Contents

Preface xv
Preface to the Second Edition xvii
Preface to the First Edition xviii
Acknowledgements xx

1 Measures of Structural Reliability 1
 1.1 Introduction 1
 1.2 Deterministic Measures of Limit State Violation 2
 1.2.1 Factor of Safety 2
 1.2.2 Load Factor 3
 1.2.3 Partial Factor (‘Limit State Design’) 4
 1.2.4 A Deficiency in Some Safety Measures: Lack of Invariance 5
 1.2.5 Invariant Safety Measures 8
 1.3 A Partial Probabilistic Safety Measure of Limit State Violation—The Return Period 8
 1.4 Probabilistic Measure of Limit State Violation 12
 1.4.1 Introduction 12
 1.4.2 The Basic Reliability Problem 14
 1.4.3 Special Case: Normal Random Variables 17
 1.4.4 Safety Factors and Characteristic Values 19
 1.4.5 Numerical Integration of the Convolution Integral 23
 1.5 Generalized Reliability Problem 24
 1.5.1 Basic Variables 24
 1.5.2 Generalized Limit State Equations 25
 1.5.3 Generalized Reliability Problem Formulation 26
 1.5.4 Conditional Reliability Problems* 27
 1.6 Conclusion 29

2 Structural Reliability Assessment 31
 2.1 Introduction 31
 2.2 Uncertainties in Reliability Assessment 33
 2.2.1 Identification of Uncertainties 33
 2.2.2 Phenomenological Uncertainty 34
 2.2.3 Decision Uncertainty 34
 2.2.4 Modelling Uncertainty 34
Contents

2.2.5 Prediction Uncertainty 35
2.2.6 Physical Uncertainty 36
2.2.7 Statistical Uncertainty 36
2.2.8 Uncertainties Due to Human Factors 37
2.2.8.1 Human Error 37
2.2.8.2 Human Intervention 40
2.2.8.3 Modelling of Human Error and Intervention 43
2.2.8.4 Quality Assurance 44
2.2.8.5 Hazard Management 45
2.2.8.6 Uncertainties Due to Human Factors 37
2.3 Integrated Risk Assessment 45
2.3.1 Calculation of the Probability of Failure 45
2.3.2 Analysis and Prediction 47
2.3.3 Comparison to Failure Data 48
2.3.4 Validation—a Philosophical Issue 50
2.3.5 The Tail Sensitivity ‘Problem’ 50
2.4 Criteria for Risk Acceptability 51
2.4.1 Acceptable Risk Criterion 51
2.4.1.1 Risks in Society 51
2.4.1.2 Acceptable or Tolerable Risk Levels 53
2.4.2 Socio-economic Criterion 54
2.5 Nominal Probability of Failure 56
2.5.1 General 56
2.5.2 Axiomatic Definition 56
2.5.3 Influence of Gross and Other Errors 57
2.5.4 Practical Implications 58
2.5.5 Target Values for Nominal Failure Probability 59
2.6 Hierarchy of Structural Reliability Measures 60
2.7 Conclusion 61

3 Integration and Simulation Methods 63
3.1 Introduction 63
3.2 Direct and Numerical Integration 63
3.3 Monte Carlo Simulation 65
3.3.1 Introduction 65
3.3.2 Generation of Uniformly Distributed Random Numbers 65
3.3.3 Generation of Random Variates 66
3.3.4 Direct Sampling (‘Crude’ Monte Carlo) 68
3.3.5 Number of Samples Required 69
3.3.6 Variance Reduction 72
3.3.7 Stratified and Latin Hypercube Sampling 73
3.4 Importance Sampling 73
3.4.1 Theory of Importance Sampling 73
3.4.2 Importance Sampling Functions 75
3.4.3 Observations About Importance Sampling Functions 76
3.4.4 Improved Sampling Functions 79
3.4.5 Search or Adaptive Techniques 80
3.4.6 Sensitivity 81
3.5 Directional Simulation 82
 3.5.1 Basic Notions 82
 3.5.2 Directional Simulation with Importance Sampling 84
 3.5.3 Generalized Directional Simulation 85
 3.5.4 Directional Simulation in the Load Space 87
 3.5.4.1 Basic Concept 87
 3.5.4.2 Variation of Strength with Radial Direction 89
 3.5.4.3 Line Sampling 90
3.6 Practical Aspects of Monte Carlo Simulation 90
 3.6.1 Conditional Expectation 90
 3.6.2 Generalized Limit State Function – Response Surfaces 91
 3.6.3 Systematic Selection of Random Variables 92
 3.6.4 Applications 92
3.7 Conclusion 93

