Contents

Series Preface .. xvii
Preface to Volume 3 xix
Abbreviations .. xxi
List of Chemical Names Used xxiii

1 Considerations of Industrial Fine Chemical Synthesis 1
 Mark W. Hooper 1
 1.1 Introduction
 1.2 Types of processes – flow charts 2
 1.2.1 Classical process 2
 1.2.2 General catalytic process 3
 1.3 Costs associated with use of catalysts 3
 1.3.1 Catalyst fabrication costs 3
 1.3.2 Intellectual property right (IPR) issues 6
 1.3.3 Separation costs 7
 1.3.4 Pre-reaction/immobilisation 7
 1.3.5 Post reaction – separation 8
 1.3.6 Industrial examples 9
 References 12

2 Alkylation and Allylation Adjacent to a Carbonyl Group 13
 2.1 The RuH$_2$(CO)(PPh$_3$)$_3$-catalysed alkylation,
 alkenylation and arylation of aromatic ketones via
 carbon-hydrogen bond cleavage
 Fumitoshi Kakiuchi, Satoshi Ueno and Naoto Chatani 14
 2.1.1 Preparation of carbonyldihydrotiris(triphenylphosphine)
 ruthenium 14
 2.1.2 Synthesis of 8-(2-triethoxysilanylethyl)-3,4-dihydro-2H-
 naphthalen-1-one 16
 2.1.3 Synthesis of 8-(1-methyl-2-trimethylsilanylviny1)-3,4-
 dihydro-2H-naphthalen-1-one 17
 2.1.4 Synthesis of 1-biphenyl-2-yl-2,2-dimethylpropan-1-one ... 18
2.1.5 Conclusion ... 19
References .. 21

2.2 Catalytic, asymmetric synthesis of \(\alpha,\alpha \)-disubstituted amino acids using a chiral copper-salen complex as a phase transfer catalyst

Michael North and Jose A. Fuentes ... 21

2.2.1 Synthesis of (chsalen) 22
2.2.2 Synthesis of copper(II) (chsalen) 23
2.2.3 Alkylation of alanine methyl ester Schiff base by chiral salen-metal catalysts, \(\alpha \)-benzyl-alanine methyl ester 24
2.2.4 Conclusion ... 26
References .. 27

2.3 Asymmetric phase-transfer catalysed alkylation of glycine imines using cinchona alkaloid derived quaternary ammonium salts

Barry Lygo and Benjamin I. Andrews 27

2.3.1 Synthesis of \((1S,2S,4S,5R,1'R)-1\)-(anthracen-9-ylmethyl)-5-ethyl-2-[hydroxy(quinolin-4-yl)methyl]-1-azoniabi-cyclo[2.2.2]octane bromide 28
2.3.2 Synthesis of \((1S,2S,4S,5R,1'R)-1\)-(anthracen-9-ylmethyl)-5-ethyl-2-[benzyloxy(quinolin-4-yl)methyl]-1-azoniabi-cyclo[2.2.2]octane bromide 29
2.3.3 Synthesis of \((2S)-\text{tert-butyl 2-amino-4-bromopent-4-enoate} \) 31
2.3.4 Conclusion ... 32
References .. 33

3 Asymmetric Alkylation or Amination of Allylic Esters 35

3.1 Synthesis and application in palladium-catalysed asymmetric allylic substitution of enantiopure cyclic \(\beta \)-iminophosphine ligands

Maria Zablocka, Marek Koprowski, Jean-Pierre Majoral, Mathieu Achard and Gérard Buono 36

3.1.1 Synthesis of \((2,6\text{-dimethyl-phenyl})-(1\text{-phenyl-2,3,3a,8a-tetrahydro-1H-1-phospha-cyclopenta[}\(\alpha \)inden-8-ylidene)-amines 1R\(_P\) \) 36
3.1.2 Synthesis of \((E)\text{-Methyl 2-carbomethoxy-3,5-diphenylpent-4-enoate} \) 37
3.1.3 Synthesis of benzyl(1,3-diphenylprop-2-enyl)amine 39
3.1.4 Conclusion ... 40
References .. 40

