Contents

4.2.3 Equivalent Two-port Networks 79
4.3 Chain (ABCD) Parameters for a Uniform Length of Loss-free Transmission Line 81
4.4 Change in Reference Plane 82
4.5 Working With a Complex Characteristic Impedance 83
4.5.1 Traveling Waves 84
4.5.2 Pseudo Waves 85
4.5.3 Power Waves 86
4.5.4 Summary 87
4.6 Summary 87
References 88

5 Planar Interconnect Technologies 89
5.1 Introductory Remarks 89
5.2 Microwave Frequencies and Applications 89
5.3 Transmission Line Structures 91
5.3.1 Imageline 92
5.3.2 Microstrip 93
5.3.3 Finline (E-plane Circuits) 94
5.3.4 Inverted Microstrip 94
5.3.5 Slotline 95
5.3.6 Trapped Inverted Microstrip 95
5.3.7 Coplanar Waveguide 95
5.3.8 CPS and Differential Line 96
5.3.9 Stripline 96
5.3.10 Summary of Interconnect Properties 97
5.4 Substrates for Planar Transmission Lines 98
5.4.1 Substrate Choices 98
5.4.2 FR4 (PCB) 100
5.4.3 Ceramic Substrates 100
5.4.4 Sapphire – the ‘Benchmark’ Substrate Material 101
5.5 Thin-film Modules 102
5.5.1 Plate-through Technique 102
5.5.2 Etch-back Technique 103
5.5.3 Equipment Required 103
5.5.4 Thin Resisitive Films 103
5.6 Thick-film Modules 104
5.6.1 Pastes, Printing, and Processing for Thick-film Modules 104
5.7 Monolithic Technology 105
5.7.1 Introduction 105
5.7.2 Multilayer Interconnect 106
5.7.3 Metallization 107
5.7.4 Low-k Dielectrics 108
5.7.5 Hybrid and Monolithic Approaches Compared 108
5.8 Printed Circuit Boards 108
5.8.1 Organic PCBs 109
5.8.2 Ceramic PCBs 110
5.9 Multichip Modules

5.9.1 MCM-L Substrates 112
5.9.2 MCM-C Substrates 112
5.9.3 MCM-D Substrates 112
5.9.4 Characterization of Interconnects on a Multichip Module: A Case Study 113
5.9.5 MCM Summary 116

5.10 Summary 116
References 117

6 Microstrip Design at Low Frequencies 120

6.1 The Microstrip Design Problem 120
6.1.1 A Transistor Amplifier Input Network 120
6.1.2 The Geometry of Microstrip 121

6.2 The Quasi-TEM Mode of Propagation 122

6.3 Static-TEM Parameters 124
6.3.1 The Characteristic Impedance \(Z_0 \) 124
6.3.2 The Effective Microstrip Permittivity \(\varepsilon_{\text{eff}} \) 125
6.3.3 Synthesis: The Width-to-height Ratio \(w/h \) 126
6.3.4 Wavelength \(\lambda \), and Physical Length \(\ell \) 127

6.4 Effective Permittivity and Characteristic Impedance of Microstrip 127
6.4.1 Formulas for Effective Permittivity and Characteristic Impedance 128
6.4.2 A Convenient Approximation of Effective Permittivity 130

6.5 Filling Factor 132

6.6 Approximate Graphically Based Synthesis 134

6.7 Formulas for Accurate Static-TEM Design Calculations 137
6.7.1 Synthesis Formulas (\(Z_0 \) and \(\varepsilon_r \) Given) 137
6.7.2 Analysis Formulas (\(w/h \) and \(\varepsilon_r \) Given) 138
6.7.3 Overall Accuracies to be Expected From the Previous Expressions 139

6.8 Electromagnetic Analysis-based Techniques 139

6.9 A Worked Example of Static-TEM Synthesis 140
6.9.1 Graphical Determination 140
6.9.2 Accurately Calculated Results 141
6.9.3 Final Dimensions of the Microstrip Element 141

6.10 Microstrip on a Dielectrically Anisotropic Substrate 141

6.11 Microstrip and Magnetic Materials 146

6.12 Effects of Finite Strip Thickness, Metallic Enclosure, and Manufacturing Tolerances 147
6.12.1 Effects of Finite Strip Thickness 147
6.12.2 Alternative Treatment of the Effect of Strip Thickness 148
6.12.3 Effects of a Metallic Enclosure 149
6.12.4 Effects Due to Manufacturing Tolerances 150

