Index

a posteriori confidence interval,
 limits 41–4
a priori confidence interval,
 limits 39–43
actual response function 159
aliased spectrum 51–2
aliasing 48–54
amplitude 13–14
amplitude density 111–12, 135–6
analog data
 autocorrelation 186–7
 autocovariance function 188–9
 formulas 192
analog record, finite 4, 5
analog record, infinite 5–6
autocorrelation and
 autocovariance 183–4
acvf and acf for stationary digital
 processes 192–5
confidence limits for population
 mean 206
 first-order autoregression
 example 208–11
 white noise example 206–8
definition and properties 184–5
analog data 186–7
digital data 187
formulas
acs for analog and digital
 data 192
acvfs for analog and digital
 data 188–9
mean square error of acvf
 estimators 189–92
selected processes
 first-order autoregression
 196–8
 second-order autoregression
 199
 white noise 195
 white noise test 199–201
statistical formulas 201
 mean and variance 204–6
 variance of the mean 202–3
variance of acvf and acf estimators
 derivation 211–13
 first-order
 autoregression 214–15
 white noise 213–14
autocorrelation function (acf) 184
 properties 186
 variance of estimators
 derivation 211–13
 first-order
 autoregression 214–15
 white noise 213–14
autocovariance function (acvf) 184
analog data 188–9
digital data 189
variance of estimators
derivation 211–13
first-order
autoregression 214–15
white noise 213–14
mean square error of estimators 189–92
relationship with variance density spectrum 226–30
selected processes
first-order autoregression 196–8
second-order autoregression 199
white noise 195
band-pass filter 146, 169–72
band-stop filter 146
beginning effect 208–9, 211
cardinal interpolation formula 137
chi-square variable 23
chi-square distribution 32
circular autocovariance function (acvf) 214
complex conjugate 71
complex exponentials, sum of 86
complex numbers 71–2
confidence intervals 33–5
convolution integral 103
evaluation 104
first-order linear system 106–10
interpretation 104–6
physical realizability 110
Fourier transform 128–30
convolution of two running mean filters 173–6
cosine filter 155–6
cosine window 238
covariability 26
covariance 26
expectation 31
degrees of freedom (dof) 201
delta function 113–18
design response function 160
deterministic data sets 24
difference filter 156–8
diffraction function 113, 114
136, 137
digital data
autocorrelation 187
autocovariance function 189
formulas 192
digital record, finite 4, 5
digital record, infinite 6
Dirac delta function see delta function
discrete Fourier transform pairs 73
effective degrees of freedom (dof) 203
equivalent degrees of freedom (dof) 203
estimator 90–1
expectation 23, 27
analog data 30
covariance 31
digital data 27–30
filtering data 143
commonly used digital nonrecursive filters 150–1
cosine filter 155–6
difference filter 156–8
running mean filter 151–4
triangular filter 154
filter design 159–61
Lanczos filtering 161
application 167–72
mathematical development 162–4
INDEX

results 165–7
low-pass, high-pass, and band-pass
filters 145–7
preserving/removing mean value of
time series 147–50
recursive and nonrecursive
filtering 144
analog data 144
digital data 144–5
relationship between low-pass and
high-pass filters 158–9
finite analog record 4, 5
finite digital record 4, 5
finite time series
preserving/removing mean
value 149–50
folding frequency 49
Fourier analysis 1–2
analysis and synthesis
amplitude and phase
representation 13–14
formulas 6–8
Fourier coefficients 8–13
total and harmonic variances 13
example data sets
hourly air temperatures 20–1
paradrop days 18–20
rectangular signal
periodogram 21–3
terrain heights 14–18
further topics 47–8
aliasing, spectrum folding and
Nyquist frequency 48–54
complex representation 69–74
padding data with zeroes 77–82
periodic signal detection
59–65
periodic signal detection, effect of
data length 65–9
spectrum at nonharmonic
frequencies 74–7
spectrum windows 54–9, 92–3
overview
amplitude coefficients 2
classification of time series 4–6
periodogram derivation 3–4
periodogram statistical
properties 23
concepts and terminology
23–7
confidence intervals 33–5
distribution of variance at a
harmonic 32–3
expectation 27–31
smoothed periodogram 35–8
testing white noise null
hypothesis 38–47
Fourier line variance spectrum 3
Fourier transform pairs 69–70
Fourier transform pairs, digital 73
frequency response function 122–3,
131
first-order linear system 123–6
integration 126–8
fundamental period 2

