CONTENTS

List of Contributors xix
Preface xxv

Chapter 1
Introduction: Food Irradiation Moving On 1
Joseph Borsa
Introduction 2
Two Tracks Going Forward 3
The Food Safety Track 3
The Disinfestation Track 5
Bumps Still Remain on the Road Ahead 5
Summary 7
References 7

Chapter 2
Advances in Electron Beam and X-ray Technologies for Food Irradiation 9
Marshall R. Cleland
Introduction 10
Basic Irradiation Concepts 10
Definition and Units of Absorbed Dose 10
Absorbed Dose versus Emitted Radiation Power 11
Temperature Rise versus Dose 12
Electron Beam Facilities 13
Absorbed Dose versus Beam Current 14
Electron Beam Technologies 14
X-ray Facilities 21
Conclusion 24
References 25

Chapter 3
Gamma Ray Technology for Food Irradiation 29
Kevin O’Hara
Introduction 29
Contents

Overview of Co-60 Gamma Technology 30
Basic Irradiation Concepts 32
 Gamma Ray Facilities 32
 Irradiator Categories 34
 Criteria for Irradiator Design and Selection 35
 Pallet Irradiator 38
 Tote Box Irradiator 40
 Independent Dose Delivery Carrier and Stationary Irradiations 41
 Gray® Star Genesis™ Underwater Irradiator 42
 Gamma Ray Facilities for Radiation Research 43
 Comparison of Irradiation Technologies 45
 References 46

Chapter 4 Regulation of Irradiated Foods and Packaging 47

George H. Pauli

Introduction 48
References 52
Notes 52

Chapter 5 Toxicological Safety of Irradiated Foods 53

Christopher H. Sommers, Henry Delincée, J. Scott Smith, and Eric Marchioni

Introduction 54
Food Irradiation 54
Benzene, Formaldehyde, and Amines 56
Formation and Levels of 2-ACBs in Foods 57
Toxicological Safety of 2-ACBs 63
2-ACBs and Tumor Promotion 66
Diet and Tumor Promotion 67
Conclusions 67
References 68

Chapter 6 Radiation Chemistry of Food Components 75

Xuetong Fan

Basic Radiation Effects 76
 Radiolysis of Water 76
Radiation Chemistry of Major Food Components 77
 Radiation Chemistry of Lipids 77
 Radiolysis of Proteins 80
 Radiolysis of Carbohydrates 83
Contents

Reduction of Undesirable Compounds by Irradiation 88
Reduction of Furan and Acrylamide 88
Reduction of Mycotoxins 89
Antinutritional Compounds 92
Acknowledgments 93
References 93

Chapter 7 Dosimetry for Food Processing and Research Applications 99
Kishor Mehta and Kevin O’Hara

Importance of Dosimetry 99
Introduction 100
Some Fundamentals of Dosimetry 101
Absorbed Dose 101
Dosimetry System 102
Measurement Management System 103
Selection and Characterization of a Dosimetry System 103
Types of Dosimetry Systems 103
The Selection of an Appropriate Dosimetry System 104
Dosimetry System Characterization 106
The Use of a Dosimetry System 107
Dosimetry in Food Research 108
Dosimetry at a Commercial Facility 109
General 109
Process Validation 110
Operational Qualification (OQ) 110
Performance Qualification (PQ) 114
Routine Process Monitoring and Control 117
References 120

Chapter 8 Detection of Irradiated Foods 123
Eric Marchioni

Introduction 124
Free Radicals and Electronic Excited States 126
ESR Spectroscopy 126
Luminescence 129
Stable Radiolytic Products 131
Radiolytic Products from Proteins 131
Contents

Volatile Compounds 131
Radiolytic Products from Carbohydrates 132
Radiolytic Products from Nucleic Acids 132
Radiolytic Products from Lipids 134
Modification of Macroscopic Physico-Biological Parameters of the Food 137
Gas Evolution 138
Cellular Wall Modifications 138
Bacteriological Modifications 138
Germination Inhibition 139
Irradiated Ingredients and Low-Dose Irradiated Plants 139
Conclusion 140
References 140

Chapter 9 Irradiation of Packaging Materials in Contact with Food: An Update 147
Vanee Komolprasert

Introduction 148
Current Authorizations of Packaging Materials for Irradiation of Prepackaged Food 149
Radiation-Induced Chemical Changes in Packaging Materials 157
Role of AOs 158
Evaluating Packaging Materials Irradiated in the Presence of Oxygen 159
Irradiation Effects 160
Analysis for RPs 161
Dietary Exposure to RPs 162
Safety Assessment of RPs 164
Approaches to Testing 165
Conclusions 167
Acknowledgment 168
References 168

Chapter 10 Consumer Acceptance and Marketing of Irradiated Foods 173
Ronald F. Eustice and Christine M. Bruhn

Introduction 174
What Is Food Irradiation? 174
Why Is Food Irradiated? 174
Contents

