INDEX

Note: Page number followed by f and t indicates figure and table, respectively.

2-ACBs, see 2-Alkylcyclobutanones (2-ACBs)
2-Alkylcyclobutanones (2-ACBs), 51, 57–8, 78, 135
formation and levels of, in foods, 57–63, 59f, 60t
toxicological safety of, 63–6
and tumor promotion, 66–7
Absorbed dose, 10, 101–2, 102t, 112
versus beam current, 14
definition of, 10
versus emitted radiation power, 11–12
maximum, 36, 100, 240
minimum, 36, 100
units of, 10–11
Absorbed-dose distribution, 100, 108–9
Absorbed-dose mapping, 108
Acceleration tube, 15, 17
Accelerator irradiation facility, 113
Accelerators
Cockcroft-Walton, 17
constant-potential, 15–17, 16f
Dynamitron, 17, 17f
electron beam, 14–21
microwave linear, 17–19
radio-frequency, 19–21
Rhodotron, 20–21, 20f
Accidental postirradiation dosimetry, 128
Acetic acid, 343
Acid-adapted organisms, 343
Acrylamide, 51
reduction of, by irradiation, 88–9
Active control of beam scan rates, 432
Acyl-oxy bond, 58, 59f
Additives
combination of, with irradiation, 342–3
in control of off-odor production and color changes, 220–21
definition of, 48, 148

© 2013 Blackwell Publishing and the Institute of Food Technologists.
Published 2013 by Blackwell Publishing.

