Contents

Preface to the Second Edition xxii

Part I Background to Materials Chemistry 1

1 What Is Materials Chemistry? 3
 A. Different Types of Materials 3
 B. The Role of Chemistry in Materials Science 6
 C. Structure–Property Correlations 7
 D. Uses of Materials 8
 E. Approaches to Producing New Materials with Novel Properties 10
 F. The Interface with Technology 11
 G. A Broader Perspective 11
 H. Terminology 12
 I. Example Journals Where Materials Science Publications Can Be Found 12
 J. Study Questions (for Class Discussions or Essays) 13

2 Fundamental Principles that Underlie Materials Chemistry 15
 A. Why Are Different Materials Different? 15
 B. The Role of Different Elements 15
 C. Different Types of Chemical Bonds 17
 1. Van der Waals Forces and the Lennard-Jones Potential 17
 2. Covalent Bonds 18
 a. Bond Angles 19
 b. Bond Lengths 24
 c. Bond Torsion 25
 d. Bond Polarity 27
 3. Coordinate Bonds 27
 a. Main Group Elements 27
 b. Transition Metals 28
 c. Bonding in the Lanthanide Elements 29
 4. Hydrogen Bonding 30
 5. Ionic Assemblies 30
 6. Metallic Bonding 31
 7. Electronic Energy Bands and Band Gaps 31
 D. Size of the Molecular Units 33
 E. Different Shapes of the Component Molecules and the Influence on Solid-state Structure 34
 F. Ultrastructures 37
3 Background to Basic Synthesis and Reaction Chemistry 41
A. Overview and Underlying Principles 41
B. Element Isolation Processes 42
1. Reaction of an Oxide at High Temperatures with Carbon or Hydrogen 43
2. Reaction of an Oxide with an Element that Has a Greater Affinity for Oxygen 44
3. Isolation via Chlorination or Oxidation 44
4. Electrolytic Reduction 44
5. Microbial Extraction of Metals 44
6. Pyrolysis and Vapor Deposition 45
C. Techniques for Materials Synthesis 46
1. Classical “Wet Chemistry” 46
2. Molten-state Chemistry 46
3. Vapor State and Vapor/Solid Reactions 47
4. Chemical Vapor Deposition 47
D. Reaction Kinetics 47
E. Separations 48
1. Importance of Separation Methods 48
2. Differential Solubility 48
3. Differential Volatility 48
4. Ion Exchange Columns, Chromatography, and Gel Permeation Methods 48
F. Materials-related Reaction Chemistry 49
1. Formation of Inter-element Compounds 49
2. Importance of Halides in Materials Synthesis 49
3. Oxides 50
4. Acidic Hydroxides and Condensation Reactions to Oxides 50
5. Hydrides, Sulfides, Nitrides, and Carbides 52
6. Metathetical Exchange Reactions 53
7. Nucleophilic Substitution 53
8. Electrophilic Substitution 54
9. Coordination Chemistry 55
10. Organometallic Chemistry 55
11. Branching and Cross-linking 57
12. Polymerization–depolymerization Equilibria 58
13. Small Rings, Cages, and Short Chains 59
G. Further Reading 59
H. Study Questions (for Class Discussions or Essays) 59

4 Chemistry of Representative Elements Utilized in Materials Science 61
A. General Comments 61
B. Nonmetals 61
1. Carbon Chemistry 61
 a. The Element 64
 b. Organic Compounds from Oil 64
c. Free Radical Reactions 65
d. Oxidation Reactions 65
e. Addition Across Double or Triple Bonds 66
f. Formation of Organometallic Compounds 67

2. Silicon Chemistry 67
 a. The Element 67
 b. Silicon Reaction Chemistry 68
 c. Differences from Carbon Compounds 70

3. Boron Chemistry 70
 a. The Element 70
 b. Borides 70
 c. Borates 71
 d. Boron Halides 72
 e. Boron Hydrides 72

4. Phosphorus Chemistry 72
 a. The Element 73
 b. Phosphides 74
 c. Phosphorus Halides 74
 d. Phosphorus Acids, Phosphates, and Phosphites 75
 e. Organo-phosphorus Chemistry (Phosphines, Phosphine Oxides, Phosphites, and Phosphate Esters) 75
 f. Phosphorus in Polymers 75