4 Second-Moment and Transformation Methods 95
 4.1 Introduction 95
 4.2 Second-Moment Concepts 95
 4.3 First-Order Second-Moment (FOSM) Theory 97
 4.3.1 The Hasofer–Lind Transformation 97
 4.3.2 Linear Limit State Function 98
 4.3.3 Sensitivity Factors and Gradient Projection 101
 4.3.4 Non-Linear Limit State Function—General Case 102
 4.3.5 Non-Linear Limit State Function—Numerical Solution 106
 4.3.6 Non-Linear Limit State Function—HLRF Algorithm 106
 4.3.7 Geometric Interpretation of Iterative Solution Scheme 109
 4.3.8 Interpretation of First-Order Second-Moment (FOSM) Theory 110
 4.3.9 General Limit State Functions—Probability Bounds 112
 4.4 The First-Order Reliability (FOR) Method 112
 4.4.1 Simple Transformations 112
 4.4.2 The Normal Tail Transformation 114
 4.4.3 Transformations to Independent Normal Basic Variables 116
 4.4.3.1 Rosenblatt Transformation 117
 4.4.3.2 Nataf Transformation 118
 4.4.4 Algorithm for First-Order Reliability (FOR) Method 121
 4.4.5 Observations 124
 4.4.6 Asymptotic Formulation 125
 4.5 Second-Order Reliability (SOR) Methods 126
 4.5.1 Basic Concept 126
 4.5.2 Evaluation Through Sampling 126
 4.5.3 Evaluation Through Asymptotic Approximation 127
 4.6 Application of FOSM/FOR/SOR Methods 128
 4.7 Mean Value Methods 129
 4.8 Conclusion 130

5 Reliability of Structural Systems 131
 5.1 Introduction 131
5.2 Systems Reliability Fundamentals 132
5.2.1 Structural System Modelling 132
5.2.1.1 Load Modelling 132
5.2.1.2 Material Modelling 133
5.2.1.3 System Modelling 135
5.2.2 Solution Approaches 136
5.2.2.1 Failure Mode Approach 136
5.2.2.2 Survival Mode Approach 137
5.2.2.3 Upper and Lower Bounds—Plastic Theory 138
5.2.3 Idealizations of Structural Systems 139
5.2.3.1 Series Systems 139
5.2.3.2 Parallel Systems—General 141
5.2.3.3 Parallel Systems—Ideal Plastic 143
5.2.3.4 Combined and Conditional Systems 146
5.3 Monte Carlo Techniques for Systems 147
5.3.1 General Remarks 147
5.3.2 Importance Sampling 147
5.3.2.1 Series Systems 147
5.3.2.2 Parallel Systems 149
5.3.2.3 Search-Type Approaches in Importance Sampling 150
5.3.2.4 Failure Modes Identification in Importance Sampling 151
5.3.3 Directional Simulation 151
5.3.4 Directional Simulation in the Load Space 151
5.4 System Reliability Bounds 153
5.4.1 First-Order Series Bounds 153
5.4.2 Second-Order Series Bounds 154
5.4.3 Second-Order Series Bounds by Loading Sequences 157
5.4.4 Series Bounds by Modes and Loading Sequences 158
5.4.5 Improved Series Bounds and Parallel System Bounds 158
5.4.6 First-Order Second-Moment Method in Systems Reliability 159
5.4.7 Correlation Effects 164
5.4.8 Bounds by Matrix Operations and Linear Programming* 164
5.5 Implicit Limit States 168
5.5.1 Introduction 168
5.5.2 Response Surfaces 169
5.5.2.1 Basics of Response Surfaces 169
5.5.2.2 Fitting the Response Surface 170
5.5.3 Applications of Response Surfaces 172
5.5.4 Other Techniques for Obtaining Surrogate Limit States 173
5.6 Functionally Dependent Limit States 173
5.6.1 Effect of Order of Loading 173
5.6.2 Failure Mode Enumeration and Reduction 174
5.6.3 Reduction of Number of Limit States—Truncation 175
5.6.4 Applications 176
5.7 Conclusion 177

