3.1 Privacy-preserving 361
14.3.2 Authentication 363
14.3.3 Access Control 363
14.3.4 Malicious attacks 364

14.4 Open Questions and Research Challenges 366
14.4.1 Trust 367
14.4.2 Privacy preservation 367
14.4.3 Authentication 367
14.4.4 Malicious Attacks and Intrusion Detection 368
14.4.5 Cross-border Issues and Fog Forensic 369

14.5 Summary 369
Exercises 370
References 370

Index 375