6.13 Pulse Propagation along Microstrip Lines 151

6.14 Recommendations Relating to the Static-TEM Approaches 152
6.14.1 The Principal Static-TEM Synthesis Formulas 152
6.14.2 Microstrip on a Sapphire (Anisotropic) Substrate 153
6.14.3 Design Strategies Accommodating Manufacturing Tolerances 154
7 Microstrip at High Frequencies 157

7.1 Introduction 157

7.2 Frequency-dependent Effects 157

7.2.1 Frequency-dependent Charge Distribution 158

7.2.2 Dielectric Dispersion and Current Bunching 158

7.2.3 Skin Effect 163

7.2.4 Surface and Edge Effects 167

7.3 Approximate Calculations Accounting for Dispersion 169

7.4 Accurate Design Formulas 173

7.4.1 Edwards and Owens’ Expressions 173

7.4.2 Expressions Suitable for Millimeter-wave Design 175

7.4.3 Dispersion Curves Derived from Simulations 179

7.4.4 Designs Requiring Dispersion Calculations, Worked Example 180

7.5 Effects due to Ferrite and to Dielectrically Anisotropic Substrates 182

7.5.1 Effects of Ferrite Substrates 182

7.5.2 Effects of a Dielectrically Anisotropic Substrate 182

7.6 Field Solutions 183

7.6.1 One Example of a ‘Classic’ Frequency-dependent Computer-based Field Solution 183

7.6.2 Asymmetry Effects 184

7.6.3 Time-domain Approaches 184

7.7 Frequency Dependence of Microstrip Characteristic Impedance 186

7.7.1 Different Definitions and Trends with Increasing Frequency 186

7.7.2 Use of the Planar Waveguide Model (Figure 7.24) 187

7.7.3 A First-order Expression for $Z_0(f)$ 188

7.7.4 A Second-order Expression for $Z_0(f)$ 188

7.7.5 A Further Alternative Expression 189

7.7.6 A Design Algorithm for Microstrip Width 189

7.8 Multimoding and Limitations on Operating Frequency 190

7.8.1 The Lowest-order Transverse Microstrip Resonance 190

7.8.2 The TM Mode Limitation 191

7.9 Design Recommendations 194

7.10 Summary 196

References 196

8 Loss and Power-dependent Effects in Microstrip 200

8.1 Introduction 200

8.2 Q Factor as a Measure of Loss 200

8.2.1 Definition 200

8.2.2 Loaded Q Factor 202

8.2.3 External Q Factor of an Open-circuited Microstrip Resonator 202

8.3 Power Losses and Parasitic Effects 208

8.3.1 Conductor Loss 209
8.3.2 Dielectric Loss
8.3.3 Radiation
8.3.4 Q Factor and Attenuation Coefficient
8.3.5 Surface-wave Propagation
8.3.6 Parasitic Coupling
8.3.7 Radiation and Surface-wave Losses from Various Discontinuities
8.3.8 Losses in Microstrip on Semi-insulating GaAs
8.4 Superconducting Microstrip Lines
8.5 Power-handling Capabilities
 8.5.1 Maximum Average Power P_{ma} Under CW Conditions
 8.5.2 Peak (Pulse) Power-handling Capability
8.6 Passive Intermodulation Distortion
 8.6.1 Origins of PIM
 8.6.2 PIM on Microstrip Transmission Lines
 8.6.3 Design Guidelines
8.7 Summary
References

9 Discontinuities in Microstrip
9.1 Introduction
9.2 The Main Discontinuities
 9.2.1 The Open Circuit
 9.2.2 The Series Gap
 9.2.3 Microstrip Short Circuits
 9.2.4 Further Discontinuities
9.3 Bends in Microstrip
 9.3.1 The Right-angled Bend or “Corner”
 9.3.2 Mitered or “Matched” Microstrip Bends, Compensation Techniques
9.4 Step Changes in Width (Impedance Step)
 9.4.1 The Symmetrical Microstrip Step
 9.4.2 The Asymmetrical Step in Microstrip
9.5 The Narrow Transverse Slit
9.6 Microstrip Junctions
 9.6.1 The Microstrip T Junction
 9.6.2 Compensated T Junctions
 9.6.3 Cross Junctions
 9.6.4 Open Circuits and Series Gaps
 9.6.5 Other Discontinuities
 9.6.6 Cross and T Junctions
 9.6.7 Radial Bends
 9.6.8 Frequency Dependence of via Parameters
9.7 Recommendations for the Calculation of Discontinuities
 9.7.1 Foreshortened Open Circuits
 9.7.2 Series Gaps
 9.7.3 Short Circuits
 9.7.4 Right-angled and Mitered Bends
10 Parallel-coupled Microstrip Lines

