Contents

Preface xi
On-line Learning Support xv

1 Mathematics and Statistics in Science 1
 1.1 Data and Information 2
 1.2 Experimental Variation and Uncertainty 2
 1.3 Mathematical Models in Science 4

2 Scientific Data 7
 2.1 Scientific Numbers 8
 2.2 Scientific Quantities 15
 2.3 Chemical Quantities 20
 2.4 Angular Measurements 31

3 Equations in Science 41
 3.1 Basic Techniques 41
 3.2 Rearranging Simple Equations 53
 3.3 Symbols 63
 3.4 Further Equations 68
 3.5 Quadratic and Simultaneous Equations 78

4 Linear Relationships 87
 4.1 Straight Line Graph 89
 4.2 Linear Regression 99
 4.3 Linearization 107

5 Logarithmic and Exponential Functions 113
 5.1 Mathematics of e, ln and log 114
 5.2 Exponential Growth and Decay 128

6 Rates of Change 145
 6.1 Rate of Change 145
 6.2 Differentiation 152
7 **Statistics for Science**

7.1 Analysing Replicate Data 162
7.2 Describing and Estimating 168
7.3 Frequency Statistics 176
7.4 Probability 190
7.5 Factorials, Permutations and Combinations 203

8 **Distributions and Uncertainty** 211

8.1 Normal Distribution 212
8.2 Uncertainties in Measurement 217
8.3 Presenting Uncertainty 224
8.4 Binomial and Poisson Distributions 230

9 **Scientific Investigation** 243

9.1 Scientific Systems 243
9.2 The ‘Scientific Method’ 245
9.3 Decision Making with Statistics 246
9.4 Hypothesis Testing 250
9.5 Selecting Analyses and Tests 256

10 **t-tests and F-tests** 261

10.1 One-sample t-tests 262
10.2 Two-sample t-tests 267
10.3 Paired t-tests 272
10.4 F-tests 274

11 **ANOVA – Analysis of Variance** 279

11.1 One-way ANOVA 279
11.2 Two-way ANOVA 286
11.3 Two-way ANOVA with Replication 290
11.4 ANOVA Post Hoc Testing 296

12 **Non-parametric Tests for Medians** 299

12.1 One-sample Wilcoxon Test 301
12.2 Two-sample Mann–Whitney U-test 305
12.3 Paired Wilcoxon Test 308
12.4 Kruskal–Wallis and Friedman Tests 311

13 **Correlation and Regression** 315

13.1 Linear Correlation 316
13.2 Statistics of Correlation and Regression 320
13.3 Uncertainty in Linear Calibration 324

14 **Frequency and Proportion** 331

14.1 Chi-squared Contingency Table 332
14.2 Goodness of Fit 340
14.3 Tests for Proportion 343
15 Experimental Design 349
 15.1 Principal Techniques 349
 15.2 Planning a Research Project 357

Appendix I: Microsoft Excel 359
Appendix II: Cumulative z-areas for Standard Normal Distribution 363
Appendix III: Critical Values: t-statistic and Chi-squared, χ^2 365
Appendix IV: Critical F-values at 0.05 (95 %) Significance 367
Appendix V: Critical Values at 0.05 (95 %) Significance for: Pearson’s Correlation Coefficient, r, Spearman’s Rank Correlation Coefficient, r_S, and Wilcoxon Lower Limit, W_L 369
Appendix VI: Mann–Whitney Lower Limit, U_L, at 0.05 (95 %) Significance 371

Short Answers to ‘Q’ Questions 373
Index 379