3.2 \((9H,9'O,H,10H,10'O,H,11H,11'H',13H,13'H,14H,14'O,H,15H,15'O\text{-perfluorotricosane-12,12'-diyl} \text{bis[(4S)-4-phenyl-2-oxazoline as a ligand for asymmetric palladium-catalysed alkylation of allylic acetates in fluorous media} \)

Jérôme Bayardon and Denis Sinou 40
Contents

3.2.1 Synthesis of 2-iodo-1-(1H,1',H,2H,2',H,3H,3',H-perfluoroctyl)-3-propanol ... 41

3.2.2 Synthesis of 3-(1H,1',H,2H,2',H,3H,3',H-perfluoroctyl)-1-propanol .. 42

3.2.3 Synthesis of 3-(1H,1',H,2H,2',H,3H,3',H-perfluoroctyl)-1-iodopropane .. 43

3.2.5 Synthesis of (E)-Methyl 2-carbomethoxy-3,5-diphenylpent-4-enoate .. 45

3.2.6 Conclusion ... 46

References .. 47

3.3 Facile synthesis of new axially chiral diphosphine complexes for asymmetric catalysis

Matthias Lotz, Gernot Kramer, Katja Tappe and Paul Knochel

3.3.1	Synthesis of (SFC)-1-[(S)-p-tolylsulfonyl]-2-[(o-diphenylphosphino)phenyl]ferrocene	47
3.3.2	Synthesis of (SFC)-1-diphenylphosphino-2-[(o-diphenylphosphino)phenyl]ferrocene	49
3.3.3	Conclusion ... 50	

References .. 51

3.4 Chiral ferrocenyl-imino phosphines as ligands for palladium-catalysed enantioselective allylic alkylations

Pierluigi Barbaro, Claudio Bianchini, Giuliano Giambastiani and Antonio Togni

3.4.1	Synthesis of the precursor (R)-1-[(S)-2-bromoferrocenyl] ethyldiphenylphosphine ... 52
3.4.2	Synthesis of key precursor (R)-1-[(S)-2-formylferrocenyl] ethyldiphenylphosphine ... 53
3.4.3	Synthesis of (R)-1-[(S)-2-ferrocenylidene-ethyl-imine]ethyldiphenylphosphine ... 54
3.4.4	Conclusion ... 55

References .. 56

4 Suzuki Coupling Reactions ... 59

4.1 Palladium-catalysed borylation and Suzuki coupling (BSC) to obtain β-benzo[b]thienyldehydroamino acid derivatives

Ana S. Abreu, Paula M. T. Ferreira and Maria-João R. P. Queiroz

| 4.1.1 | Synthesis of the E and Z isomers of the methyl ester of N-tert-butoxycarbonyl-β-bromodehydroaminobutyric acid | 60 |
| 4.1.2 | Synthesis of the methyl ester of N-tert-butoxycarbonyl-(Z)-[β-(2,3,7-trimethylbenzo[b]thien-6-yl]dehydro-baminobutyric acid | 62 |
4.2 Palladium-catalysed cross-coupling reactions of 4-tosylicoumarins and arylboronic acids: synthesis of 4-arylcoumarin compounds
Jie Wu, Lisha Wang, Reza Fathi and Zhen Yang
4.2.1 Synthesis of 4-tosylicoumarins
4.2.2 Synthesis of 4-arylcoumarin
4.2.3 Conclusion
References

4.3 Cyclopropyl arenes, alkynes and alkenes from the in situ generation of B-cyclopropyl-9-BBN and the Suzuki-Miyaura coupling of aryl, alkynyl and alkenyl bromides
Ramon E. Huertas and John A. Soderquist
4.3.1 Synthesis of 4-cyclopropylbenzaldehyde
4.3.2 Conclusion
References