435
American Medical Association, 377
American National Cattlemen, 190
American Society for Testing and Materials, International (ASTM), 101
Ames microsome mutagenicity test, 90
Amino acids, degradation of, 215
Amyelois transitella, 323
Animal bones, 128
Animal Plant Health Inspection Service (APHIS), 237, 242–5
Animals, use of, for toxicological research, 55
ANSI Category I irradiators, 45
Anti-irradiation campaign, 177
Antioxidants (AOs), 156, 158–9
and double packaging, 221–2
in fresh fruits and vegetables, 281–4
primary, 158
for reducing off-odor of irradiated meat, 220–21
secondary, 158
AOs, see Antioxidants (AOs)
APHIS, see Animal Plant Health Inspection Service (APHIS)
Appearance of fresh-cut fruits and vegetables, irradiation and, 274–6
Apple juice
furan and, 50
irradiation of, 91–2
Apricot, 397
Area processing coefficient (K(x)), 14
Area processing rate, 14
Arthropods, 229
Ascorbic acid, 87, 88f, 220
impact of irradiation on, 281–2
Asia and the Pacific Plant Protection Commission (APPPC), 244
Aspergillus flavus, 89–91
contamination of nuts by, 319
Aspergillus parasiticus, 89
contamination of nuts by, 319
Assumption of 100% migration, 162–3
ASTM, see American Society for Testing and Materials, International (ASTM)
Australia, 5, 235, 238, 247, 296
Automatically controlled beam collimators, 432
a* values, color, 218–20
Azoxy methane, 66–7
Bacillus cereus, 213, 296, 303, 375
Bacteria, 4
biofilm-associated, 260–61
electronic food pasteurization and, 428
enteric, 427
internalization of, and irradiation treatment, 258–60
lactic acid, 395, 397
Bacteriological modifications, for detection of irradiated foods, 138–9
Bactrocera cucurbitae, 237
Bactrocera dorsalis, 237
BAs, see Biogenic amines (BAs)
Batch homogeneity, 107
Becquerel, 31
Beetroot (Beta vulgaris), 296. See also Seeds and sprouts, irradiation of
Benzene, 56
Bird seed, and phytosanitary treatments, 246
Biofilms, bacterial, 260–61
Biogenic amines (BAs), 386, 390–91
reduction of, by irradiation, 57, 391
Boiled extracts, use of, 398–9
Bone, dating, ESR signal measurement in, 128
Brazil, 6
Broccoli (Brassica oleracea), 296. See also Seeds and sprouts, irradiation of
Budker Institute of Nuclear Physics, 19
Buckwheat (Fagopyrum esculentum), 296. See also Seeds and sprouts, irradiation of
Cadaverine, 591
Calcium ascorbate (CaA), use of, 286
Calcium, radiation-induced softening prevention by, 285–6
Calorimeters, 103
Campylobacter jejuni, 212, 301, 356
Cancers in animals, generation of, 54
Carbohydrates
furan formation from, 84–6
radiolysis of, 83–4
radiolytic products from, detection of, 132
Carbon monoxide–myoglobin (CO–Mb), formation of, 218–19
Carbonyls, 214
Carcinogens, 50, 54, 65, 89, 241
Cashew nuts, effect of irradiation on, 328t
Cattlemen’s Beef Board (CBB), 182
CDC, see Centers for Disease Control and Prevention (CDC)
Cellular wall modifications, 138
Cellulose, degradation of, 84
Center for Food Safety, 418
Centers for Disease Control and Prevention (CDC), 179, 181, 184, 377
Ceratitis capitata, 237
Cereal porridge, 399
Ceritec-cerous dosimeters, 104, 105f
Certified raw milk, 177
Cesium-137 (Cs-137), 30
Cinnamon (Cinnamomum), 385
Circe S-band systems, 18–19
Clean Air Act, 1998, 319
Clostridium, 213
Clostridium botulinum, 346
Clostridium perfringens, 358, 375
Cloridium sporogenes, 395
Clover, 296. See also Seeds and sprouts, irradiation of
Chicken embryo test, 89–90
Chickpea (Cicer arietinum L.), 296. See also Seeds and sprouts, irradiation of
Chlorination, 177, 179
Chlorophylls, 393
Chicken foot systems, 16–19
Clean Air Act, 1998, 319
Clostridium, 213
Clostridium botulinum, 346
Clostridium perfringens, 358, 375
Cloridium sporogenes, 395
Clover, 296. See also Seeds and sprouts, irradiation of
...
Co-59, 31
Cobalt-60 (Co-60), 30–32, 211. See also Gamma ray technology, for food irradiation
radiation source, 31–2, 51f, 35f, 34f
Coccus viridis, 232
Cockcroft-Walton accelerators, 17
The Code of Federal Regulations Part 179, title 21 of, 148–9, 153
Codex Alimentarius, 6, 126, 240, 304
Codex General Standard for Irradiated Food, 240
Codex Recommended International Code of Practice for the Operation of Irradiation Facilities, 240–41
Cold storage warehouses, 6
Coleoptera, 229
Color change in, in irradiated meat, 216–19, 221–2 of fresh fruits and vegetables, 272
Colorimeter, 272
Comet Assay, 63–4
Comite de Sanidad Vegetal del Cono Sur (COSAVE), 244
Community Bureau of Reference, 124
Constant-potential accelerators, 15–17, 16f
Consumer acceptance and marketing of irradiated foods, 173–192
barriers to acceptance of, 188–9
counteraction of unfavorable information and, 186–7
defining moment in food safety and, 191–2
education as key to, 182–5
effect of unfavorable information on, 185–6
effects of gender, income, and children, 188
farm to fork and, 192
irradiation to improve food safety and, 181–2
Minnesota Model of, 189–91
resistance to new technology and, 178–9
risks versus benefits and, 179
safety of food supply and, 179–80
Contract service irradiators, 6
Covariance analysis, insect irradiation studies and, 235
Cowpea beans, irradiation of, 310
Cress (Lepidium sativum), 296. See also Seeds and sprouts, irradiation of
Cross-linking, in polymers, 157–8
Cryptosporidium sp., electronic pasteurization for, 428
Curculionid weevils, 239
Curie, 31
Cut flowers, and phytosanitary treatments, 246
Gyroxipora sp., electronic pasteurization for, 428
2,4-Di-tert-butylphenol (2,4-DTBP), 163
2-Dodecylcyclobutanone (2-dDCB), 58
DeGregori, Thomas R., 178–9
The demands of social justice, 410
Detection of irradiated foods, 125–40
free radicals and electronic excited states and, 126–31
ESR spectroscopy, 126–9, 127f
luminescence, 129–31, 130f
irradiated ingredients and low-dose irradiated plants and, 139–40