5. Nitrogen, Oxygen, and Sulfur Chemistry 75

C. Main Group Metals 76
D. Transition Metals 78
E. Lanthanide and Actinide Elements 82
F. Further Reading 83
G. Study Questions (for Class Discussions or Essays) 84

5 Structure Determination and Special Techniques for Materials Characterization 85
A. Purpose 85
B. Analysis of Bulk Materials 85
 1. Elemental Microanalysis 85
 2. Infrared–Raman Spectroscopy 85
 3. Solid-state Nuclear Magnetic Resonance Spectroscopy 86
 4. Thermal Analysis 87
 a. Differential Scanning Calorimetry 87
 b. Thermogravimetric Analysis (TGA) 88
 c. Thermomechanical Analysis (TMA) 89
 5. Stress–strain and Impact Analysis 89
 6. X-ray Diffraction 92
 a. Powder X-ray Diffraction 92
 b. Wide Angle X-ray Diffraction (WAX) and Small Angle Diffraction (SAX) 93
 c. Single-crystal X-ray Diffraction 94
 7. Refractive Index and Chromatic Dispersion 94
 a. Refractive Index (RI) 94
 b. Chromatic Dispersion 96
 8. Magnetic Susceptibility 96
 9. Electrical Conductivity 98
10. Transmission Electron Microscopy 100

C. Surface and Thin Film Analysis Techniques 101
 1. Scanning Electron Microscopy (SEM) 101
 2. Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) 102
 a. Scanning Tunneling Microscopy 102
 b. Atomic Force Microscopy 103
 3. X-ray Photoelectron Spectroscopy (XPS) 104
 4. Total Internal Reflection Infrared Spectroscopy 105
 5. Ellipsometry 105
 6. Contact Angles 106

D. Solution Analysis Techniques 107
 1. General Comments 107
 2. Solution-state NMR Spectroscopy 107
 3. Solution-state Light Scattering Techniques 107
 4. Gel Permeation Chromatography 107

E. Further Reading 109

F. Study Questions (for Class Discussions or Essays) 109

Part II Different Types of Materials 111

6 Small Molecules in Solids 113
 A. Importance of Small-molecule Materials 113
 B. Packing of Small Molecules in the Solid State 113
 1. Shape Fitting 114
 2. Dipolar or Charged Molecules 115
 3. Hydrogen Bonding 115
 C. Self-assembly by Crystallization 115
 D. Spherical Molecules in the Solid State 116
 E. Disk-shaped Molecules and Other Flat Structures 116
 1. General Observations 116
 2. Liquid Crystallinity from Disk-shaped Molecules 117
 3. Electronic Phenomena from Disk- or Wafer-shaped Molecules in the Solid State 119
 F. Rod-shaped Molecules 121
 G. Charge-transfer Complexes 122
 H. Further Reading 123
 I. Study Questions (for Class Discussions or Essays) 124

7 Porous Solids 125
 A. Significance 125
 B. Clathrate Systems (Inclusion Compounds) 125
 1. General Description 125
 2. Clathrates of Water Ice 126
 3. Urea and Thiourea 128
 4. Perhydrotriphenylene (PHTP) 128
 5. Cyclophosphazenes 130
6. Cyclodextrins, Cryptates, and Crown Ethers 131
7. Hofmann and Werner-type Complexes 132
C. Metal–organic Frameworks 133
 1. General Characteristics of MOFs 133
 2. Synthesis of MOFs 133
 3. Uses of MOFs 134
D. Zeolites 135
E. Inverse Opals and Related “Colloidal Crystal Templated” Structures 137
F. Molecular Imprinting Technology 138
G. Other Porous Materials 139
H. Further Reading 140
I. Study Questions (for Class Discussions or Essays) 141