10.1 Introduction 268

10.2 Coupled Transmission Line Theory
 - 10.2.1 Parallel-coupled Transmission Lines 269
 - 10.2.2 Even and Odd Modes 269
 - 10.2.3 Transmission Line Equations 271
 - 10.2.4 Capacitance Matrix Extraction 277

10.3 Formulas for Characteristic Impedance of Coupled Lines 278
 - 10.3.1 Derivation of Bryant and Weiss 279
 - 10.3.2 Derivation of Hammerstad and Jansen 280
 - 10.3.3 Characteristic Impedances in Terms of the Coupling Factor 284
 - 10.3.4 Connecting Microstrip Lines 287

10.4 Semi-empirical Analysis Formulas as a Design Aid
 - 10.4.1 Dispersion 294
 - 10.4.2 More Accurate Design Expressions, Including Dispersion 295

10.5 An Approximate Synthesis Technique 301

10.6 Summary 304

References 304

11 Applications of Parallel-coupled Microstrip Lines

11.1 Introduction 306

11.2 Directional Couplers
 - 11.2.1 Overall Parameters for Couplers 308

11.3 Design Example: Design of a 10 dB Microstrip Coupler 308
 - 11.3.1 Use of Bryant and Weiss’ Curves 309
 - 11.3.2 Synthesis Using Akhtarzad's Technique 309
 - 11.3.3 Comparison of Methods 310

11.4 Frequency- and Length-Dependent Characteristics of Directional Couplers 310
 - 11.4.1 Optimum Coupled-region Length 310
 - 11.4.2 Overall Effects and Getsinger’s Model 313
 - 11.4.3 Complete Coupling Section Response 314
 - 11.4.4 Coupler Directivity 314

11.5 Special Coupler Designs with Improved Performance
 - 11.5.1 The Lange Coupler 315
 - 11.5.2 The Unfolded Lange Coupler 319
 - 11.5.3 Shielded Parallel-coupled Microstrips 320
 - 11.5.4 The Use of a Dielectric Overlay 321
 - 11.5.5 The Incorporation of Lumped Capacitors 321
 - 11.5.6 The Effect of a Dielectrically Anisotropic Substrate 324
 - 11.5.7 Microstrip Multiplexers 324
11.5.8 Multisection Couplers
11.5.9 Re-entrant Mode Couplers
11.5.10 Patch Couplers
11.5.11 Planar Combline Directional Couplers

11.6 Thickness Effects, Power Losses, and Fabrication Tolerances
11.6.1 Thickness Effects
11.6.2 Power Losses
11.6.3 Effects of Fabrication Tolerances

11.7 Choice of Structure and Design Recommendations
11.7.1 Design Procedure for Coupled Microstrips, where the Mid-band Coupling Factor $C < -6$ dB
11.7.2 Relatively Large Coupling Factors (typically C is between -6 and -3 dB)
11.7.3 Length of the Coupled Region
11.7.4 Frequency Response
11.7.5 Coupled Structures with Improved Performance
11.7.6 Effects of Conductor Thickness, Power Losses, and Production Tolerances
11.7.7 Crosstalk Between Microstrip Lines used in Digital Systems
11.7.8 Post-manufacture Circuit Adjustment