modification of macroscopic physico-biological parameters of food and, 137–9
stable radiolytic products and, 151–7
radiolytic products from carbohydrates, 132
radiolytic products from lipids, 134–7
radiolytic products from nucleic acids, 132–4, 154f
radiolytic products from proteins, 131
volatile compounds, 131–2
Dichromate dosimeters, 104, 105f
Dimethyl disulfide, 215
Dimethyl sulfide, 215
Dimethyl trisulfide, 214
Diptera, 229, 236
Direct epifluorescence filter technique (DEFT), 124, 125f, 138
Disinfestations treatments, for nuts, 318–19
Disinfection track, 5
Distribution centers, contract service irradiators in, 6
Dose absorbed, see Absorbed dose distribution, 11
generic, 236
generic radiation, 236–40
versus temperature rise, 12
Dose mapping, 11
dose distribution and, 11
Dose response tests, insect irradiation and, 252–3
Dose uniformity ratio (DUR), 233
Dosimeters, useful dose range for, 105f
Dosimetry, 99–120
at commercial facility, 109–20
process validation, 110–17
routine process monitoring and control, 117–20
in food research, 108–9
fundamentals of, 101–3
dosimetry system, 102–3.
measurement management system, 103
principal objective of, 101
insect irradiation studies and, 233
low-dose electronic pasteurization and, 431
Dosimetry system
characterization of, 106–7
classification of, 104
primary-standard, 103
reference-standard, 103–4
routine, 104
selection of, criterion for, 104–6
capital investment, 106
dose mapping, 106
case of system use, 106
post-irradiation change in dosimeter response, 105
Dosimetry system (Continued)
 ruggedness of dosimeter, 106
 suitable dose range, 105
 types of irradiation facilities, 106
 transfer-standard, 104
 types of, 103–4
 use of, 107–8
Double packaging, use of, 221
Dragon fruit (Hylocereus undatus), 238
Dried egg, ionizing radiation of, 363–4
 and functional properties, 364
 microbial lethal effect of, 363
 and physicochemical properties, 363–4
 and quality, 363
D_{10} values, 201, 258
 of foodborne pathogens and spoilage bacteria, 213t
 of Listeria monocytogenes, 241t
 of Staphylococcus aureus, 241t, 242t
Dynamitron accelerators, 17, 17f
E. coli, see Escherichia coli
E. coli TRP Assays, 64
Economic Research Service, USDA, 413
Eggs
 dried, 363–4
 frozen, 365–6
 ionizing radiation of, 351–69
 dried egg and, 363–4
 frozen egg and, 365–6
 future research in, 368–9
 refrigerated liquid egg and, 359–62
 shell eggs and, 353–9
 strategies to increase quality of irradiated egg products and, 366–8
 pasteurized, 415
 refrigerated liquid, 359–62
Eggshell plaintiff rule, 416–17
Egg white, ionizing radiation of, 361
Egg yolk, ionizing radiation of, 362
 Electron beam accelerators, 14–21
 Electron beam and X-ray technologies, advances in, for food irradiation, 9–24
 basic irradiation concepts and, 10–12
 electron beam facilities and, 13–21
 X-ray facilities and, 21–4, 25f
Electron beam facilities, 13–21
Electron beams, 76, 211, 257
Electron energy, 13
Electronic food pasteurization, research and technical challenges in, 425–35
 complex-shaped packages and, 452–3
 low-dose electronic pasteurization, use of, 451
 microbial risk-reduction studies and, 430–31
 product packaging and, 431–2
 radiation physics and chemistry and, 428–31
 chemical environment, 428–9
 standardized protocols, 429–30
 target pathogens and, 427–8
 bacterial pathogens, 428
 enteric viruses, 427
 protozoan pathogens, 428
Electron penetration in water, 13–14
Electron Processing Systems (EPS), 16–17
Electron spin resonance (ESR) spectroscopy, 124, 126–129, 127f
Electron Transformer-Rectifier (ELV) accelerators, 16
Emitted radiation power, absorbed dose vs., 11–12
Enteric viruses, 427
Enterobacter sakazakii in infant formula, control of, 394
Enteroctopus dofleini, 398
Enterohemorrhagic E. coli
 sprout-associated outbreaks and, 302
Environmental Protection Agency (EPA), 241, 429
 Enzymes, effect of irradiation on, 82–3
EPA, see Environmental Protection Agency (EPA)
Ephestia cautella, 324
EPS, see Electron Processing Systems (EPS)
Erwinia herbicola, 301
Escherichia coli, 3, 4, 180, 192, 212, 258, 280, 306–8, 374, 395
 biofilm-associated cells of, 260–61
 contamination of nuts with, 320
 and electronic pasteurization, 428
 foodborne illness problems by, 198
 sprout-associated outbreaks and, 297
 Ethanol-chlorobenzene (ECB) dosimeters, 104, 105f
 Ethylene dibromide (EDB), 241
 Ethylene production, irradiation and, 273
European and Mediterranean Plant Protection Organization (EPPO), 244
European Committee for Standardization (CEN), 101
European Directive 1999/2/EC, 139
European Food Safety Agency (EFSA), 56
Exemplary damages, 417–18
5-Fluorouracil (5-FU), 65
False red spider mite (Brevipalpus chilensis), 244
Farm Service Agency (FSA), USDA, 374
FDA, see Food and Drug Administration (FDA)
Federal Food, Drug, and Cosmetic Act, 48
 Section 201(s) of, 148
 Section 402(a) of, 48, 148
Section 409 of, 48
European Directive 1999/2/EC, 139
European Food Safety Agency (EFSA), 56
Exemplary damages, 417–18
5-Fluorouracil (5-FU), 65
False red spider mite (Brevipalpus chilensis), 244
Farm Service Agency (FSA), USDA, 374
FDA, see Food and Drug Administration (FDA)
Federal Food, Drug, and Cosmetic Act, 48
 Section 201(s) of, 148
 Section 402(a) of, 48, 148
 Section 409 of, 48
Federation of American Societies for Experimental Biology, 56
Feeding studies, in animals, 55–6
Feline calicivirus (FCV), 427
Fenugreek (Trigonella foenum-graecum), 296.
 See also Seeds and sprouts, irradiation of
 Fish products, effect of irradiation on, 340–44
 Flat Earth Theory, 179
 Flavor of fresh fruits and vegetables, impact of irradiation on, 278–81
 Flax (Linum usitatissimum), 296.
 See also Seeds and sprouts, irradiation of
 Flies, 229, 231, 236
 Food additive, 48, 148
 Food Additives Amendment of 1958, 48
Index