8 Ceramics and Inorganic Glasses 143
A. Overview 143
B. Oxide Ceramics 143
C. Oxide Ceramics and Glasses Obtained or Produced Directly from Mineralogical Materials 145
 1. General Observations 145
 2. Silica, Silicates, and Aluminosilicates – General Characteristics 145
 3. Aluminosilicate Clays and Related Minerals – Properties and Structure 150
 4. Chrysotile and Other Forms of Asbestos 156
 5. Ceramic Composites 157
 6. Glasses 157
 a. General Features 157
 b. Methods of Glass Formation 157
 c. Silicate Glasses 158
 d. Pyrex-type Glass 159
 e. Glass Ceramics 159
 f. “Gorilla” Glass 159
 g. Phosphate Glasses 160
 h. Borate Glasses 160
 i. Fabrication of Glasses 160
D. Oxide Ceramics and Glasses from Small-molecule Inorganic and Organometallic Precursors 160
 1. Optical Waveguides (Optical Fibers) 161
 2. The Sol–gel Process for Low-temperature Ceramics Formation 161
 3. Zeolites 165
 4. Hydrothermal Synthesis 165
 5. Calcium Hydroxyapatite (HAP) 165
 6. Other Oxide Ceramics 166
E. Perovskites 166
F. Color in Oxide Ceramics 167
G. Non-oxide Ceramics and Related Materials 168
 1. General Aspects 168
 2. Silicon Carbide (SiC) 168
 3. Silicon Nitride (Si₃N₄) 172
 4. Boron Nitride (BN) and Other Boron-containing Ceramics 174
5. Aluminum Nitride (AlN) 175
6. Other Ceramics Formed by Preceramic Polymer Processes 176

H. Fabrication of Ceramics and Glasses 176
1. General Comments 176
2. “Sculpting” 176
3. Melting, Extrusion, and Molding 177
4. Powder Sintering 177
5. Sol–gel Fabrication 178

I. Future Challenges in Ceramics and Glass Science 178

J. Suggestions for Further Reading 179

K. Study Questions (for Class Discussions or Essays) 179

9 Polymers: Fundamental Aspects 181
A. Overview 181
B. Synthesis of Polymers 182
1. General Principles 182
2. Addition Polymerization 182
 a. Polymerization Mechanism 182
 b. Free Radical Initiation 188
 c. Atom Transfer Radical Polymerization (ATRP) 190
 d. Anionic Initiation 191
 e. Coordination Initiation 192
 f. Cationic Initiation 194
3. Condensation Polymerization 195
4. Ring‐opening Polymerization 196
5. Electrochemical Polymerization 197
6. Secondary Reactions 198
 a. Modification of Polymer Structure 198
 b. Cross‐linking Reactions 198

C. Structure–property Relationships and Polymer Design 198
1. Influence of Molecular Architecture 198
 a. Linear Polymers 198
 b. Variations within the Linear Chain Architecture 199
 c. Random or Regular Copolymers 200
 d. Block Copolymers 200
 e. Branched Structures, Stars, and Dendrimers 200
 f. Combs and Grafts 200
 g. Combinations of Rings and Chains 201
2. Molecular Weights and Distributions 201
3. Chain Flexibility 201
4. Influence of Different Skeletal Elements and Backbone Bonding 202
5. Specific Influence of Different Side Groups 202

D. Examples of Classical Polymeric Materials 203
1. Polymers Produced by Addition Reactions 204
 a. Polyethylene 204
 b. PTFE or Teflon® 204
 c. Polystyrene 205
 d. PMMA 205
2. Polyurethanes (End-functionalized Addition Reactions) 205
3. Polymers Produced by Condensation Reactions 205
 a. PET, Dacron®, or Mylar® 205
 b. Poly(hexamethylene adipamide) (Nylon 66) 206
 c. Poly(p-phenylene terephthalamide) (Kevlar) 206
 d. Synthetic Polypeptides 206
 e. Polymides 206
 f. Polycarbonates 207
 g. Polysulfones 207
 h. Polyether Ketones (PEK) and Polyether Ether Ketones (PEEK) 207
 i. Epoxy Polymers 207
 j. Condensation Resins 207
4. Polymers Produced by Ring-opening Polymerizations 207
 a. Poly(lactic-glycolic acid) (PLGA) 207
 b. Polycaprolactam (Nylon-6) 208
 c. Polytetrahydrofuran 208
 d. PEO 208
E. Inorganic Elements in Polymers 208
 1. Rationale and Terminology 208
 2. Poly(dimethylsiloxane) (PDMS, Silicone Rubber) 209
 3. Polyphosphazenes 210
 4. Polysilanes (by Condensation and Ring-opening Polymerizations) 213
 5. Poly(ferrocenylsilanes) 213
 6. Organic Polymer Chains with Organometallic Side Groups 214
 7. Electronically Conductive Polymers 214
F. Further Reading 214
G. Study Questions (for Class Discussions or Essays) 215