11.8 Summary

References

12 Microstrip Passive Elements

12.1 Introduction
12.2 Lumped Elements
12.2.1 Capacitors
12.2.2 Inductors
12.2.3 Transformers
12.2.4 Resistors

12.3 Terminations and Attenuators
12.3.1 Matched Terminations and Attenuators
12.3.2 Passive Intermodulation Distortion

12.4 Microstrip Stubs
12.4.1 Open Microstrip Stub
12.4.2 Short-circuited Microstrip Stub
12.4.3 Microstrip Radial Stubs

12.5 Hybrids and Couplers
12.5.1 Quadrature Hybrid
12.5.2 180° Hybrid
12.5.3 Branch-line Coupler
12.5.4 Rat-race Coupler

12.6 Power Combiners and Dividers
12.6.1 Wilkinson Combiner
12.6.2 Chireix Combiner
12.6.3 Branch-type Couplers and Power Dividers
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>Baluns</td>
<td>357</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Marchand Balun</td>
<td>357</td>
</tr>
<tr>
<td>12.8</td>
<td>Integrated Components</td>
<td>359</td>
</tr>
<tr>
<td>12.8.1</td>
<td>On-chip Resistors</td>
<td>360</td>
</tr>
<tr>
<td>12.8.2</td>
<td>On-chip Capacitors</td>
<td>360</td>
</tr>
<tr>
<td>12.8.3</td>
<td>Planar Inductors</td>
<td>362</td>
</tr>
<tr>
<td>12.9</td>
<td>Summary</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>365</td>
</tr>
<tr>
<td>13</td>
<td>Stripline Design</td>
<td>369</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>369</td>
</tr>
<tr>
<td>13.2</td>
<td>Symmetrical Stripline</td>
<td>370</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Characteristic Impedance</td>
<td>370</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Zero Thickness</td>
<td>372</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Attenuation</td>
<td>372</td>
</tr>
<tr>
<td>13.3</td>
<td>Asymmetrical Stripline</td>
<td>373</td>
</tr>
<tr>
<td>13.4</td>
<td>Suspended Stripline</td>
<td>375</td>
</tr>
<tr>
<td>13.5</td>
<td>Coupled Stripline</td>
<td>375</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Edge-coupled Stripline</td>
<td>375</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Broadside-coupled Stripline</td>
<td>378</td>
</tr>
<tr>
<td>13.6</td>
<td>Double-sided Stripline</td>
<td>379</td>
</tr>
<tr>
<td>13.7</td>
<td>Discontinuities</td>
<td>380</td>
</tr>
<tr>
<td>13.7.1</td>
<td>Stripline Open Circuit</td>
<td>380</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Bends</td>
<td>381</td>
</tr>
<tr>
<td>13.7.3</td>
<td>Vias</td>
<td>381</td>
</tr>
<tr>
<td>13.7.4</td>
<td>Junctions</td>
<td>381</td>
</tr>
<tr>
<td>13.8</td>
<td>Design Recommendations</td>
<td>381</td>
</tr>
<tr>
<td>13.9</td>
<td>Summary</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>382</td>
</tr>
<tr>
<td>14</td>
<td>CPW Design Fundamentals</td>
<td>384</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction to Properties of Coplanar Waveguide</td>
<td>384</td>
</tr>
<tr>
<td>14.2</td>
<td>Modeling CPWs</td>
<td>389</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Effective Permittivity</td>
<td>390</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Characteristic Impedance</td>
<td>390</td>
</tr>
<tr>
<td>14.3</td>
<td>Formulas for Accurate Calculations</td>
<td>391</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Analysis and Synthesis Approaches</td>
<td>391</td>
</tr>
<tr>
<td>14.4</td>
<td>Loss Mechanisms</td>
<td>393</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Dielectric Loss</td>
<td>393</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Conductor Loss</td>
<td>394</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Radiation Loss</td>
<td>396</td>
</tr>
<tr>
<td>14.4.4</td>
<td>CPW with Intervening SiO<sub>2</sub> Layer</td>
<td>396</td>
</tr>
<tr>
<td>14.5</td>
<td>Dispersion</td>
<td>397</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Fundamental and Theoretical Considerations</td>
<td>397</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Results from Test Runs using Electromagnetic Simulation</td>
<td>399</td>
</tr>
<tr>
<td>14.5.3</td>
<td>Experimental Results</td>
<td>406</td>
</tr>
</tbody>
</table>
14.5.4 Leakage Suppression and 50 GHz Interconnect 407
14.6 Discontinuities 408
 14.6.1 Step Changes in Width and Separation 409
 14.6.2 Open Circuit 412
 14.6.3 Symmetric Series Gap 413
 14.6.4 Coplanar Short Circuit 414
 14.6.5 Right-angle Bends 415
 14.6.6 T Junctions 418
 14.6.7 Air Bridges 418
 14.6.8 Cross-Over Junctions 421
14.7 Circuit Elements 421
 14.7.1 Interdigital Capacitors and Stubs 421
 14.7.2 Filters 423
 14.7.3 Couplers and Baluns 426
 14.7.4 Power Dividers 427
 14.7.5 CPW and Surface Mount Components 428
14.8 Variants on the Basic CPW Structure 430
 14.8.1 CPW with Top and Bottom Metal Shields 430
 14.8.2 Multilayer CPW 431
 14.8.3 Trenched CPW on a Silicon MMIC 432
 14.8.4 Differential Line and Coplanar Strip 433
14.9 Summary 439
References 439

