CONTENTS

PREFACE xi
PRELUDE xiv

CHAPTER 1 RELIABILITY AND HAZARD FUNCTIONS 1
1.1 Introduction 1
1.2 Reliability Definition and Estimation 3
1.3 Hazard Functions 15
1.4 Multivariate Hazard Rate 55
1.5 Competing Risk Model and Mixture of Failure Rates 59
1.6 Discrete Probability Distributions 64
1.7 Mean Time to Failure 67
1.8 Mean Residual Life (MRL) 70
1.9 Time of First Failure 71
Problems 73
References 85

CHAPTER 2 SYSTEM RELIABILITY EVALUATION 87
2.1 Introduction 87
2.2 Reliability Block Diagrams 87
2.3 Series Systems 91
2.4 Parallel Systems 93
2.5 Parallel-Series, Series-Parallel, and Mixed-Parallel Systems 95
2.6 Consecutive-k-out-of-n:F System 104
2.7 Reliability of k-out-of-n Systems 113
2.8 Reliability of k-out-of-n Balanced Systems 115
2.9 Complex Reliability Systems 117
2.10 Special Networks 131
2.11 Multistate Models 132
2.12 Redundancy 138
2.13 Importance Measures of Components 142
Problems 154
References 167
CONTENTS

CHAPTER 3
TIME- AND FAILURE-DEPENDENT RELIABILITY
170

3.1 Introduction 170
3.2 Nonrepairable Systems 170
3.3 Mean Time to Failure (MTTF) 178
3.4 Repairable Systems 187
3.5 Availability 198
3.6 Dependent Failures 207
3.7 Redundancy and Standby 212

Problems 222
References 231

CHAPTER 4
ESTIMATION METHODS OF THE PARAMETERS OF FAILURE-TIME DISTRIBUTIONS
233

4.1 Introduction 233
4.2 Method of Moments 234
4.3 The Likelihood Function 241
4.4 Method of Least Squares 256
4.5 Bayesian Approach 261
4.6 Generation of Failure-Time Data 265

Problems 267
References 272

CHAPTER 5
PARAMETRIC RELIABILITY MODELS
273

5.1 Introduction 273
5.2 Approach 1: Historical Data 273
5.3 Approach 2: Operational Life Testing 274
5.4 Approach 3: Burn-In Testing 275
5.5 Approach 4: Accelerated Life Testing 275
5.6 Types of Censoring 277
5.7 The Exponential Distribution 279
5.8 The Rayleigh Distribution 294
5.9 The Weibull Distribution 302
5.10 Lognormal Distribution 314
5.11 The Gamma Distribution 321
5.12 The Extreme Value Distribution 329
5.13 The Half-Logistic Distribution 331
5.14 Frechet Distribution 338
5.15 Birnbaum–Saunders Distribution 341
5.16 Linear Models 344
5.17 Multicensored Data 346

Problems 351
References 361
CHAPTER 6 MODELS FOR ACCELERATED LIFE TESTING 364

6.1 Introduction 364
6.2 Types of Reliability Testing 365
6.3 Accelerated Life Testing 368
6.4 ALT Models 372
6.5 Statistics-Based Models: Nonparametric 386
6.6 Physics-Statistics-Based Models 404
6.7 Physics-Experimental-Based Models 412
6.8 Degradation Models 415
6.9 Statistical Degradation Models 419
6.10 Accelerated Life Testing Plans 421
Problems 425
References 436

CHAPTER 7 RENEWAL PROCESSES AND EXPECTED NUMBER OF FAILURES 440

7.1 Introduction 440
7.2 Parametric Renewal Function Estimation 441
7.3 Nonparametric Renewal Function Estimation 455
7.4 Alternating Renewal Process 465
7.5 Approximations of $M(t)$ 468
7.6 Other Types of Renewal Processes 469
7.7 The Variance of Number of Renewals 471
7.8 Confidence Intervals for the Renewal Function 477
7.9 Remaining Life at Time T 479
7.10 Poisson Processes 481
7.11 Laplace Transform and Random Variables 485
Problems 487
References 494