10 Polymer Morphology and Fabrication 217
 A. Overview 217
 B. Consequences of Cross-Linking 217
 C. Polymers in the Solid State 217
 1. Chain Entanglement 217
 2. Microcrystallinity 218
 3. Liquid Crystallinity (LC) 220
 D. Composites 221
 1. Different Types of Multicomponent Systems 221
 2. Important Mechanical Properties 222
 3. Polymer Composite Materials 223
 4. Homogeneous Versus Heterogeneous Polymeric Solids 224
 5. Defects in Solids 224
 6. Polymer Alloys – Blends 225
 7. Interpenetrating Polymer Networks 226
 8. Polymer–Ceramic “Alloys” (Ceramers) 227
 10. Reasons for Polymer-Phase Segregation 228
 11. Phase-Separated Polymer–Polymer Composites 228
 12. Phase-Separated Block Copolymers 229
13. Filled Thermoplastics and Thermosetting Materials 231
14. Laminates 231
15. Biomineralization 232

E. Soft Matter 232
1. Overview 232
2. Elastomers 232
3. Organogels 233
4. Hydrogels 233

F. Color in Synthetic Polymers 233

G. Fabrication of Polymers 234
1. Solution Casting of Films 234
2. Melt-Fabrication of Films 235
3. Fabrication of Fibers 235
4. Injection Molding 235
5. Thermoforming 236
6. Blow Molding 236
7. Sintering 236
8. Polymerization Combined with Fabrication 236
9. Multilayer Assembly of Films 236
10. Three-dimensional Printing 236

H. Future Challenges in Polymeric Materials Science 237
I. Further Study 238
J. Study Questions (for Class Discussions or Essays) 238

11 Carbon-Based Materials 241
A. Background 241
B. Diamond 241
C. Carbon Fiber 243
D. Glassy Carbon (Vitreous Carbon) 245
E. Amorphous Carbon 245
F. Fullerenes 246
G. Graphite 247
H. Graphene 248
1. Background 248
2. Synthesis 249
3. Chemical Modification 249
I. Carbon Nanotubes 249
1. Description 249
2. Synthesis and Fabrication 250
3. Useful Properties 251
J. sp³ Nanothreads 251
K. Graphene or Nanotube Analogs: Relationship of Carbon Materials to Other Layered and Fibrous Solids 252
L. Further Reading 253
M. Study Questions (for Class Discussions or Essays) 254

12 Metals and Alloys 257
A. Important Aspects of Metal Science and Technology 257
1. Background 257
2. Advantages and Disadvantages of Metals as Materials 258
3. Major Differences Between Transition and Main Group Metals 258
4. Scope of this Chapter 258
B. Isolation of Specific Metals from Their Ores 259
 1. Iron and Steel 259
 2. Nickel 262
 3. Chromium 262
 4. Aluminum 262
 5. Magnesium 263
 6. Titanium 263
 7. Tin 264
 8. Copper 264
 9. Silver 265
 10. Gold 265
 11. Lanthanide Elements 265
C. The Solid-State Structure of Metals and Alloys 266
 1. Packing of Spheres 266
 2. Slip Planes, Dislocations, and Grain Boundaries in Metals 268
 3. Homogeneous Metallic Alloys 270
 4. Phase-Separated Metal Alloys 271
D. Corrosion 272
E. Electrical Conductivity 274
F. Thermal Conductivity of Metals 276
G. Magnetic Properties of Metals 277
H. The Color of Metals 277
I. Mechanical Properties of Metals 279
J. Fabrication of Metals 279
K. Future Challenges in Metal Materials Science 280
L. Further Reading 280
M. Study Questions (for Class Discussions or Essays) 281

13 Superconductors 283
A. Overview 283
B. Nomenclature 285
C. Synthesis of High-Temperature Superconductors 286
D. Solid-State Structure 287
E. Theories of Superconductivity 290
F. Other Superconducting Systems 291
G. Current and Proposed Uses of Superconductors 291
H. Challenges for the Future 292
I. Further Reading 292
J. Study Questions (for Class Discussions or Essays) 293