4.4 One-pot synthesis of unsymmetrical 1,3-dienes through palladium-catalysed sequential borylation of a vinyl electrophile by a diboron and cross-coupling with a distinct vinyl electrophile
Tatsuo Ishiyama and Norio Miyaura
4.4.1 Synthesis of 2-(1-cyclopentenyl)-1-decene
4.4.2 Conclusion
References

4.5 Pd(OAc)$_2$/2-Aryl oxazoline catalysed Suzuki coupling reactions of aryl bromides and boronic acids
Bin Tao and David W. Boykin
4.5.1 Synthesis of 4-methoxybiphenyl
4.5.2 Conclusion
References

4.6 Palladium-catalysed reactions of haloaryl phosphine oxides: modular routes to functionalised ligands
Colin Baillie, Lijin Xu and Jianliang Xiao
4.6.1 Synthesis of 2-diphenylphosphinyl-2'-methoxybiphenyl via Suzuki coupling
4.6.2 Synthesis of 2-diphenylphosphino-2'-methoxybiphenyl
4.6.3 Conclusion
References

4.7 Bulky electron rich phosphino-amines as ligands for the Suzuki coupling reaction of aryl chlorides
Matthew L. Clarke and J. Derek Woollins
4.7.1 Synthesis of N-di-isopropylphosphino-N-methyl piperazine
4.7.2 Suzuki coupling reactions using isolated ligand and Pd$_2$dba$_3$·CHCl$_3$ as catalyst 83
4.7.3 In situ ligand preparation and application in Suzuki coupling of 3-fluorobenzene with phenylboronic acid ... 84
4.7.4 Conclusion ... 85
References .. 85

4.8 Arylation of ketones, aryl amination and Suzuki-Miyaura cross coupling using a well-defined palladium catalyst bearing an N-heterocyclic carbene ligand
Nicholas Marion, Oscar Navarro, Roy A. Kelly III and Steven P. Nolan ... 86
4.8.1 Synthesis of 1,2-diphenyl-ethanone by ketone arylation 86
4.8.2 Synthesis of dibutyl-p-tolyl-amine by aryl amination ... 88
4.8.3 Synthesis of 4-methoxybiphenyl 89
4.8.4 Conclusion ... 90
References .. 90

5 Heck Coupling Reactions 91
5.1 Palladium-catalysed multiple and asymmetric arylations of vinyl ethers carrying co-ordinating nitrogen auxiliaries: synthesis of arylated ketones and aldehydes
Peter Nilsson and Mats Larhed 92
5.1.1 Triarylation: synthesis of N,N-dimethyl-2-[1,2,2-(triaryl) ethenyloxy]ethanamines with subsequent hydrolysis furnishing 1,2,2-triaryl ethanones, Table 5.1........... 92
5.1.2 Terminal diarylation: synthesis of N,N-dimethyl-2-[2,2-diarylethenyloxy]ethanamine with subsequent hydrolysis furnishing diaryl ethanals Table 5.2............ 95
5.1.3 Asymmetric Heck arylation: synthesis of 2-aryl-2-methylcyclopentanone .. 97
Conclusion .. 99
References .. 99

5.2 Palladium-catalysed highly regioselective arylation of electron-rich olefins
Lijin Xu, Jun Mo and Jianliang Xiao 100
5.2.1 Synthesis of 1-acetonaphthone 100
5.2.2 Synthesis of 3-acetylbenzonitrile 102
Conclusion .. 104
References .. 104

5.3 1-[4-(S)-tert-Butyl-2-oxazolin-2-yl]-2-(S)-(diphenylphosphino) ferrocene as a ligand for the palladium-catalysed intermolecular asymmetric Heck reaction of 2,3-dihydrofuran
Tim G. Kilroy, Yvonne M. Malone and Patrick J. Guiry 104
5.3.1 Synthesis of N-[1-(S)-(Hydroxymethyl)-2,2-dimethyl-propyl]ferrocencarboxamide 106
5.3.2 Synthesis of [4-(S)-tert-butyl-2-oxazolin-2-yl]ferrocene .. 107
5.3.3 Synthesis of 1-[4-(S)-tert-butyl-2-oxazolin-2-yl]-2-(S)-(diphenylphosphino)ferrocene 108
5.3.4 Asymmetric phenylation of 2,3-dihydrofuran ... 110
Conclusion .. 112
References .. 112