Food Advisory Committee (FAC), 51
Food Allergen Labeling and Consumer Protection Act of 2004 (FALCPA), 329
Food allergies, 386–7
 reduction of, by ionizing radiation, 386–7
Food and Drug Administration (FDA), 48–52, 55, 210, 241–2, 256, 305, 338
Food and Nutrition Service (FNS), USDA, 374
Foodborne Disease Active Surveillance Network, 182
Foodborne illness (FBI) outbreaks, 3, 68, 149, 180, 185, 198, 256
 with consumption of nuts and oilseeds, 321t, 322t
 eggs and, 352
 raw sprouts consumption and, 296–301, 298t, 299t, 300t
 in school, 374–6, 375t
Food irradiation, 1–7, 29, 99, 174–6, 210–11, 386, 408, 426
 consumer acceptance and marketing of irradiated foods and, 173–92
 detection of irradiated foods and, 123–40
 dosimetry for food processing and research applications and, 99–120
 driving forces for adoption of, 3–5
 electron beam and X-ray technologies for, advances in, 9–25
 electronic food pasteurization and, 425–33
 foods permitted to be irradiated, list of, 150t
 gamma ray technology for, 29–46
 hindrances in adoption of, 5–7
 ionizing radiation of eggs, 351–69
 irradiation of fresh and fresh-cut fruits and vegetables and, 271–88
 irradiation of nuts, 317–31
 irradiation of packaging materials and, 147–68
 irradiation of ready-to-eat meat products, 197–205
 from legal perspective, 407–19
 mechanisms and prevention of quality changes in meat by irradiation and, 209–22
 phytosanitary irradiation for fresh horticultural commodities, 227–49
 radiation chemistry of food components and, 75–93
 regulation of irradiated foods and packaging, 47–52
 seafood, irradiation of, 337–46
 seeds and sprouts, irradiation of, 295–310
 support of, by organizations, 175t
 toxicological safety of irradiated foods and, 53–67
Food Irradiation Coalition/NFPA, 49
FoodNet sites, 182
Food safety track, 3–4
Foods and food products, authorized for irradiation, 2471, 2488
 Formaldehyde, 56–7
 Forward mutagenesis assays, 64–5
 Framework Equivalency Work Plans (FEWPs), 176, 244
 Free radicals, 76–7, 211
 from radiolysis of water, 76–7
 Fresh and fresh-cut fruits and vegetables, irradiation of, 271–88
 and postharvest techniques, combination of, 284–7
 quality parameters and, 272–3
 appearance, 274–6
 ethylene and respiration, 273
 flavor/taste, 278–81
 nutrients, 281–4
 texture, 276–8
 shelf life and, 287–8
 Fresh-cut fruits and vegetables, 272
 Fresh produce
 irradiation of, 258
 microbial load reduction by, 257
 purposes of, 257
 packaging of, 149
 primary means of preserving of, 257
 Frozen egg, ionizing radiation of, 365–6
 and functional properties, 365–6
 and physicochemical properties, 365
 Frozen-stored irradiated meat versus refrigerated storage, 214
 Fruit flies, 237, 244
 Fruit juices
 formation of furan in, 89
 pasteurized, 415
 volatile sulfur compounds in, 81
 Fruits
 blanched/preserved, 272
 fresh and fresh-cut
 irradiation of, 271–88
 fresh-cut, 272
 Fumonisins, reduction of, by irradiation, 91
 Furan, 50–51, 54, 88
 apple juice and, 50
 from carbohydrates, 84–6, 86f
 in heat-processed foods, 51
 reduction of, by irradiation, 88–9
 Gamma ray facilities, 32–3, 113
 for radiation research, 43–5, 44f
 Gamma rays, 10, 29–30, 76
 Gamma ray technology, for food irradiation, 29–46
 basic irradiation concepts related to, 32–43
 category I, 34
 category II, 35
 category III, 35
 category IV, 35
 gamma ray facilities, 32–3
 Genesis irradiator, 42–3, 43f
 independent dose delivery carrier, 41, 42f
 irradiator categories, 34–5
 irradiator design and selection, criteria in, 35–8
Gamma ray technology, for food irradiation (Continued)
 pallet irradiator, 38–40
 stationary irradiation, 41
 tote box irradiator, 40–41, 40f
Co60 in, use of, 30–32, 31f, 35f, 34f
Garlic, in irradiated meat, 220–21
Gas evolution, for detection of irradiated foods, 138
Gastrointestinal cancers, 54
Gene expression profiling, 65
General Codex Methods, 126
Generic radiation dose, 236–40
Generic radiation treatments, 236–40
Generic regulations, 49–50
Generic treatment, 236
Genesis underwater irradiator, 42–3, 43f
Germination inhibition method, 139
Glenn, John, 189
Good agricultural practices (GAP), 256, 320
Good handling practices (GHP), 256
Good manufacturing practices (GMPs), 256, 258, 320, 343
Gray (Gy), 10, 101
Gray Star Genesis gamma ray facility, see Genesis underwater irradiator
Greenman v. Yuba Power Products, 410
Green scale (Coccus viridis), 232
Green tea, 386, 393
Grocery Manufacturers Association, 323
Ground beef, irradiated, 176. See also Irradiated ground beef; Irradiated ground beef, for National School Lunch Program consumer acceptance of, 182–3
Minnesota model and, 189–91
sensory properties of, 378–82
Guavas (Psidium guajava), 238
Guidelines for the Use of Irradiation as a Phytosanitary Treatment, 245
G-value, 76, 83
1-Heptene, 215
1-Hexene, 215
HACCP, see Hazard Analysis Critical Control Point (HACCP)
Hawaii, 5, 176, 235–7, 242–3
Hawaii Pride, 176
Hazard Analysis Critical Control Point (HACCP), 5–4, 193, 358, 376
Hazelnuts, effect of irradiation on, 328t
Health Canada, 56
Heat pasteurization, egg products and, 352
Hemiptera, 229
Hemolytic uremic syndrome (HUS), 4
Hepatitis A virus, 358
H. brasiliensis, 58
Hexanal, 213–14
Histamine, 57, 391
Hobart Model HCM40 Cutter-Mixer, 199
Horizontal transmission of microorganisms, 352
Horticultural commodities, fresh, phytosanitary irradiation for, 227–49
Hot-water treatment, 284–5
Hydrocarbons, 214
Hydrogen peroxide, and cell death, 212
Hydrogen sulfide, 214–15
Hydroxyl radicals, 213
Hypoxia, varietal testing and, 234
IBA-DynamiTrons, 17, 17f, 18f
Iceberg lettuce, irradiation for, 176–7, 256
IgE ELISA inhibition test, 387
ILU systems, 19–20
Immunization, 177, 179
IMPELA linac, 19, 19f
Indian mackerel, 344
Insect disinfection
 fresh and fresh-cut fruits and vegetables irradiation and, 287
as goal of food irradiation, 3, 29, 99
irradiation of nuts and, 318–19, 323–4
Insects
 artificial inoculation of, 232–3
 large-scale confirmatory testing of, 230t, 231t
radiotolerance of, phytosanitary treatment and, 228–34
Insulating Core Transformers (ICT), 16
Intensity modulation, in radiation therapy, 432
Interim Commission on Phytosanitary Measures (ICPM), 245
International Agency for Research on Cancer (IARC), 81, 89
International Atomic Energy Agency, 124
International Commission on Microbiological Specifications for Foods (ICMSF), 338
International Consultative Group on Food Irradiation (ICGFI), 237
International Fresh-Cut Produce Association, 272
International harmonization, phytosanitary treatment and, 224–5
International Organization for Standardization (ISO), 101
International Plant Protection Convention (IPPC), 238, 240, 244–5
International standards for food irradiation, 13, 21
International Standards for Phytosanitary Measures (ISPM), 238, 245
Ionization chambers, 103
Ionizing radiation (IR), 76, 148, 353
potential applications of, 385–99
biogenic amines reduction, 390–91
boiled extracts from cooking, use of, 398–9
chlorophyll b breakdown, 393
color improvement of plant extracts, 393–4
for development of traditional fermented foods, 397–8
E. sakazakii control in infant formula, 394
food-related bacteria in meat products, control of, 394–6
fresh produces and dairy products, safety of, 396–7
nutritional conditions and food quality, improvement of, 399
Index