6 Time-Dependent Reliability 179
6.1 Introduction 179
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Incorporation of Member Strength in Design</td>
<td>290</td>
</tr>
<tr>
<td>8.8</td>
<td>Conclusion</td>
<td>292</td>
</tr>
<tr>
<td>9</td>
<td>Codes and Structural Reliability</td>
<td>293</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>9.2</td>
<td>Structural Design Codes</td>
<td>294</td>
</tr>
<tr>
<td>9.3</td>
<td>Safety-Checking Formats</td>
<td>296</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Probability-Based Code Rules</td>
<td>296</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Partial Factors Code Format</td>
<td>297</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Simplified Partial Factors Code Format</td>
<td>299</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Load and Resistance Factor Code Format</td>
<td>300</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Some Observations</td>
<td>300</td>
</tr>
<tr>
<td>9.4</td>
<td>Relationship Between Level 1 and Level 2 Safety Measures</td>
<td>301</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Derivation from FOSM / FOR Theory</td>
<td>302</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Special Case: Linear Limit State Function</td>
<td>303</td>
</tr>
<tr>
<td>9.5</td>
<td>Selection of Code Safety Levels</td>
<td>304</td>
</tr>
<tr>
<td>9.6</td>
<td>Code Calibration Procedure</td>
<td>305</td>
</tr>
<tr>
<td>9.7</td>
<td>Example of Code Calibration</td>
<td>310</td>
</tr>
<tr>
<td>9.8</td>
<td>Observations</td>
<td>315</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Applications</td>
<td>315</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Some Theoretical Issues</td>
<td>316</td>
</tr>
<tr>
<td>9.9</td>
<td>Performance-Based Design</td>
<td>317</td>
</tr>
<tr>
<td>9.10</td>
<td>Conclusion</td>
<td>319</td>
</tr>
<tr>
<td>10</td>
<td>Probabilistic Evaluation of Existing Structures</td>
<td>321</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>10.2</td>
<td>Assessment Procedures</td>
<td>323</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Overall Procedure</td>
<td>323</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Service-Proven Structures</td>
<td>325</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Proof Loading</td>
<td>326</td>
</tr>
<tr>
<td>10.3</td>
<td>Updating Probabilistic Information</td>
<td>327</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Bayes Theorem</td>
<td>327</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Updating Failure Probabilities for Proof Loads</td>
<td>328</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Updating Probability Density Functions</td>
<td>328</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Pre-Posterior Analysis</td>
<td>332</td>
</tr>
<tr>
<td>10.4</td>
<td>Analytical Assessment</td>
<td>333</td>
</tr>
<tr>
<td>10.4.1</td>
<td>General</td>
<td>333</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Models for Deterioration</td>
<td>334</td>
</tr>
<tr>
<td>10.5</td>
<td>Acceptance Criteria for Existing Structures</td>
<td>338</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Nominal Probabilities</td>
<td>338</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Semi-Probabilistic Safety Checking Formats</td>
<td>339</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Probabilistic Criteria</td>
<td>340</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Decision-Theory-Based Criteria</td>
<td>340</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Life-Cycle Decision Approach</td>
<td>342</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusion</td>
<td>343</td>
</tr>
</tbody>
</table>
Structural Optimization and Reliability