6 Sonogashira Coupling Reactions .. 113
6.1 Nonpolar biphasic catalysis: Suzuki- and Sonogashira coupling reactions
Anupama Datta and Herbert Plenio .. 113
6.1.1 Nonpolar biphasic Sonogashira reaction of 4-bromoacetophenone and phenylacetylene to 1-(4-phenylethynylphenyl)-ethanone .. 114
6.1.2 Nonpolar biphasic Suzuki reaction for the synthesis of 1-biphenyl-4-yl-ethanone 115
Conclusion .. 116
References .. 116
6.2 Polystyrene-supported soluble palladacycle catalyst as recyclable catalyst for Heck, Suzuki and Sonogashira reactions
Chih-An Lin and Fen-Tair Luo .. 116
6.2.1 Synthesis of 3-bromo-4-methylacetophenone .. 117
6.2.2 Synthesis of 1-(3-bromo-4-methyl-phenyl)-ethanol .. 118
6.2.3 Synthesis of 3-bromo-4-methyl-styrene ... 120
6.2.4 Synthesis of 3-(diphenylphosphino)-4-methyl-styrene .. 121
6.2.5 Synthesis of trans-di(μ-acetato)-bis[3-(diphenylphosphino)-4-styryl]dipalladium(II) 122
6.2.6 Synthesis of polymer-supported palladacycle catalyst .. 123
6.2.7 Synthesis of 1-[4-(2-phenylethynyl)phenyl]ethan-1-one via Sonogashira reaction by the use of polymer-supported palladacycle catalyst .. 124
Conclusion .. 125
Reference .. 125

7 Cross-Coupling Reactions .. 127
7.1 Cross-coupling reaction of alkyl halides with Grignard reagents in the presence of 1,3-butadiene catalysed by nickel, palladium, or copper
Jun Terao and Nobuaki Kambe .. 128
7.1.1 Synthesis of nonylcyclopropane ... 128
7.1.2 Synthesis of 4-bromo-hexylbenzene ... 130
7.1.3 Synthesis of 1,1-diphenyl-1-nonene ... 131
7.2 Triorganoindium compounds as efficient reagents for palladium-catalysed cross-coupling reactions with aryl and vinyl electrophiles

**Luis A. Sarandeses and José Pérez Sestelo** 133

7.2.1 Preparation of triphenylindium 134
7.2.2 Synthesis of 4-acetylbiphenyl 134
7.2.3 Synthesis of 1,3-diphenyl-2-propen-1-one 136

Conclusion 137

References 138

7.3 Cross-coupling reactions catalysed by heterogeneous nickel-on-charcoal

**Bryan A. Frieman and Bruce H. Lipshutz** 138

7.3.1 Preparation of the heterogeneous catalyst: nickel-on-charcoal ... 139
7.3.2 Ni/C-catalysed Suzuki couplings: 2-cyanobiphenyl 140
7.3.3 Ni/C-catalysed aromatic aminations: N-(4-cyanophenyl)-morpholine 141
7.3.4 Ni/C-catalysed cross-couplings en route to allylated aromatics: toluene-4-sulfonic acid 2-(3,7,11,15,19,23,27,31, 35,39-decamethyltetraconta-2,6,10,14,18,22,26,-30, 34,38-decaenyl)-5,6-dimethoxy-3-methylphenyl ester (coenzyme Q10 precursor) 142
7.3.5 Ni/C-catalysed reductions of aryl chlorides 144
7.3.6 Microwave assisted Ni/C-catalysed cross coupling of vinyl zirconocenes and aryl halides: 1-octenyl-4-trifluoromethylbenzene ... 145

