Contents

1. Fourier analysis
 1.1 Overview and terminology
 1.2 Analysis and synthesis
 1.3 Example data sets
 1.4 Statistical properties of the periodogram
 1.5 Further important topics in Fourier analysis
 Appendix 1.A Subroutine for anx
 Appendix 1.B Sum of complex exponentials
 Appendix 1.C Distribution of harmonic variances
 Appendix 1.D Derivation of Equation 1.42
 Problems
 References

2. Linear systems
 2.1 Input–output relationships
 2.2 Evaluation of the convolution integral
 2.3 Fourier transforms for analog data
 2.4 The delta function
 2.5 Special input functions
 2.6 The frequency response function
 2.7 Fourier transform of the convolution integral
 2.8 Linear systems in series
 2.9 Ideal interpolation formula
 Problems
 References
3. Filtering data 143
 3.1 Recursive and nonrecursive filtering 144
 3.2 Commonly used digital nonrecursive filters 150
 3.3 Filter design 159
 3.4 Lanczos filtering 161
 Appendix 3.A Convolution of two running mean filters 173
 Appendix 3.B Derivation of Equation 3.20 176
 Appendix 3.C Subroutine sigma 177
 Problems 180
 References 182

4. Autocorrelation 183
 4.1 Definition and properties 184
 4.2 Formulas for the acvf and acf 188
 4.3 The acvf and acf for stationary digital processes 192
 4.4 The acvf and acf for selected processes 195
 4.5 Statistical formulas 201
 4.6 Confidence limits for the population mean 206
 4.7 Variance of the acvf and acf estimators 211
 Appendix 4.A Generating a normal random variable 215
 Problems 216
 References 221

5. Lagged-product spectrum analysis 223
 5.1 The variance density spectrum 223
 5.2 Relationship between the variance density spectrum and the acvf 226
 5.3 Spectra of random processes 230
 5.4 Spectra of selected processes 232
 5.5 Smoothing the spectrum 236
 Appendix 5.A Proof of Equation 5.11 239
 Appendix 5.B Proof of Equation 5.12 240
 Problems 241
 References 243

Index 245