reduction of food allergies, 386–7
reduction of phytic acid and increase in antioxidant activity, 391–2
sea food safety, 396
VNAs and residual nitrite reduction, 387–90

IPPC, see International Plant Protection Convention (IPPC)
IR, see Ionizing radiation (IR)
Irradiated foods, 148. See also Food irradiation
commercial acceptance of, 177–8
marketing of, 176–7
packaging of, 47–52
toxicological safety of, 53–67

Irradiated ground beef, 56, 176. See also Ground beef, irradiated
Irradiated Ground Beef Education Initiative, 190

Irradiation, 174, 210, 228. See also Food irradiation
basic concepts of, 10–12
to control food-related bacteria in meat products, 394–6
effects of, on food packaging materials, 160–61
of fresh and fresh-cut fruits and vegetables and, 271–88, 396–7
meat industry and, 210
of nuts, 317–31
of packaging materials, 147–68
of ready-to-eat meat products, 197–205
reasons for limited use of, in food industry, 408
for sea food safety, 396
Irradiation odor, 81
Irradiation of packaging materials, in contact with food, 147–68
ISO/ASTM standards, 101, 106–7, 430
Japan, 235, 242, 297
Joint FAO/IAEA/WHO Expert Committee, 240
Journal of the American Dietetic Association, 180

Kilogram (kg), 11
Kilogram (kGy), 11
Kilowatt (kW), 11
Kimpchi, 398

 Klebsiella pneumoniae, sprout-associated outbreaks and, 305–4
Koa seedworm (Cryptophlebia illepida), 244
Koch Model KL-50 Smokehouse, 199

Latex gloves, 416
L-band systems, 19
Legal perspective, on food irradiation, 407–19
claim for punitive damages, 417–18
eggsell plaintiff rule, 416–17
liability arising from irradiated foods, 418–19
liability for manufacture of defective food product and, 409–14
negligence claim, 414–17
possible existing legal duty to use irradiated food and, 414–18
rule of strict liability and, 409–10
Legumes, raffinose family oligosaccharides in, elimination of, 92
Lentil (Lens culinaris), 296. See also Seeds and sprouts, irradiation of

 Lepidoptera, 229, 237–8
Limulus amoebocyte lysate-gram negative bacteria (LAL-GNB), 124, 125t, 138
Linacs, 17–19
Lipid oxidation in meat, irradiation and, 213–14
Lipid peroxidation, in irradiated nuts, 325–9
Lipids, 77
radiation chemistry of, 77–9
radioytic products from, detection of, 134–7, 136f, 137f
Liquid chromatography-MS (LC-MS), 160, 166

Liquid whole egg (LWE), 352
ionizing radiation of, 359
microbial lethal effect of, 360
physicochemical properties of IR LWE, 360
quality of IR LWE, 360
Listeria, 192
and electronic pasteurization, 428
 Listeria monocytogenes, 3, 212, 258, 280, 356, 395
foodborne illness problems by, 198
in seafood, 338–9. See also Seafood, irradiation of
sprout-associated outbreaks and, 301–3, 309
stress adaptation by, 340
Litchi fruit moth (Cryptophlebia ombrodelta), 244
Logit, insect irradiation studies and, 253
Lotus seeds, irradiation of, 309–10
Low-dose irradiation of fresh and fresh-cut produce, antimicrobial application of, 255–66
biofilm-associated pathogens and, 260–61
combination with sanitizers and, 264–5
influence of plant variety on, 264
internalization of bacteria and, 258–60
and mild thermal treatment, 265
postirradiation recovery and regrowth, 261–2
produce microbiology and, 257–8
treatment parameters for, 262–4
Lucigenine, 131
Luminescence, 129–31, 130f
Luminol, 131
Lychee (Litchi chinensis), 238