Conclusion 147

References 147

7.4 Carbon-carbon bond formation using arylboron reagents with rhodium(I) catalysts in aqueous media

**John Mancuso, Masahiro Yoshida and Mark Lautens** 147

7.4.1 Synthesis of (E)-2-[2-(2-methylphenyl)-1-hexenyl]pyridine ... 148
7.4.2 Synthesis of methyl (2EZ)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]acrylate 149
7.4.3 Synthesis of methyl (1S\(\^\circ\),4R\(\^\circ\),4aS\(\^\circ\),9S\(\^\circ\),9aS\(\^\circ\))-2,3,4,4a,9,9a-hexahydro-1H-1,4-methano-fluoren-9-ylacetate ... 151

References 153

8 Regioselective or Asymmetric 1,2-Addition to Aldehydes 155

8.1 Development of a highly regioselective metal-mediated allylation reaction in aqueous media

**Kui-Thong Tan, Shu-Sin Chng, Hin-Soon Cheng and Teck-Peng Loh** 156
8.1 Synthesis of 1-cyclohexylpent-3-en-1-ol using indium-mediated allylation

8.2 Synthesis of 1-cyclohexylpent-3-en-1-ol using tin-mediated allylation

8.3 Synthesis of 1-cyclohexylpent-3-en-1-ol using zinc-mediated allylation

Conclusion

References

8.2 Boronic acids as aryl source for the catalysed enantioselective aryl transfer to aldehydes

Jens Rudolph and Carsten Bolm

8.2.1 Preparation of (S)-4-tolyl-phenyl methanol

Conclusion

References

8.3 Jacobsen’s Salen as a chiral ligand for the chromium-catalysed addition of 3-chloro-propenyl pivalate to aldehydes: a catalytic asymmetric entry to syn-alk-1-ene-3,4-diols

Marco Lombardo, Sebastiano Licciulli, Stefano Morganti and Claudio Trombini

8.3.1 Synthesis of 3-chloro-propenyl pivalate

8.3.2 Synthesis of alk-1-ene-3,4-diols: Salen-Cr(II) catalysed addition of 3-chloro-propenyl pivalate to cyclohexanecarboxaldehyde

Conclusion

References

9 Olefin Metathesis Reactions

9.1 Highly active ruthenium (pre)catalysts for metathesis reactions

Syuzanna Harutyunyan, Anna Michrowska and Karol Grela

9.1.1 Synthesis of the ruthenium (pre)catalyst

9.1.2 Synthesis of 1-[(4-methylphenyl)sulfonyl]-2,3,6,7-tetrahydro-1H-azepine

Conclusion

References

9.2 A highly active and readily recyclable olefin metathesis catalyst

Stephen J. Connorn, Aideen M. Dunne and Siegfried Blechert

9.2.1 Synthesis of polymer supported catalyst (3)

9.2.2 Ring-closing metathesis of an acyclic diene and subsequent catalyst recovery/reuse

Conclusion

References

9.3 Stereoselective synthesis of L-733,060

G. Bhaskar and B. Venkateswara Rao

References
10 Cyclisation Reactions 181

10.1 Molecular sieves as promoters for the catalytic Pauson-Khand reaction
Jaime Blanco-Urgoiti, Gema Domínguez and Javier Pérez-Castells 182
10.1.1 Synthesis of 3αS*,5R*-5-hydroxy-3,3α,4,5-tetrahydrocyclopenta[a]naphthalen-2-one 182
Conclusion 185
References 185

10.2 Palladium(II)-catalysed cyclization of alkynes with aldehydes, ketones or nitriles initiated by acetoxy palladation of alkynes
Ligang Zhao and Xiyan Lu 185
10.2.1 Synthesis of 3-phenyl-3-hydroxy-4-(1'-acetoxy-hexylidene)tetrahydrofuran 186
10.2.2 Synthesis of dimethyl 3-acetylamino-4-butyrylcyclopent-3-ene-1,1-dicarboxylate 187
Conclusion 188
References 190