CHAPTER 8 PREVENTIVE MAINTENANCE AND INSPECTION 496

8.1 Introduction 496
8.2 Preventive Maintenance and Replacement Models: Cost Minimization 497
8.3 Preventive Maintenance and Replacement Models: Downtime Minimization 506
8.4 Minimal Repair Models 509
8.5 Optimum Replacement Intervals for Systems Subject to Shocks 513
8.6 Preventive Maintenance and Number of Spares 517
8.7 Group Maintenance 524
8.8 Periodic Inspection 527
8.9 Condition-Based Maintenance 535
8.10 Online Surveillance and Monitoring 537
CONTENTS

Problems 542
References 548

CHAPTER 9 WARRANTY MODELS 551

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>551</td>
</tr>
<tr>
<td>9.2</td>
<td>Warranty Models for Nonrepairable Products</td>
<td>553</td>
</tr>
<tr>
<td>9.3</td>
<td>Warranty Models for Repairable Products</td>
<td>574</td>
</tr>
<tr>
<td>9.4</td>
<td>Two-Dimensional Warranty</td>
<td>588</td>
</tr>
<tr>
<td>9.5</td>
<td>Warranty Claims</td>
<td>590</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>597</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>601</td>
</tr>
</tbody>
</table>

CHAPTER 10 CASE STUDIES 603

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Case 1: A Crane Spreader Subsystem</td>
<td>603</td>
</tr>
<tr>
<td>10.2</td>
<td>Case 2: Design of a Production Line</td>
<td>609</td>
</tr>
<tr>
<td>10.3</td>
<td>Case 3: An Explosive Detection System</td>
<td>617</td>
</tr>
<tr>
<td>10.4</td>
<td>Case 4: Reliability of Furnace Tubes</td>
<td>623</td>
</tr>
<tr>
<td>10.5</td>
<td>Case 5: Reliability of Smart Cards</td>
<td>629</td>
</tr>
<tr>
<td>10.6</td>
<td>Case 6: Life Distribution of Survivors of Qualification and Certification</td>
<td>632</td>
</tr>
<tr>
<td>10.7</td>
<td>Case 7: Reliability Modeling of Telecommunication Networks for the Air Traffic Control System</td>
<td>639</td>
</tr>
<tr>
<td>10.8</td>
<td>Case 8: System Design Using Reliability Objectives</td>
<td>648</td>
</tr>
<tr>
<td>10.9</td>
<td>Case 9: Reliability Modeling of Hydraulic Fracture Pumps</td>
<td>658</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>663</td>
</tr>
</tbody>
</table>

APPENDICES

APPENDIX A GAMMA TABLE 667

APPENDIX B COMPUTER PROGRAM TO CALCULATE THE RELIABILITY OF A CONSECUTIVE-K-OUT-OF-N:F SYSTEM 674

APPENDIX C OPTIMUM ARRANGEMENT OF COMPONENTS IN CONSECUTIVE-2-OUT-OF-N:F SYSTEMS 676

APPENDIX D COMPUTER PROGRAM FOR SOLVING THE TIME-DEPENDENT EQUATIONS USING RUNGE-KUTTA’S METHOD 682
APPENDIX E	THE NEWTON–RAPHSON METHOD	684
APPENDIX F	COEFFICIENTS OF b_i’s FOR $i = 1, \ldots, n$	689
APPENDIX G	VARIANCE OF θ_i’s IN TERMS OF θ_i^2/n AND K_i/K_2^*	716
APPENDIX H	COMPUTER LISTING OF THE NEWTON–RAPHSON METHOD	722
APPENDIX I	COEFFICIENTS (a_i AND b_i) OF THE BEST ESTIMATES OF THE MEAN (μ) AND STANDARD DEVIATION (σ) IN CENSORED SAMPLES UP TO $n = 20$ FROM A NORMAL POPULATION	724
APPENDIX J	BAKER’S ALGORITHM	737
APPENDIX K	STANDARD NORMAL DISTRIBUTION	741
APPENDIX L	CRITICAL VALUES OF χ^2	747
APPENDIX M	SOLUTIONS OF SELECTED PROBLEMS	750
AUTHOR INDEX		759
SUBJECT INDEX		764