2-Methyl butanal, 215

3-Methyl butanal, 215
2-Methylcyclobutanone, 58
Machine speed, 37
Malfunction doctrine, 411
Mamonaldryde (MDA), 56, 83
Mango (Mangifera indica), 238, 241
irradiated, 176
Mango seed weevil (*Sternochetus mangiferae*), 235
Manufacturing defect, 410–11
Mass-processing rate, 11
Maximum pest limit, definition of, 236
Mazetti v. Armour & Company, 409
MB, see Methyl bromide (MB)
Mealybugs, 239
Measurement management system, 103
Meat thermometer, 180
Mediterranean fruit fly, 235, 237, 242
Melon fruit fly, 237, 242
Mercaptomethane, 215
Methanethiol, formation of, 81, 81f, 82f
Methionine, 80
Methyl bromide (MB), 242–3, 319
effect of, on ozone layer, 5
Methyl mercaptan, 214
Methyl thioacetate, 215
Microbial reduction, as goal of food irradiation, 3–4
Microcidal effect, 211–13
Microwave linear accelerators, 17–19
Migration modeling, 163–4
Milk, pasteurized, 177, 179
Minimally processed foods, 272
Minnesota Model, of consumer acceptance, 189–91
Mitochondrial DNA (mtDNA), 133
Modified atmosphere packaging (MAP), 257, 261–3, 273, 280, 286–7
electronic pasteurization and, 432
Mold growth, irradiation and, 524–5
Monte Carlo calculations, 11, 14
Monte Carlo simulations, 22, 24
Montreal Protocol, 5, 242–3
Montreal Protocol on Ozone Depleting Substances, 319
Moritzia peregrina, 92
Multi-Vac A300 Vacuum Packager, 199, 200
Mung bean (*Phaseolus aureus*), 296. *See also Seeds and sprouts, irradiation of Mustard (*Sinapis alba*), 296. *See also Seeds and sprouts, irradiation of Mutagenicity of cooked meats, 54
irradiation and, 51
Mutation, 54
Mycotoxins, reduction of, by irradiation, 89–92
1-Octene, 215
NAFTA, see North American Free Trade Agreement (NAFTA)
NAPPO, see North American Plant Protection Organization (NAPPO)
NAPPO standard, 245
National Advisory Committee on Microbiological Criteria for Foods (NACMCF), 304
National Cattlemen's Beef Association, 188–9
National Institute of Standards and Technology (NIST), 103
National Physical Laboratory (NPL), 103
National School Lunch Program, 374
irradiated ground beef for, 373–82
NDMA, see Nitrosodimethylamine (NDMA)
Negligence, 414–15
Nematodes, 229
New Zealand, 5
Nitrosamines, formation of, 54
irradiation and, 57
Nitrosodimethylamine (NDMA), 57, 388–90
Nitrosopyridine (NPR), 57, 388–90
N-nitrosamines, 591
Nonmortality treatment, of quarantine pests, 242
Nordion Tote irradiator, 39, 39f, 40f
Noroviruses, 427
Nonmortality treatment, of quarantine pests, 242
North American Free Trade Agreement (NAFTA), 244
North American Plant Protection Organization (NAPPO), 244–5
Norwalk virus, 338
NPYR, see Nitrosopyridine (NPR)
Nucleic acids, radiolytic products from, detection of, 132–4, 134f
Nuts, 317–18
health benefits of, 318
irradiation of, 317–31
advantages of, 330
aflatoxins and, 324–5
chemical and sensory, 325–9
contamination with pathogens and, 320–23
effect of, on nut allergenicity, 329–30
farming and harvesting and, 318
insect disinfestation and, 318–19, 323–4
microbial contamination and, 319–20
molds and, 324–5
pathogen inactivation and, 325
research in, 330–31
O-tyrosine, 131
Oxidation–reduction potential (ORP), 219
Oxygen, varietal testing and, 234
Oxymyoglobin (oxyMb), 217
Ozone, 229
effect of methyl bromide on, 5
methyl bromide and, 319
Index

Phytosanitary irradiation, for fresh horticultural commodities, 227–49
developing irradiation quarantine treatments and, 228–34
generic treatments and, 236–40
prohibit 9 efficacy and alternatives and, 234–6
regional and international harmonization and, 244–5
regulatory aspects of irradiation and, 240–42
trade and, 245–9
USDA regulations and, 242–4

variety testing and, 234
Pine nuts, effect of irradiation on, 328
Pistachios, effect of irradiation on, 328
Plodia interpunctella, 229, 323–4
Plum curculio (Conotrachelus nenaphur), 244
Point of use (POU) filtration devices, 429
Polyethylene; electron beam penetration in, 13–14
Polymeric materials, irradiation of, 157–9
Polyploidy, 51
Poly saccharides, irradiation of, 83–4
Polyunsaturated fatty acids (PUFA), 215–16
Potassium benzoate, 56
Precision dose delivery system, 41, 42f
Premarket approval, 48
Primary-standard dosimetry systems, 103
Probit analysis, insect irradiation studies and, 235
Probit 9 treatment, 234–6
Process validation, dosimetry and, 110–17
Product, defective, 411
Product dose mapping, dosimetry and, 115–16
Programmable logic controller (PLC), 36
Propylene oxide (PPO), 319
Proteins; radioisotopic products from, detection of, 131
Protozoan pathogens, electronic pasteurization for, 428
Pseudomonas, 288
Public Citizen, 377, 418
Pulse field gel electrophoresis (PFGE), 297
Punitive damages, 417–18
Putrescine, 57, 391
Quality
of fresh and fresh-cut fruits and vegetables, 272
irradiation of fresh and fresh-cut fruits and vegetables and, 271–88. See also Low-dose irradiation of fresh and fresh-cut produce; antimicrobial application of Quality changes in meat by irradiation, 213–19
color changes and, 216–19
control of off-odor production and color changes and, 220–22
future research on, 222
lipid oxidation and, 213–14
mechanisms and prevention of, 209–22
microcidal effect and, 211–13
off-odor production and, 214–16
Quality parameters, analysis of, 272

Packaging, 6
double, 221
regulation of, 47–52
role in odor of irradiated meat, 215
Packaging materials, for irradiation of prepackaged foods, 147–68
current authorizations of, 149–56
via TOR exemption, 154t, 155t, 156t
evaluating irradiation in presence of oxygen, 159–67
analysis for RPs, 161–2
approaches to testing, 165
assumption of 100% migration, 162–3
dietary exposure to RPs, 162
identification of RPs, 166–7
irradiation effects, 160–61
migration modeling, 163–4
model adjuvant-polymer systems, 165
safety assessment of RPs, 164
thermal degradation experiment, 165
list of, 151t, 152t
list of foods permitted to be irradiated and, 150t
radiation-induced chemical changes in, 157–9
chain scission of polymers, 157–8
cross-linking of polymers, 157–8
role of AOs, 158–9
Pallet irradiator, 38–40
Palletron rotational X-ray irradiation system, 22–3, 23f, 25f
Palletron system, 22
Pallets of food, irradiation of, 6
Panoramic Dry Storage Irradiator, 43–5, 44f
Papaya, 238, 242
Parallelism, insect irradiation studies and, 235
Pasteurization, 177–9
critics of, 178
Pasteur, Louis, 177
Patulin, reduction of, by irradiation, 91–2
Peanuts, 318
effect of irradiation on, 327t
Pea (Pisum sativum), 296. See also Seeds and sprouts, irradiation of
Pecan nuts, effect of irradiation on, 328
Pectinmethyl esterase, 82
Pectins, degradation of, 84
Penetrometer, 272
Performance qualification (PQ), dosimetry and, 111–17
process variation, 116–17
product dose mapping, 115–16
reference monitoring location, 117
target doses, 117
Petitions, FDA, 48–50
Phenolic compounds, impact of irradiation on, 282–4
β-phenylethylamine, 391
Phosphine, 519
Photostimulated luminescence (PSL), 124
Phytic acid, 391–2
Index