gain 122
gain factor 122
gain function 122, 131
Gaussian white noise 26–7
general linear process 194
generalized functions 113
Gibbs (oscillation) phenomenon 161,
162, 163, 165–7
harmonic analysis see Fourier analysis
harmonic frequencies 2
harmonic variance 13, 86–91
high-pass filter 146–7, 169
hourly air temperatures Lanczos
filtering 167–72
hourly air temperatures Fourier
analysis 20–1
hydrograph 183
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ideal filter</td>
<td>146</td>
</tr>
<tr>
<td>ideal interpolation formula</td>
<td>132–7</td>
</tr>
<tr>
<td>ideal interpolation function</td>
<td>137</td>
</tr>
<tr>
<td>imaginary part of a complex number</td>
<td>71</td>
</tr>
<tr>
<td>impulse function</td>
<td>118–19</td>
</tr>
<tr>
<td>impulse response function</td>
<td>119</td>
</tr>
<tr>
<td>independent variables</td>
<td>31</td>
</tr>
<tr>
<td>infinite analog record</td>
<td>5–6</td>
</tr>
<tr>
<td>preserving/removing mean value</td>
<td>148</td>
</tr>
<tr>
<td>infinite digital record</td>
<td>6</td>
</tr>
<tr>
<td>preserving/removing mean value</td>
<td>149</td>
</tr>
<tr>
<td>infinite Dirac comb</td>
<td>133</td>
</tr>
<tr>
<td>integrating device</td>
<td>126–8</td>
</tr>
<tr>
<td>joint probability density function</td>
<td>31</td>
</tr>
<tr>
<td>lag</td>
<td>186</td>
</tr>
<tr>
<td>lag window</td>
<td>224</td>
</tr>
<tr>
<td>lagged-product spectrum analysis</td>
<td></td>
</tr>
<tr>
<td>first-order autoregression</td>
<td>232–4</td>
</tr>
<tr>
<td>first-order autoregression example</td>
<td>235–6</td>
</tr>
<tr>
<td>linear processes</td>
<td>231–2</td>
</tr>
<tr>
<td>population spectrum</td>
<td>230–1</td>
</tr>
<tr>
<td>relationship between variance density</td>
<td></td>
</tr>
<tr>
<td>spectrum and acvf</td>
<td>226–30</td>
</tr>
<tr>
<td>second-order autoregression</td>
<td>234</td>
</tr>
<tr>
<td>spectrum smoothing</td>
<td>236–9</td>
</tr>
<tr>
<td>variance density spectrum</td>
<td>223–6</td>
</tr>
<tr>
<td>white noise</td>
<td>232</td>
</tr>
<tr>
<td>Lagrangian integral time scale</td>
<td>224</td>
</tr>
<tr>
<td>Lanczos filtering</td>
<td>161</td>
</tr>
<tr>
<td>application</td>
<td>167–72</td>
</tr>
<tr>
<td>mathematical development</td>
<td>162–4</td>
</tr>
<tr>
<td>results</td>
<td>165–7</td>
</tr>
<tr>
<td>l’Hopital’s rule</td>
<td>10, 86, 113</td>
</tr>
<tr>
<td>linear process spectra</td>
<td>231–2</td>
</tr>
<tr>
<td>linear systems</td>
<td>101</td>
</tr>
<tr>
<td>definition</td>
<td>103</td>
</tr>
<tr>
<td>convolution integral</td>
<td>104</td>
</tr>
<tr>
<td>first-order linear system</td>
<td>106–10</td>
</tr>
<tr>
<td>Fourier transform</td>
<td>128–30</td>
</tr>
<tr>
<td>interpretation</td>
<td>104–6</td>
</tr>
<tr>
<td>physical realizability</td>
<td>110</td>
</tr>
<tr>
<td>Fourier transforms for analog data</td>
<td>110–12</td>
</tr>
<tr>
<td>frequency response function</td>
<td>122–3</td>
</tr>
<tr>
<td>first-order linear system</td>
<td>123–6</td>
</tr>
<tr>
<td>integration</td>
<td>126–8</td>
</tr>
<tr>
<td>ideal interpolation formula</td>
<td>132–7</td>
</tr>
<tr>
<td>in series</td>
<td>130–2</td>
</tr>
<tr>
<td>input–output relationships</td>
<td>102–4</td>
</tr>
<tr>
<td>special input functions</td>
<td>118</td>
</tr>
<tr>
<td>impulse function</td>
<td>118–19</td>
</tr>
<tr>
<td>step function</td>
<td>120–2</td>
</tr>
<tr>
<td>low-pass filter</td>
<td>145–7, 168–9</td>
</tr>
<tr>
<td>mathematical system</td>
<td>101</td>
</tr>
<tr>
<td>nondeterministic data</td>
<td>24, 26</td>
</tr>
<tr>
<td>nonrecursive filtering</td>
<td>144</td>
</tr>
<tr>
<td>analog data</td>
<td>144</td>
</tr>
<tr>
<td>commonly used digital filters</td>
<td>150–1</td>
</tr>
<tr>
<td>cosine filter</td>
<td>155–6</td>
</tr>
<tr>
<td>difference filter</td>
<td>156–8</td>
</tr>
<tr>
<td>running mean filter</td>
<td>151–4</td>
</tr>
<tr>
<td>triangular filter</td>
<td>154</td>
</tr>
<tr>
<td>digital data</td>
<td>144–5</td>
</tr>
<tr>
<td>low-pass, high-pass, and band-pass</td>
<td></td>
</tr>
<tr>
<td>filters</td>
<td>145–7</td>
</tr>
<tr>
<td>preserving/removing mean value</td>
<td>147–50</td>
</tr>
<tr>
<td>relationship between low-pass and high-pass filters</td>
<td>158–9</td>
</tr>
<tr>
<td>nonstationary process</td>
<td>26, 184</td>
</tr>
<tr>
<td>Nyquist frequency</td>
<td>49, 135, 137, 158</td>
</tr>
<tr>
<td>orthogonality of cosine and sine functions</td>
<td>8</td>
</tr>
</tbody>
</table>
INDEX