10.3 Rhodium(I)-catalysed intramolecular alder-ene reaction and syntheses of functionalised α-methylene-γ-butyrolactones and cyclopentanones
Minsheng He, Aiwen Lei and Xumu Zhang 190
10.3.1 Synthesis of (4-benzylidene-5-oxo-tetrahydro-furan-3-yl)-acetaldehyde 190
10.3.2 Synthesis of (3-oxo-2-pentylidene-cyclopentyl)-acetaldehyde 191
References 192

10.4 Rhodium-catalysed [2 + 2 + 2] cyclotrimerisation in an aqueous–organic biphasic system
Hiroshi Shinokubo and Koichiro Oshima 193
10.4.1 In situ preparation of a water-soluble rhodium catalyst from [RhCl(COD)]2 and trisodium salt of tris(m-sulfonatophenyl)phosphine (tppts) 193
10.4.2 Synthesis of 1,3,6,8,9,10,11,12,13-nonahydro-2,7-dioxacyclodeca[e]indene 194
Conclusion 195
References 196

10.5 Titanocene-catalysed transannular cyclisation of epoxygerm-acrolides: enantiospecific synthesis of eudesmanolides
Antonio Rosales, Juan M. Cuerva and J. Enrique Oltra 196
10.5.1 Preparation and titanocene-catalysed cyclization of epoxygermacrolide: synthesis of (+)-11β,13-dihydroerynosin .. 197
10.5.2 Titanocene-catalysed cyclization of epoxygermacrolide in aqueous medium .. 198
References ... 199

11 Asymmetric Aldol and Michael Reactions 201

11.1 Direct catalytic asymmetric aldol reaction of a α-hydroxyketone promoted by an Et₂Zn/linked-BINOL complex
Masakatsu Shibasaki, Shigeki Matsunaga and Naoya Kumagai 202
11.1.1 Synthesis of (2R,3S)-2,3-dihydroxy-1-(2-methoxyphenyl)-5-phenyl-1-pentanone by the first generation Et₂Zn/linked-BINOL = 2/1 complex 203
11.1.2 Synthesis of (2R,3S)-3-cyclohexyl-2,3-dihydroxy-1-(2-methoxyphenyl)-1-propanone by the second generation Et₂Zn/linked-BINOL = 4/1 complex with MS3A .. 205
Conclusion ... 207
References ... 208

11.2 Highly enantioselective direct aldol reaction catalysed by a novel small organic molecule
Zhuo Tang, Liu-Zhu Gong, Ai-Qiao Mi and Yao-Zhong Jiang 208
11.2.1 Synthesis of (S,S,S)-pyrrolidine-2-carboxylic acid (2'-hydroxyl-1',2'-diphenyl-ethyl)-amine (1) 208
11.2.2 Direct aldol reaction 209
Reference ... 210

11.3 Direct catalytic asymmetric Michael reaction of α-hydroxyketone promoted by Et₂Zn/linked-BINOL complex
Masakatsu Shibasaki, Shigeki Matsunaga and Naoya Kumagai 210
11.3.1 Synthesis of (2R)-2-hydroxy-1-(2-methoxyphenyl)-1,5-hexanedione by the first generation Et₂Zn/linked-BINOL = 2/1 complex 211
11.3.2 Synthesis of (2R)-2-hydroxy-1-(2-methoxyphenyl)-1,5-hexanedione by the second Et₂Zn/linked-BINOL = 4/1 complex with MS 3A 213
Conclusion ... 215
References ... 215

11.4 Catalytic enantioselective Michael reaction catalysed by well-defined chiral ruthenium-amido complexes
Masahito Watanabe, Kunihiko Murata, and Takao Ikariya 216
11.4.1 Synthesis of Ru[(R,R)-Tsdpn]([η⁶-arene]; Ru[(R,R)-Tsdpn](p-cymene), ((R,R)-TsDPEN = (1R,2R)-N-(p-toluenesulfonyl)-1,2-diphenylethlenediamine),
(p-cymene = \(\eta^6 \cdot 1\text{-CH}_3\text{-4-CH(CH}_3\text{)}_2\text{C}_6\text{H}_4 \))^{8b}, \text{Ru}[(R,R)-\text{Tsdpen\(\text{(hmb)} \)])}, \text{and Ru}[(R,R)-\text{Msdpen\(\text{(hmb)} \)])}