Quarantine pest, 228
Quinoa (Chenopodium quinoa), 296. See also Seeds and sprouts, irradiation of
Rad, 11
Radiation chemistry of food components, 75–93
 basic radiation effects and, 76–7
 furan formation from carbohydrates and, 84–6
 irradiation effect on enzymes and, 82–3
 radiolysis of lipids and, 77–9
 radiolysis of proteins and, 80
 radiolysis of vitamins and, 86–8
 trans fat formation and, 79–80
 undesirable compounds reduction by irradiation and, 88–93
 acrylamide, 88–9
 aflatoxin, 89–91
 antinutritional compounds, 92–3
 fumonisins, 91
 furan, 88–9
 mycotoxins, 89–92
 patulin, 91–2
 volatile sulfur compounds formation and, 80–82
Radiation technology, 10. See also Food irradiation
 choice of, 10, 30
 comparison of, 45–6
Radiation tolerance, varietal testing and, 234
Radicals
 alkyl, 158
 free, 76–7, 80, 104, 126, 157, 211
 hydroxyl, 213
 peroxyl, 158
Radio-frequency accelerators, 19–21
Radiolysis
 of carbohydrates, 83–4
 of proteins, 80
 of vitamins, 86–8
 of water, 76–7
Radiolysis of water, 212
Radiolysis reactions, in irradiated nuts, 329
Radiolytic products (RPs), 149, 160
 analysis for, 161–2
 from carbohydrates, 132
 dietary exposure to, 162
 identification of, 166–7
 from lipids, 134–7
 from nucleic acids, 132–4, 134f
 primary, 124
 from proteins, 131
 safety assessment of, 164
 secondary, 124
 stable, 151–7
Radish (Raphanus sativus), 296. See also Seeds and sprouts, irradiation of
 Raffinose family oligosaccharides in legumes, elimination of, 92
Ready-to-eat (RTE) meat, irradiation of, study on, 197–205
 materials and methods for bacterial isolates, 199–200
 D_{10} values, 201–2
 enumeration of bacteria, 201
 gamma irradiation, 200–201
 inoculation of RTE meats, 200
 preparation of inoculum, 200
 processing of beef bologna, 199
 RTE meats, 198–9
 statistical analysis, 202
 storage study, 201
 results and discussion, 202–5
Red cabbage, 296. See also Seeds and sprouts, irradiation of
 Red color in irradiated meat, 217
Reference monitoring location, dosimetry and, 117
Reference-standard dosimetry systems, 103–4
Regional harmonization, phytosanitary treatment and, 244–5
Regulation
 generic, 49–50
 of irradiated foods and packaging, 47–52
Research and technical challenges in electronic food pasteurization, 425–33
Respiration rate, irradiation and, 273
Rhodotron accelerators, 20–21, 20f
Rice (Oryza sativa L.), 296. See also Seeds and sprouts, irradiation of
 Richard B. Russell National School Lunch Act, 376
Right to recover for product-related injury, 409
Routine (or working) dosimetry systems, 104
 RPs, see Radiolytic products (RPs)
Rye (Secale cereale), 296. See also Seeds and sprouts, irradiation of
The Safety and Nutritional Adequacy of Irradiated Foods, 55
 Safety track, food
 Salmonella, 5, 184, 192, 212, 258, 306, 338, 374–6, 395, 413
 contamination of nuts with, 320, 325
 eggs and, 352–6
 and electronic pasteurization, 428
 foodborne illness problems by, 198
 sprout-associated outbreaks and, 296–7, 302
Salmonella anatum, 260
Salmonella Mutagenicity Test (SMT), 64
Salmonella typhimurium, 65
Salted sea bream (Sparus aurata), 342
Satin, Morton, 182, 191, 193
S-band systems, 18
Scalade, 239
Scavenger, 211
School
 foodborne illnesses in, 374–6
 regulatory allowance and specifications of irradiated foods for, 376–8
 School meal programs, 374
 Seafood, irradiation of, 357–46
 competing microflora and, 345
 irradiation for fish products, 340–44
 Listeria monocytogenes as significant contaminant of seafood and, 338–9
Index