Marketing of Irradiation Foods 176
Commercial Acceptance of Irradiation Foods 177
Resistance to “New” Technology 178
Risks versus Benefits 179
World’s Safest Food Supply, But Not Safe Enough 179
Irradiation: A Powerful and Effective Tool to
 Improve Food Safety 181
Education: The Key to Consumer Acceptance 182
Effect of Unfavorable Information 185
Can Unfavorable Information Be Counteracted? 186
Effects of Gender, Income, and Children 188
Barriers to Acceptance 188
The “Minnesota Model” of Consumer Acceptance 189
A Defining Moment in Food Safety 191
Is It Farm to Fork, or Turf to Tort? 192
Conclusion 192
References 193

Chapter 11 Irradiation of Ready-To-Eat Meat Products

Christopher H. Sommers and William J. Mackay

Introduction 198
Materials and Methods 198
 RTE Meats 198
 Processing of Beef Bologna 199
 Bacterial Isolates 199
 Preparation of Inoculum 200
 Inoculation of RTE Meats 200
 Gamma Irradiation 200
 Enumeration of Bacteria 201
 Storage Study 201
 D_{10} Values 201
 Statistical Analysis 202
Results and Discussion 202
Acknowledgment 205
References 205

Chapter 12 Mechanisms and Prevention of Quality Changes in Meat by Irradiation

Doug U. Ahn and Eun Joo Lee

Introduction 209
Food Irradiation 210
Contents

Microcidal Effect 211
Quality Changes in Meat by Irradiation 213
Lipid Oxidation 215
Sources and Mechanisms of Off-Odor Production 214
Color Changes in Meat by Irradiation 216
Control of Off-Odor Production and Color Changes 220
Additives 220
Packaging 221
Packaging and Additive Combinations 221
Future Research 222
References 222

Chapter 13 Phytosanitary Irradiation for Fresh Horticultural Commodities: Research and Regulations 227
Peter A. Follett and Robert L. Griffin

Introduction 228
Developing Irradiation Quarantine Treatments 228
Insect Radiotolerance 228
Methodology 231
Varietal Testing 234
Probit 9 Efficacy and Alternatives 234
Generic Radiation Treatments 236
Regulatory Aspects of Irradiation 240
USDA Regulations 242
Regional and International Harmonization 244
Trade 245
References 249

Chapter 14 Antimicrobial Application of Low-Dose Irradiation of Fresh and Fresh-Cut Produce 255
Brendan A. Niemira

Introduction 256
Produce Microbiology and Irradiation Treatment 257
Internalization of Bacteria 258
Biofilm-Associated Pathogens 260
Postirradiation Recovery and Regrowth 261
Treatment Parameters for Irradiation of Produce 262
Influence of Plant Variety 264
Combination with Sanitizers 264
Irradiation Plus Mild Thermal Treatment 265
Contents xiii

Summary 266
Acknowledgments 266
References 266

Chapter 15 Irradiation of Fresh and Fresh-Cut Fruits and Vegetables: Quality and Shelf Life 271
Xuetong Fan
Introduction 272
Ethylene and Respiration 273
Appearance 274
Texture 276
Flavor/Taste 278
Nutrients 281
Vitamin C 281
Other Nutrients 282
Combination of Irradiation with Other Postharvest Techniques 284
Chemical Sanitizers 284
Hot-Water Treatment 284
Calcium and Calcium Ascorbate 285
MAP 286
Shelf-Life Extension 287
References 288

Chapter 16 Irradiation of Seeds and Sprouts 295
Kathleen T. Rajkowski and Md. Latiful Bari
Introduction 295
Outbreaks Associated with Sprouts 296
Potential Source of Contamination 301
Pathogens of Concern for Sprouts 302
Salmonella 302
Enterohemorrhagic E. coli 302
L. monocytogenes 302
B. cereus 303
Yersinia enterocolitica 303
Shigella 303
Klebsiella 303
Pathogen Decontamination Overview 304
Seed and Sprout Evaluation after Treatment 305
Radiation Dose to Reduce Microbial Pathogens on Seeds 305
Combination Treatments 308
Contents

Radiation Dose to Reduce Microbial Pathogens on Sprouts 308
Other 309
Conclusions 310
References 310

Chapter 17 Irradiation of Nuts 317
Anuradha Prakash

Introduction 317
Farming and Harvesting 318
Insect Disinfestation 318
Microbial Contamination 319
Contamination with Pathogens 320
Irradiation Treatment of Nuts 323
Insect Disinfestation 323
Molds and Aflatoxins 324
Pathogen Inactivation 325
Chemical and Sensory: Irradiation Can Catalyze or Induce Lipid Peroxidation, and Lipid and/ or Protein Radiolysis 325
Nonoxidative Radiolytic Reactions 329
Effect of Irradiation on Nut Allergenicity 329
Advantages of Using Irradiation to Treat Nuts 330
Research Needs 330
References 331