11.4.2 Synthesis of (S)-3-di(methoxycarbonyl)methyl-1-cyclopentanone from the Michael reaction of dimethyl malonate and 2-cyclopenten-1-one catalyzed by Ru[(R,R)-Tsdpen\(\text{(hmb)} \)])}

11.4.3 Synthesis of (S)-3-di(methoxycarbonyl)methyl-1-cyclopentanone from the Michael reaction of dimethyl malonate and cyclopentenone catalyzed by Ru[(R,R)-N-Msdpen\(\text{(hmb)} \)])}

11.4.4 Synthesis (S)-3-di(methoxycarbonyl)methyl-1-cyclohexanonone from the Michael reaction of dimethyl malonate and cyclohexanone catalyzed by Ru[(R,R)-Msdpen\(\text{(hmb)} \)])}

Conclusion
References

12 Stereoselective Hydroformylation, Carbonylation and Carboxylation Reactions

12.1 Ortho-diphenylphosphanylbenzoyl-(o-DPPB) directed diastereoselective hydroformylation of allylic alcohols

Bernhard Breit

12.1.1 Synthesis of 1RS-(\(\pm\))-(1-iso-propyl-2-methyl)prop-2-enyl\(\text{(2-diphenylphosphanyl)benzoate} \)])}

12.1.2 Synthesis of (1R*,2R*)-(\(\pm\))-(1-Isopropyl-4-oxo-2-methyl)butyl\(\text{(2-diphenylphosphanyl)-benzoate} \)])}

Conclusion
References

12.2 The synthesis and application of ESPHOS: A new diphosphorus ligand for the hydroformylation of vinyl acetate

Martin Wills and Simon W. Breeden

12.2.1 Synthesis of ortho-diazobromobenzene

12.2.2 Synthesis of ortho-(dichlorophosphine) bromobenzene

12.2.3 Synthesis of ortho-bis(dimethylamino) bromobenzene

12.2.4 Synthesis of 1,2-bis(dimethylaminophosphanyl) benzene

12.2.5 Synthesis of ESPHOS \(\text{(I}^{[2]} \)])}

12.2.6 Hydroformylation of vinyl acetate\(^{[3]} \)])}

Conclusion
References

12.3 Platinum-catalysed asymmetric hydroformylation of styrene

Submitted by Stefánia Cserépi-Szücs and József Bakos

CONTENTS xv
12.3.1 Rhodium-catalysed asymmetric hydroformylation of styrene ... 239
12.3.2 Synthesis of (4R,6R)-4,6-dimethyl-2-chloro-1,3,2-dioxaphosphorinane 240
12.3.3 Synthesis of (2R,4R)-2,4-bis[(4R,6R)-4,6-dimethyl-1,3,2-dioxaphosphorinane-2-yl]oxy]-pentane 241
12.3.4 Determination of optical purity: synthesis of mixture of 2-phenylpropionic acid and 3-phenylpropionic acid .. 243
12.4 Phosphine-free dimeric palladium (II) complex for the carbonylation of aryl iodides
C. Ramesh, Y. Kubota and Y. Sugi .. 244
12.4.1 Synthesis of the dimeric oximepalladacycle ... 244
12.4.2 Synthesis of phenyl biphenyl-4-carboxylate ... 245
Conclusion .. 247
Reference ... 247
12.5 Carboxylation of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical carbon dioxide
Tomoko Matsuda, Tadao Harada, Toru Nagasawa and Kaoru Nakamura .. 247
12.5.1 Construction of supercritical carbon dioxide reaction system 248
12.5.2 Carboxylation of pyrrole to pyrrole-2-carboxylate ... 249
Conclusion .. 250
References ... 250

Index ... 251