Part III Materials in Advanced Technology 295

14 Semiconductor Basics 297
A. Importance of Semiconductors 297
B. Logic and Memory Devices 297
C. Semiconductor Principles 298
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Composition</td>
<td>298</td>
</tr>
<tr>
<td>2. The Band Gap</td>
<td>298</td>
</tr>
<tr>
<td>3. Electron and Hole Mobilities</td>
<td>300</td>
</tr>
<tr>
<td>4. Direct and Indirect Band Gap Semiconductors</td>
<td>300</td>
</tr>
<tr>
<td>5. Dopants</td>
<td>301</td>
</tr>
<tr>
<td>6. Importance of Oxidation Behavior</td>
<td>302</td>
</tr>
<tr>
<td>D. Preparation of Semiconductor-Grade Silicon and Compound Semiconductors</td>
<td>302</td>
</tr>
<tr>
<td>1. Single-Crystal Silicon</td>
<td>302</td>
</tr>
<tr>
<td>2. Polycrystalline Silicon</td>
<td>303</td>
</tr>
<tr>
<td>3. Amorphous Semiconductor Silicon</td>
<td>304</td>
</tr>
<tr>
<td>4. Compound Semiconductors</td>
<td>304</td>
</tr>
<tr>
<td>E. Polymeric Semiconductors</td>
<td>305</td>
</tr>
<tr>
<td>1. Rationale</td>
<td>305</td>
</tr>
<tr>
<td>2. Polythiazyl (Polysulfur Nitride)</td>
<td>305</td>
</tr>
<tr>
<td>3. Polyacetylene and Its Semiconduction Mechanism</td>
<td>307</td>
</tr>
<tr>
<td>4. Poly(Phenylene Vinylene)</td>
<td>310</td>
</tr>
<tr>
<td>5. Poly(Para-Phenylene)</td>
<td>311</td>
</tr>
<tr>
<td>6. Polypyrrole and Polythiophene</td>
<td>311</td>
</tr>
<tr>
<td>7. Polyaniline</td>
<td>311</td>
</tr>
<tr>
<td>8. Graphite and Related Layered Solids</td>
<td>312</td>
</tr>
<tr>
<td>F. Further Reading</td>
<td>312</td>
</tr>
<tr>
<td>G. Study Questions (for Class Discussions or Essays)</td>
<td>312</td>
</tr>
<tr>
<td>15 Photolithography and Microlithography</td>
<td>315</td>
</tr>
<tr>
<td>A. The Process</td>
<td>315</td>
</tr>
<tr>
<td>1. Terminology</td>
<td>315</td>
</tr>
<tr>
<td>2. The Role of Chemistry</td>
<td>315</td>
</tr>
<tr>
<td>3. Principles of Semiconductor Fabrication</td>
<td>315</td>
</tr>
<tr>
<td>4. Overview of the Semiconductor Manufacturing Process</td>
<td>316</td>
</tr>
<tr>
<td>a. Microlithography Principles</td>
<td>316</td>
</tr>
<tr>
<td>b. The Overall Sequence of Steps in Microlithography</td>
<td>317</td>
</tr>
<tr>
<td>5. Equipment</td>
<td>318</td>
</tr>
<tr>
<td>a. Microlithography Masks</td>
<td>318</td>
</tr>
<tr>
<td>b. Microlithography Equipment</td>
<td>319</td>
</tr>
<tr>
<td>c. Pellicles</td>
<td>320</td>
</tr>
<tr>
<td>d. Steppers</td>
<td>320</td>
</tr>
<tr>
<td>B. Photoresists</td>
<td>320</td>
</tr>
<tr>
<td>1. General Features of Resists</td>
<td>320</td>
</tr>
<tr>
<td>2. Novolac Positive Tone Resists</td>
<td>320</td>
</tr>
<tr>
<td>3. Chemical Amplification</td>
<td>321</td>
</tr>
<tr>
<td>4. Poly(4-Hydroxystyrene) Resists</td>
<td>322</td>
</tr>
<tr>
<td>5. Multilayer Lithography</td>
<td>322</td>
</tr>
<tr>
<td>6. All-Dry Resists</td>
<td>322</td>
</tr>
<tr>
<td>C. Electron Beam Lithography</td>
<td>323</td>
</tr>
<tr>
<td>D. X-Ray Lithography</td>
<td>323</td>
</tr>
<tr>
<td>E. Circuit Wiring</td>
<td>323</td>
</tr>
<tr>
<td>F. Further Reading</td>
<td>323</td>
</tr>
<tr>
<td>G. Study Questions (for Class Discussions or Essays)</td>
<td>324</td>
</tr>
</tbody>
</table>
16 Semiconductor Devices 325
 A. Overview 325
 B. Simple Devices Based on the Presence of a Single Semiconductor Unit 325
 1. Thermistors 325
 2. Photocells 325
 C. Components of Metal Oxide Integrated Circuit (MOS) 326
 1. Overview 326
 2. Transistors and the P-N Junction 326
 3. Integrated Circuits 327
 4. Memory Chips 328
 5. Capacitors 329
 6. Rectifiers 329
 D. Other Devices Based on a P-N Junction 330
 1. Influence of the Fermi Level 330
 2. Photovoltaic Cells: Generation of Electric Power from Light 332
 a. The Bilayer-Doped Silicon Cell 332
 b. Bilayer Cells Comprised of Two Different Semiconductors 334
 c. Polymer-based Photovoltaic Cells 334
 d. Perovskite Solar Cells 334
 e. Dye-based Photovoltaic Cells 334
 3. Conversion of Electric Power to Light 335
 a. Light-Emitting Diodes (LEDs) 335
 b. Semiconductor Lasers and Pointers 336
 c. Organic Oligomeric and Polymeric Light-Emitting Devices (OLEDs) 338
 4. Imaging Sensors 339
 E. Light Frequency Conversion: Quantum Dots 341
 F. Challenges in Semiconductor Materials Science 341
 G. Further Reading 342
 H. Study Questions (for Class Discussions or Essays) 342