padding data with zeroes 77–82
paradrop days Fourier analysis 18–20
periodic components in data 1
periodogram analysis see Fourier analysis
periodograms
definition 3–4
concepts and terminology 23–7
distribution of variance at a harmonic 32–3
rectangular signal 21–3
smoothed periodogram 35–8
testing white noise null hypothesis 38–47
phase function 122, 131
phase shift 122, 131
physical realizability 109, 110
physical system 101
polar form of a complex number 72
population of data sets 24
principal part of aliased spectrum 52
probability density 112
probability density function (pdf) 24, 26, 30
probability density function (pdf), joint 31
probability distribution (pd) 24, 26
raised-cosine filter 155–6
random data 24
random process 25
random variable (rv) 24
 generation 215–16
real part of a complex number 71
realization of a population 24, 25
records
 finite analog 4, 5
 finite digital 4, 5
 infinite analog 5–6
 infinite digital 6
recursive filtering 144
analog data 144
digital data 144–5
red noise 198
reflection (mathematical) 104–6
running mean filter 151–4
 convolution of two filters 173–6
running mean of length n 35–6
serial correlation 183
sigma factor 161, 162, 164, 165
smoothed weight function 163
spectrum, definition 3
spectrum smoothing 236–9
spectrum windows 54–9, 224
stable system 103–4
stationary process 26
 acvf and acf for digital data 192–5
step function 120–2
stochastic data 24
stochastic process 25
superposition 103
symmetric weight function 37
system function 102
terrain heights Fourier analysis 14–18
time constant 108
time lag 186
time series
 classification 4–6
 definition 1
total variance 7, 13
transition band 163
translation (mathematical) 104–6
triangular filter 154, 173–6
 response function derivation 176–7
trigonometric form of a complex number 72
 Tukey window 238–9
unit impulse function 118
unit step function 120
unwindowed acvf 224
INDEX

variance 3
 harmonic 7, 13
 total 7, 13
variance density spectrum 5, 223–6
 relationship with acvf 226–30
variance transfer function 232
von Hann filter 155–6, 238
weight function 143
white noise 23, 26
 acf test 199–201
 acvf and acf 195
 confidence limits for population mean 206–8
lagged-product spectrum analysis 232
testing null hypothesis 38–42
mean autumn temperature example 42–4
mean monthly temperature example 44–7
variance of acvf and acf estimators 213–14
Whittaker’s sampling formula 137
Wiener–Khintchine relation 225, 231
windowed acvf 224