Chapter 18 Irradiation of Seafood with a Particular Emphasis on _Listeria monocytogenes_ in Ready-To-Eat Products 337
Denise M. Foley

Introduction 338
Listeria monocytogenes Is a Significant Contaminant of Seafood 338
Stress Adaptation of the Organism 339
Irradiation Is an Effective Postprocessing Treatment for Fish Products 340
Physical, Chemical, and Sensory Changes of Irradiated Seafood 344
Competing Microflora 345
Comments Regarding Irradiation and the Risk for Botulism 346
Conclusion 346
References 346
Contents

Chapter 19 Ionizing Radiation of Eggs 351
Ignacio Alvarez, Brendan A. Niemira, Xuetong Fan, and Christopher H. Sommers

Introduction 352
Ionizing Radiation of Shell Eggs 355
 Microbial Lethal Effect of Ionizing Radiation on Shell Eggs 355
 Internal Quality of Ionizing Radiated Shell Eggs 356
 Physicochemical Properties of Ionizing Radiated Shell Eggs 358
 Functional Properties of Ionizing Radiated Shell Eggs 358
Ionizing Radiation of Refrigerated Liquid Egg 359
Ionizing Radiation of LWE 359
Ionizing Radiation of Liquid Egg White 361
Ionizing Radiation of Liquid Egg Yolk 362
Ionizing Radiation of Dried Egg 363
 Microbial Lethal Effect of Ionizing Radiation in Dried Egg 363
 Quality of Ionizing Radiated Dried Egg 363
 Physicochemical Properties of Ionizing Radiated Dried Egg 363
 Functional Properties of Ionizing Radiated Dried Egg 364
Ionizing Radiation of Frozen Egg 365
 Microbial Lethal Effect of Ionizing Radiation in Frozen Egg 365
 Physicochemical Properties of Ionizing Radiated Frozen Egg 365
 Functional Properties of Ionizing Radiated Frozen Egg 365
Strategies to Increase the Quality of Irradiated Egg Products 366
Areas for Future Research 368
Conclusion 369
Acknowledgments 370
References 370

Chapter 20 Irradiated Ground Beef for the National School Lunch Program 373
Xuetong Fan

Introduction 374
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Potential Applications of Ionizing Radiation</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Ju-Woon Lee, Jae-Hun Kim, Yohan Yoon, Cheorun Jo, and Myung-Woo Byun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>Reduction of Food Allergies by Ionizing Radiation</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>Volatile N-nitrosamine and Residual Nitrite Reduction</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>Biogenic Amines Reduction</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Reduction of Phytic Acid and Increase in Antioxidant Activity</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Chlorophyll b Breakdown</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Color Improvement of Plant Extracts without Change of Biological Functions</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Control of Enterobacter sakazakii in Infant Formula</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Use of Irradiation to Control Food-Related Bacteria in Meat Products</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Application of Irradiation for Sea Food Safety</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Use of Irradiation on Fresh Produces and Dairy Products</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Application of Irradiation for the Development of Traditional Fermented Foods</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Use of Boiled Extracts from Cooking</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Improvement of Nutritional Conditions and Food Quality by Irradiation</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>400</td>
</tr>
<tr>
<td>22</td>
<td>A Future Uncertain: Food Irradiation From a Legal Perspective</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Denis W. Stearns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>408</td>
</tr>
</tbody>
</table>
Contents

Liability for the Manufacture of a Defective Food Product 409
The Origins of Strict Liability in Tainted Food Cases 409
The Modern Rule of Strict Liability 410
Defining Products and Defects 410
Proving the Existence of a Defect in Food 411
Strict Liability Creates Few If Any Legal Incentives in Favor of Food Irradiation 412
A Possible Existing Legal Duty to Use Irradiated Food: The Challenge of Highly Susceptible Populations 414
Negligence: Failing to Avoid a Known and Avoidable Risk 414
The Eggshell Plaintiff: Irradiation, Liability, and Susceptible Populations 416
The Prospect of Punitive Damages as a Stronger Incentive 417
The Possibility of Liability Arising from Irradiated Foods 418
Conclusion 419
Notes 420

Chapter 23

Technical Challenges and Research Directions in Electronic Food Pasteurization 425
Suresh D. Pillai, Les Braby, and Joe Maxim

Introduction 426
Target Pathogens 427
Enteric Viruses 427
Protozoan Pathogens 428
Bacterial Pathogens 428
Radiation Physics and Chemistry 428
Chemical Environment 428
Standardized Protocols 429
Electronic Pasteurization in Conjunction with Microbial Risk Assessment 430
Low Dose Electronic Pasteurization and Dosimetry 431
Product Packaging 431
Contents

Electronic Pasteurization of Complex-Shaped Packages 432
Acknowledgments 433
References 433

Index 435