11.1 Introduction 345
11.2 Types of Reliability-based Optimization Problems 346
11.2.1 Introduction 346
11.2.2 Deterministic Design Optimization (DDO) 347
11.2.2.1 Formulation 347
11.2.2.2 Example of DDO Using FOSM 348
11.2.3 Reliability-Based Design Optimization (RBDO) 349
11.2.3.1 Formulation 349
11.2.3.2 Example of RBDO using FOSM 350
11.2.4 Life-Cycle Cost and Risk Optimization (LCRO) 351
11.2.4.1 Formulation 351
11.2.4.2 Example of LCRO using FOSM 352
11.2.5 Comparison, Summary and Outlook 353
11.3 Reliability Based Design Optimization (RBDO) Using First Order Reliability (FOR) 354
11.3.1 Introduction 354
11.3.2 Alternative Robust Solutions Schemes 354
11.3.3 Comparison Between RIA and PMA Solution Schemes 357
11.3.4 Solution of Nested Optimization Problems 358
11.3.5 Example of RBDO Using RIA and PMA 358
11.3.6 Decoupling Techniques for Solving RBDO Problems 361
11.3.6.1 Decoupling: Serial Single Loop Methods 361
11.3.6.2 Decoupling: Uni-level Methods 361
11.3.6.3 Sequential Approximate Programming (SAP) 361
11.4 RBDO with System Reliability Constraints 362
11.4.1 Formulation of System RBDO 362
11.4.2 Structural Systems RBDO with Component Reliability Constraints 363
11.4.3 Structural System RBDO—solution Schemes 363
11.5 Simulation-based Design Optimization 363
11.5.1 Introduction 363
11.5.2 Problem Formulation 364
11.5.3 Remarks About Solutions 365
11.6 Life-cycle Cost and Risk Optimization 367
11.6.1 Introduction 367
11.6.2 Optimal Structural Design Under Stochastic Loads 367
11.6.3 Optimal Structural Design Considering Inspections and Maintenance 368
11.7 Discussion and Conclusion 368

Summary of Probability Theory

A.1 Probability 371
A.2 Mathematics of Probability 371
A.2.1 Axioms 371
A.2.2 Derived Results 372
A.2.2.1 Multiplication Rule 372
A.2.2.2 Complementary Probability 372
A.2.2.3 Conditional Probability 372
A.2.2.4 Total Probability Theorem 372
A.2.2.5 Bayes’ Theorem 372
A.3 Description of Random Variables 373
A.4 Moments of Random Variables 373
A.4.1 Mean or Expected Value (First Moment) 373
A.4.2 Variance and Standard Deviation (Second Moment) 374
A.4.3 Bounds on the Deviations from the Mean 374
A.4.4 Skewness \(\gamma_1 \) (Third Moment) 374
A.4.5 Coefficient \(\gamma_2 \) of Kurtosis (Fourth Moment) 375
A.4.6 Higher Moments 375
A.5 Common Univariate Probability Distributions 375
A.5.1 Binomial \(B(n, p) \) 375
A.5.2 Geometric \(G(p) \) 376
A.5.3 Negative Binomial \(NB(k, p) \) 376
A.5.4 Poisson \(PN(\nu t) \) 377
A.5.5 Exponential \(EX(\nu) \) 377
A.5.6 Gamma \(GM(k, \nu) \) [and Chi-squared \(\chi^2(n) \)] 378
A.5.7 Normal (Gaussian) \(N(\mu, \sigma) \) 379
A.5.8 Central Limit Theorem 381
A.5.9 Lognormal \(LN(\lambda, \epsilon) \) 381
A.5.10 Beta \(BT(a, b, q, r) \) 383
A.5.11 Extreme Value Distribution Type I \(EV \ - I(\mu, a) \) [Gumbel distribution] 385
A.5.12 Extreme Value Distribution Type II \(EV \ - II(u, k) \) [Frechet Distribution] 386
A.5.13 Extreme Value Distribution Type III \(EV \ - III(\epsilon, u, k) \) [Weibull] 388
A.5.14 Generalized Extreme Value distribution \(GEV \) 390
A.6 Jointly Distributed Random Variables 390
A.6.1 Joint Probability Distribution 390
A.6.2 Conditional Probability Distributions 391
A.6.3 Marginal Probability Distributions 391
A.7 Moments of Jointly Distributed Random Variables 392
A.7.1 Mean 392
A.7.2 Variance 393
A.7.3 Covariance and Correlation 393
A.8 Bivariate Normal Distribution 393
A.9 Transformation of Random Variables 397
A.9.1 Transformation of a Single Random Variable 397
A.9.2 Transformation of Two or More Random Variables 397
A.9.3 Linear and Orthogonal Transformations 398
A.10 Functions of Random Variables 398
A.10.1 Function of a Single Random Variable 398
A.10.2 Function of Two or More Random Variables 398
A.10.3 Some Special Results 399
A.10.3.1 \(Y = X_1 + X_2 \) 399
A.10.3.2 \(Y = X_1 X_2 \) 399
A.11 Moments of Functions of Random Variables 400
A.11.1 Linear Functions 400
A.11.2 Product of Variates 400