15 Slotline 443
15.1 Introduction 443
15.2 Basic Concept and Structure 444
15.3 Operating Principles and Modes 444
15.4 Propagation and Dispersion Characteristics 447
15.5 Evaluation of Guide Wavelength and Characteristic Impedance 451
15.6 Losses 453
15.7 End-effects: Open Circuits and Short Circuits 455
 15.7.1 Jansen’s Results 455
 15.7.2 Chramiec’s Measurements 459
 15.7.3 Some Other Results 463
15.8 Summary 463
References 463

16 Slotline Applications 465
16.1 Introduction 465
16.2 Comparators and Couplers 465
 16.2.1 Comparators 465
 16.2.2 Fundamentals of Parallel-coupled Slotlines 469
 16.2.3 A Three-layer Wideband Coupler 470
16.3 Filter Applications 472
16.4 Magic T 474
16.5 The Marchand Balun 477
16.6 Phase Shifters 480
16.7 Isolators and Circulators 481
16.8 A Double-sided, Balanced Microwave Circuit 486
16.9 Summary 486
References 486

17 Transitions 488
17.1 Introduction 488
17.2 Coaxial-to-microstrip Transitions 488
17.3 Waveguide-to-microstrip Transitions 490
 17.3.1 Ridgeline Transformer Insert 490
 17.3.2 Mode Changer and Balun 492
 17.3.3 A Waveguide-to-microstrip Power Splitter 493
 17.3.4 Slot-coupled Antenna Waveguide-to-microstrip Transition 494
17.4 Transitions between CPW and other Mediums 495
17.5 Slotline Transitions 498
 17.5.1 Microstrip-slotline Transition, Antar 498
 17.5.2 Microstrip-slotline Transition, Chramiec 499
 17.5.3 Slotline-microstrip Transition, Podcameui and Coimbra 500
 17.5.4 Microstrip-slot Dispersion, Itoh 500
 17.5.5 Microstrip-slotline Transitions, Yang 500
 17.5.6 Microstrip-slotline Transitions, Schuppert 501
 17.5.7 Microstrip-slotline-microstrip Transitions 505
 17.5.8 Microstrip-slotline Transition with Open and Short-circuited Lines 507
 17.5.9 Coaxial-Slotline and Microstrip-Slotline Transition, Knorr 509
 17.5.10 Slotline-Stripline Transition, Aikawa et al. 510
17.6 Other Microstrip Transitions 510
17.7 Summary 511
References 511