17 Optical and Photonic Devices 345
 A. Overview 345
 1. The Production of Light 345
 2. Passive Versus Responsive Optical Materials 346
 3. Importance of Refractive Index 346
 4. Optical Dispersion 348
 5. Optical Birefringence 350
 6. Origins of Color in Optical Materials 351
 B. Passive Optical Devices 351
 1. Materials and Devices for Passive Optical Applications 351
 2. General-Purpose Optical Materials 352
 3. Lenses and Prisms 352
 4. Optical Waveguides 353
 5. Waveguide Multiplex/Demultiplex Devices 355
 6. Optical Color Filters 356
 7. Optical Polarizing Filters 357
 C. Responsive Optical Materials 359
 1. General Observations 359
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Liquid Crystalline (LC) Devices</td>
<td>359</td>
</tr>
<tr>
<td>3. Photochromic Materials</td>
<td>361</td>
</tr>
<tr>
<td>4. Nonlinear Optical Materials and Devices</td>
<td>363</td>
</tr>
<tr>
<td>a. The Phenomenon</td>
<td>363</td>
</tr>
<tr>
<td>b. Origins of NLO Behavior</td>
<td>364</td>
</tr>
<tr>
<td>c. Inorganic NLO Crystals</td>
<td>366</td>
</tr>
<tr>
<td>d. Organic NLO Materials</td>
<td>366</td>
</tr>
<tr>
<td>e. Poling</td>
<td>366</td>
</tr>
<tr>
<td>f. Orientation by Self-Assembly</td>
<td>366</td>
</tr>
<tr>
<td>g. Devices</td>
<td>366</td>
</tr>
<tr>
<td>5. Electrochromic Devices</td>
<td>369</td>
</tr>
<tr>
<td>6. Thermochromism as an Alternative to Photochromism</td>
<td>371</td>
</tr>
<tr>
<td>D. Challenges for the Future</td>
<td>371</td>
</tr>
<tr>
<td>E. Further Reading</td>
<td>371</td>
</tr>
<tr>
<td>F. Study Questions (for Class Discussions or Essays)</td>
<td>372</td>
</tr>
<tr>
<td>18 Materials and Devices for Energy Generation and Storage</td>
<td>375</td>
</tr>
<tr>
<td>A. General Observations</td>
<td>375</td>
</tr>
<tr>
<td>B. Fuel Cells</td>
<td>377</td>
</tr>
<tr>
<td>1. Background</td>
<td>377</td>
</tr>
<tr>
<td>2. General Principles</td>
<td>377</td>
</tr>
<tr>
<td>3. Polymer Electrolyte Membrane (PEM) Fuel Cells</td>
<td>379</td>
</tr>
<tr>
<td>4. Phosphoric Acid Fuel Cells</td>
<td>383</td>
</tr>
<tr>
<td>5. Alkaline Fuel Cells</td>
<td>383</td>
</tr>
<tr>
<td>6. Molten Carbonate Fuel Cells</td>
<td>384</td>
</tr>
<tr>
<td>7. Solid Oxide Fuel Cells</td>
<td>385</td>
</tr>
<tr>