and physical, chemical, and sensory changes, 344–5
Risk for botulism and, 346
Stress adaptation of organism and, 339–40
Seafood salad safety, 339
Seeds and sprouts, irradiation of, 295–310
combination treatments and, 308
decontamination of pathogens and, 304–5
evaluation after treatment, 305
pathogens and, 302–4
B. cereus, 303
enterohemorrhagic E. coli, 302
Klebsiella, 303
L. monocytogenes, 302–3
Salmonella, 302
Shigella, 303
Y. enterocolitica, 305
radiation dose to reduce pathogens
on seeds, 305–8
on sprouts, 308–9
source of contamination and, 301–2
sprout-associated outbreaks and, 296–301, 298t, 299t, 300t
Sensitizer, 211
Sesame (Sesamum indicum), 296. See also Seeds and sprouts, irradiation of
Sharwil avocados, 236
Shell life
extension of, as goal of food irradiation, 3
irradiation of fresh and fresh-cut fruits and vegetables and, 271–88. See also
Low-dose irradiation of fresh and fresh-cut produce, antimicrobial application of
Shells eggs, ionizing radiation of, 353–9
and functional properties, 358–9
and internal quality, 356–8, 359f
microbial lethal effect of, 353–6
and physicochemical properties, 358
Shiga-toxin producing E. coli (STEC), sprout-associated outbreaks by, 297
Shigella, 338, 375
sprout-associated outbreaks and, 303
Shuffle and dwell system, 32
Silver chromatography, 139
Single gel microelectrophoresis, 124
Sitrotroga cerealella, 229
Smoked fish, L. monocytogenes in, 339
Sodium lactate, 345
Soy (Glycine max), 296. See also Seeds and sprouts, irradiation of
Specific heat, 58
Spectrophotometer, 272
Spelt (Triticum spelta), 296. See also Seeds and sprouts, irradiation of
Spermidine, 57, 391
Spermine, 57, 391
Spices, 177
Spinach, irradiation for, 176–7, 256
Sprouts of seeds, 295–6. See also Seeds and sprouts, irradiation of
Staphylococcus aureus, 212, 302
Stationary irradiation, 41
Sternochelus mangiferae, 235
Streptococcus, contamination of nuts with, 320
Stress adaptation, 340
Strict liability, 409–14
modern rule of, 410
origins of, 409–10
product defects and, 410–11
Structure-activity relationship (SAR) analysis, 164
Sugars, irradiation of, 85
Sulfur compounds
odor of, in irradiated meat, 215
volatile, formation of, 80–81, 81f, 82f
Sulfur dioxide, 215
Sunflower (Helianthus annuus), 296. See also Seeds and sprouts, irradiation of
SureBeam, 2, 4
Sweet potato weevil (Omp RHISA anastomosalis), 244
Sweet potato weevil (Cylas formicarius elegantulus), 244
Target doses, dosimetry and, 117
Taste of fresh fruits and vegetables, impact of irradiation on, 278–81
Tauxe, Dr. Robert, 179–81
Tea, green, 386, 393
Temperature rise, dose versus, 12
Tephritid fruit flies, 231, 234, 236–8, 244
Texas A & M University (TAMU) study, on consumer willingness-to-buy irradiated ground beef, 185–4
Texture
analysis of, 272
of fresh-cut fruits and vegetables, irradiation and, 276–8
Thermal capacity, 12
Thermal pasteurization, 4
Thin-skilled plaintiff rule, 416–17
Threshold of Regulation (TOR) exemption, 148, 153, 154t, 155t, 156t
Thrips, 239
Thunnus thynnus (tuna), 399
Thymine glycol, 132
Thysanoptera, 229
Toluene, 56
Tortricid moths, 239
Total aerobic count (TAC), warm water treatment and, 285
Total ascorbic acid, 281
Total carotenoid content, 282–4
Tote box irradiator, 40–41, 40f
Toxicological safety of irradiated foods, 53–67
2-ACBs and, 57–67
amines and, 56–7
benzene and, 56–7
diet and tumor promotion and, 67
food irradiation and, 54–6
formaldehyde and, 56–7
Toxoplasma gondii, electronic pasteurization for, 428
Traceability, 107
Trade, phytosanitary treatment and, 245–9
Index

Trans-fats
 effect of irradiation on, 51
 formation of, 79–80
Transfer-standard dosimeters, 104
Transovarian transmission of microorganisms, 352
Tree nuts, 318
Trichinella, 184
Trimethyl sulfoxide, 215
Tryptamine, 57, 391
Tryptic Soy Agar (TSA), 200
Tumor promoters, 54
Tumor suppressor genes, 54
Tyramine, 591

Ultraviolet (UV) radiation, 10
Uninterruptible power supply (UPS), 56
Unity rule, 11, 14
USDA, 376
 regulations of, phytosanitary treatment and, 242–4
USDA-Animal Plant Health Inspection Service (APHIS), 5, 237
USDA Framework Equivalency Work Plans (FEWPs), 176
USDA-FSIS, 4
US Department of Health and Human Services, 50
US Food and Drug Administration (USFDA), 13, 21, 22
US General Accounting Office (GAO) survey, foodborne illness outbreaks in schools, 375–6

Variable energy attenuators, 432
Varietal testing, phytosanitary treatment and, 234
Vegetables
 blanched/preserved, 272
 fresh and fresh-cut irradiation of, 271–88
 fresh-cut, 272
 vertical transmission of microorganisms, 352
Vibrio, 3
Vibrio fischeri, 65
Vibrio parahaemolyticus, 338
Vibrio vulnificus
 and electronic pasteurization, 428

Vitamin B1 (thiamine), 87
Vitamin C, impact of irradiation on, 281–2
Vitamin E, 86–7
Vitamins, radiolysis of, 86–8
Vitek Automicrobial System, 200
Vivirad, 16
VNAs, see Volatile N-nitrosamines (VNAs)
Volatile food extracts, detection of, 131–2
Volatile N-nitrosamines (VNAs), 386–8
 reduction of, 388–90
Volatile sulfur compounds
 formation of, 80–81, 81f, 82f
 odor thresholds of, 82t
Walnuts, 318
 effect of irradiation on, 327t
Warehouses, cold storage, 6
 water electron penetration in, 13–14
 radiolysis of, 76–7
West Indian sweet potato weevil (*Euscepes postfasciatus*), 244
Wheat (*Triticum aestivum*), 296. See also Seeds and sprouts, irradiation of
 Wood products, and phytosanitary treatments, 246
World Health Organization (WHO), 51, 55, 210, 377
WTO-SPS Agreement, 245

X-ray facilities, 21–4, 25f
X-rays, 21–2, 76. See also Electron beam and X-ray technologies, advances in, for food irradiation
Yeast DEL Assay, 66
Yersinia enterocolitica, 204
 foodborne illness problems by, 198
 sprout-associated outbreaks and, 303
Yersinia pestis, 204
 yield ratio, 305
Yogurts, 397

Zero-risk society, 178
Zero-tolerance policy
 Escherichia coli and, 4
 for *L. monocytogenes* in RTE foods, 338
Zollers, Frances, 192