18 Measurements of Planar Transmission Line Structures 514
18.1 Introduction 514
18.2 Instrumentation Systems for Microstrip Measurements 514
18.3 Measurement of Scattering Parameters 515
 18.3.1 Some S Parameter Relationships in Interpreting Interconnect Measurements 517
 18.3.2 Fitting an Equivalent Circuit 519
 18.3.3 Standing-wave Indicators in Microstrip 519
18.4 Measurement of Substrate Properties 519
 18.4.1 Determining Effective Permittivity from Transmission Line Measurements 520
 18.4.2 Resonance-based Permittivity Determination 522
18.5 Microstrip Resonator Methods 523
 18.5.1 The Ring Resonator 524
 18.5.2 The Side-coupled Open-circuit-terminated Straight Resonator 525
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5.3 Series-gap Coupling of Microstrips</td>
<td>526</td>
</tr>
<tr>
<td>18.5.4 Series-gap-coupled Straight Resonator Pairs</td>
<td>528</td>
</tr>
<tr>
<td>18.5.5 The Resonant Technique due to Richings and Easter</td>
<td>530</td>
</tr>
<tr>
<td>18.5.6 The Symmetrical Straight Resonator</td>
<td>531</td>
</tr>
<tr>
<td>18.5.7 Resonance Methods for the Determination of Discontinuities other than Open Circuits</td>
<td>532</td>
</tr>
<tr>
<td>18.6 Q Factor Measurements</td>
<td>533</td>
</tr>
<tr>
<td>18.7 Measurements of Parallel-coupled Microstrips</td>
<td>535</td>
</tr>
<tr>
<td>18.8 Time-domain Reflectometry Techniques</td>
<td>537</td>
</tr>
<tr>
<td>18.9 Summary</td>
<td>539</td>
</tr>
<tr>
<td>References</td>
<td>539</td>
</tr>
<tr>
<td>19 Filters Using Planar Transmission Lines</td>
<td>541</td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>541</td>
</tr>
<tr>
<td>19.2 Filter Prototypes</td>
<td>541</td>
</tr>
<tr>
<td>19.2.1 Maximally Flat (Butterworth) Lowpass Filter Prototype</td>
<td>542</td>
</tr>
<tr>
<td>19.2.2 Chebyshev Lowpass Prototype</td>
<td>543</td>
</tr>
<tr>
<td>19.2.3 Impedance and Admittance Inverters</td>
<td>544</td>
</tr>
<tr>
<td>19.2.4 Using Inverters to Transform Between Series and Shunt Elements</td>
<td>548</td>
</tr>
<tr>
<td>19.2.5 Ladder Prototype with Impedance Inverters</td>
<td>549</td>
</tr>
<tr>
<td>19.2.6 Lumped-element Model of an Inverter</td>
<td>550</td>
</tr>
<tr>
<td>19.2.7 Moderate Bandwidth Transmission Line Stub Model of an Inverter</td>
<td>550</td>
</tr>
<tr>
<td>19.2.8 Unit Element</td>
<td>552</td>
</tr>
<tr>
<td>19.2.9 Filter Transformations</td>
<td>553</td>
</tr>
<tr>
<td>19.2.10 Impedance Transformation</td>
<td>553</td>
</tr>
<tr>
<td>19.2.11 Frequency Transformation</td>
<td>554</td>
</tr>
<tr>
<td>19.2.12 Filter Type Transformation</td>
<td>554</td>
</tr>
<tr>
<td>19.3 Microstrip Filters</td>
<td>554</td>
</tr>
<tr>
<td>19.3.1 Lowpass Filters Formed with Cascaded Microstrips</td>
<td>554</td>
</tr>
<tr>
<td>19.3.2 Summary</td>
<td>558</td>
</tr>
<tr>
<td>19.4 Microstrip Bandpass Filters</td>
<td>559</td>
</tr>
<tr>
<td>19.4.1 Bandpass Filter Prototypes</td>
<td>559</td>
</tr>
<tr>
<td>19.4.2 End-coupled Bandpass Filters</td>
<td>559</td>
</tr>
<tr>
<td>19.5 Parallel-coupled Line Bandpass Filters</td>
<td>561</td>
</tr>
<tr>
<td>19.5.1 Interdigitated Filters</td>
<td>562</td>
</tr>
<tr>
<td>19.5.2 Edge-coupled PCL Bandpass Filters</td>
<td>562</td>
</tr>
<tr>
<td>19.5.3 Combiner Filters</td>
<td>566</td>
</tr>
<tr>
<td>19.5.4 Hairpin Filters</td>
<td>566</td>
</tr>
<tr>
<td>19.5.5 Miniature Coupled Line Filters with Extended Stopband</td>
<td>567</td>
</tr>
<tr>
<td>19.5.6 Improvements to the Basic PCL Filter Response</td>
<td>567</td>
</tr>
<tr>
<td>19.5.7 Case Study: PCL Edge-coupled Bandpass Filter</td>
<td>568</td>
</tr>
<tr>
<td>19.6 Filter Design Accounting for Losses</td>
<td>572</td>
</tr>
<tr>
<td>19.7 Dielectric Resonators and Filters Using Them</td>
<td>572</td>
</tr>
<tr>
<td>19.8 Spurline Bandstop Filters</td>
<td>573</td>
</tr>
<tr>
<td>19.9 Summary</td>
<td>575</td>
</tr>
<tr>
<td>References</td>
<td>575</td>
</tr>
</tbody>
</table>