<td>C. Battery Electrolyte Materials</td>
<td>386</td>
</tr>
<tr>
<td>1. Background</td>
<td>386</td>
</tr>
<tr>
<td>2. Lithium Ion ("Rocking Chair") Batteries</td>
<td>387</td>
</tr>
<tr>
<td>3. Principles Behind Lithium Ion Transport Membranes</td>
<td>388</td>
</tr>
<tr>
<td>4. Metallic Lithium/Solid Polymer or Gel Electrolyte Batteries</td>
<td>390</td>
</tr>
<tr>
<td>5. Example Polymers for Lithium Battery Applications</td>
<td>391</td>
</tr>
<tr>
<td>6. Lithium–Seawater Batteries</td>
<td>392</td>
</tr>
<tr>
<td>7. Solid-State Batteries</td>
<td>393</td>
</tr>
<tr>
<td>D. Capacitors and Supercapacitors</td>
<td>393</td>
</tr>
<tr>
<td>E. Challenges for the Future</td>
<td>394</td>
</tr>
<tr>
<td>1. Materials for Future Fuel Cell Development</td>
<td>394</td>
</tr>
<tr>
<td>2. Materials for Future Battery Science and Technology</td>
<td>395</td>
</tr>
<tr>
<td>3. Materials for Improved Capacitors and Supercapacitors</td>
<td>396</td>
</tr>
<tr>
<td>F. Further Reading</td>
<td>396</td>
</tr>
<tr>
<td>G. Study Questions (for Class Discussions or Essays)</td>
<td>397</td>
</tr>
<tr>
<td>19 Membranes</td>
<td>399</td>
</tr>
<tr>
<td>A. Background</td>
<td>399</td>
</tr>
<tr>
<td>B. Porous Membranes</td>
<td>400</td>
</tr>
<tr>
<td>1. Mechanism of Operation</td>
<td>400</td>
</tr>
<tr>
<td>2. Fabrication of Porous Membranes</td>
<td>400</td>
</tr>
<tr>
<td>3. Microfiltration Membranes</td>
<td>401</td>
</tr>
</tbody>
</table>
C. Membranes that Function by a Chemical Reaction 401
D. Nonporous Membranes that Function Through Physical Interactions 401
 1. Underlying Principles 401
 2. Desalination Membranes 403
 3. Poly(dimethylsiloxane) Membranes for Oxygen and Carbon Dioxide Separations 403
 4. Dialysis Membranes 404
 5. Membranes for Controlled Drug Delivery 404
E. Gel Membranes 404
 1. General Principles 404
 2. Gel Membranes as On–Off Switching Systems 405
F. Testing of Membranes 406
 1. Gas Separations 406
 2. Liquid Separations 407
 3. Controlled Drug Release and Dialysis Membranes 407
G. Sound Transducer Membranes 408
 1. Principle of Operation 408
 2. Poly(Vinylidene Fluoride) 409
 3. Ceramic-Type Piezoelectric Materials 410
H. Challenges for the Future 410
I. Further Reading 411
J. Study Questions (for Class Discussions or Essays) 412

