CONTENTS

Preface xiii
Acknowledgments xix

1 Introduction 1

1.1 Historical Background 3
1.2 Basic Experimental Approach 7
1.3 Description of Electrostatic Spinning 9
 1.3.1 Droplet Generation 10
 1.3.2 Taylor’s Cone Formation 13
 1.3.3 Launching of the Jet 14
 1.3.4 Elongation of Straight Segment 16
 1.3.5 Whipping Instability Region 18
 1.3.6 Solidification into Nanofiber 22
1.4 Nanofiber Application Areas 23
 1.4.1 Filtration and Protective Apparel 24
 1.4.2 Tissue Scaffolding and Drug Delivery 25
 1.4.3 Nanocomposites 25
 1.4.4 Sensor Applications 26

2 Introduction to Polymer Solutions 27

2.1 Average Molecular Weight 28
2.2 Selecting Solvents: Solubility Parameter 31
2.3 Thermodynamic Criterion for Solubility 35
 2.3.1 Change in Entropy 36
 2.3.2 Change in Enthalpy (ΔH_{mix}) 39
2.4 Macromolecular Models 41
2.5 Viscosity of Dilute Polymer Solutions 45
2.6 Concentrated Polymer Solutions 50
7.2.1.1 Collagen and Elastin 199
7.2.1.2 Fibrinogen 202
7.2.1.3 Silk 203
7.2.1.4 Chitin/Chitosan 206
7.2.1.5 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 208
7.2.2 Synthetic Polymers 208
7.2.2.1 Polyglycolides (PGA) 209
7.2.2.2 Polylactides (PLA) 210
7.2.2.3 Poly(e-caprolactone) (PCL) 211
7.2.3 Scaffolding with Stem Cells 216
7.3 Other Applications 218
7.3.1 Wound Care Applications 218
7.3.2 Immobilized Bioactive Moieties on Nanofibers 220
7.4 Future Directions 222

8 Applications of Nanofiber Mats 225
8.1 Introduction to Air Filtration 225
8.1.1 Nanofiber Filter Performance 232
8.1.2 Filters with Nanofibers 233
8.2 Nanofiber Sensors 235
8.2.1 Gravimetric Sensors 236
8.2.2 Conductivity Sensors 237
8.2.3 Optical Sensors 240
8.3 Inorganic Nanofibers 241
8.3.1 Sol–Gel Chemistry 241
8.3.2 Oxide Nanofibers 242

9 Recent Developments in Electrospinning 249
9.1 Nanofibers with Surface Porosity 249
9.1.1 Extraction of a Component from Bicomponent Nanofibers 250
9.1.2 Phase Separation During Electrospinning 252
9.2 Core–Shell Nanofibers 257
9.2.1 Coaxial Electrospinning 258
9.2.2 Core–Shell Geometry by Post-Treatment of Nanofibers 263