20 Surface Science of Materials 413
A. Perspective 413
B. Summary of Surface Characterization Methods 414
C. Surfaces of Metals 414
 1. Significant Aspects 414
 2. Etching of Metal Surfaces 414
 3. Heterogeneous Catalysis by Metals 415
 4. Metal Surfaces by Vapor Deposition, Sputtering, or Solution Reactions 415
 5. Corrosion of Metal Surfaces 416
D. Ceramic Surfaces 416
 1. Oxide Ceramic Surfaces 416
 2. Chemical Modification of Glass Surfaces 416
 3. Non-Oxide Ceramic Fiber Surfaces 417
 4. Ceramic Surface Decomposition by Pollutants 417
E. Polymer Surfaces 417
 1. General Characteristics of Polymer Surfaces 417
 2. Unusual Aspects of Polymer Surfaces 417
 3. Chemical Modification of Polymer Surfaces 418
 4. Polymer Surfaces in Offset Lithography Printing 419
 5. Plasma Modification of Polymer Surfaces 420
 6. Influence of Polymer Fabrication Method 420
 7. Surfaces of Micro- and Nanofibers 420
 8. Role of Block Copolymers at Surfaces 421
 9. Layer-by-Layer Assembly 421
Contents

F. Surfaces of Semiconductors 423
 1. Oxidation of Silicon Surfaces 423
 2. High Surface Area Semiconductors 423
G. Assembly of Molecules on Surfaces 423
 1. Langmuir–Blodgett Techniques 423
 2. Self-Assembly on Gold Surfaces 425
 3. Surface Patterning by AFM 426
H. Adhesion and Surface Chemistry 426
 1. General Characteristics of Adhesion 426
 2. Chemical Bonding as a Source of Adhesion 426
 3. Physical Bonding of Surfaces 426
I. Relationship of Adhesion to Other Materials Topics 427
 1. Soft Contact Printing 427
 2. Biomedical Materials Surfaces 427
J. Further Reading 428
K. Study Questions (for Class Discussions or Essays) 429

21 Biomedical Materials 431
 A. Special Requirements for Biomedical Materials 431
 B. Traditional Biomedical Materials 432
 1. Metals 433
 2. Ceramics 433
 3. Biostable Polymers 434
 4. Bioerodible Polymers 437
 a. Collagen 437
 b. Alginites 437
 c. Poly(lactic-glycolic acid) (PLGA) (14) 437
 d. Polyanhydrides (15) 438
 e. Polycaprolactone and poly(trimethylene carbonate) 438
 f. Bioerodible polyphosphazenes (21) 438
 C. Materials for Specific Medical Applications 438
 1. Cardiovascular Materials 438
 a. General Features 438
 b. Prosthetic Heart Valves 439
 c. Artificial Heart Pumps 440
 d. Replacement Blood Vessels and Arterial Reinforcement Materials 441
 e. Stents 441
 f. Renal Dialysis and Blood Oxygenation 441
 g. Pacemaker Materials 442
 2. Surgical Sutures, Clips, and Staples 442
 3. Orthopedic Materials 442
 4. Optical Material in Medicine 443
 5. Controlled Drug and Vaccine Delivery 443
 a. Membranes 443
 b. Antibacterial Surfaces 445
 c. Responsive Hydrogels 445
 d. Bioerodible Drug Release Systems 445
 e. Microspheres, Vesicles, and Micelles 445
 6. Tissue Engineering 447
22 Miniaturization in Materials Science 453
A. Background 453
B. Definitions 453
C. Motivation 454
D. Nanostructures and Novel Properties 455
E. Synthesis and Fabrication of Nanostructures 456
1. “Top-Down” Nanostructure Preparation 456
2. “Bottom-Up” Assembly Methods 457
F. Examples of Classical Nanostructures 458
1. Nanofibers 458
2. Nanowires 459
3. Nanoscale Particles 459
 a. Carbon Nanoparticles 459
 b. Ceramic Nanospheres 459
 c. Polymer Nanospheres 460
 d. Metal Nanoparticles 460
 e. Semiconductor Nanoparticles 460
 f. Plasmonics 460
 g. Micelles 462
4. Nanochannels and Nanotunnels 462
 a. Clathrate and Zeolite Nanotunnels 462
G. Molecular Machines 462
1. Overview 462
2. Building Blocks for Molecular Machines 463
H. Special Challenges in Nano-Electronics, Photonics, and Molecular Machines 464
I. Molecular-Size Constructs 465
1. Perspective 465
2. Fullerenes 465
3. Polyhedral Boranes and Carboranes 465
4. Organic Spintronics 466
J. Major Challenges and Opportunities in Miniaturization Science and Technology 466
K. Further Reading 467
L. Study Questions (for Class Discussions or Essays) 468

Appendix Terminology 469

Index 475