Index

Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page numbers indicate illustrations.

A
absolute command, 348
absolute rate, 241, 245
access control lists (ACLs), 64, 338
access egress
 buffer pools
 role, 146–147
 size, 392
 defined, 69
end-to-end traffic management, 72
QinQ-tagged frame marking, 137–139
queue overrides, 314–315
queuing points, 151
SAP-egress policy and traffic mapping, 111–113
shapeless policing, 299–300
shaping, 299
ToS marking, 79
access ingress
 buffer pools
 role, 146–147
 size, 392
 defined, 69
discarding for, 295
end-to-end traffic management, 69–71, 150
forwarding subclasses, 120–122
hardware queue enabling options, 193–194
 multipoint shared queuing, 206–209, 208
 scaling, 194–198, 197
 service queuing, 198–201, 199
 shared queuing, 201–206, 203
 verification commands, 210–216
IP packet marking, 125–127
QinQ-tagged frames, 135–137
queues, 149
 modes, 123–124, 156
 overrides, 314–315
 priority, 82
queuing points, 151
SAP-ingress policy and traffic mapping, 83–87
 buffer-related parameters, 160–161
 classifying traffic, IP and MAC criteria, 91–97
 classifying traffic, multiple field values, 97–99
 classifying traffic, ToS fields, 88–91
default forwarding class and default priority, 87
marking IP packets, 125–127
queues within, 155–156
traffic classification criteria, 387–388
traffic mapping at, 77–78
access LAGs, 306–309
access ports
demarcation points, 67–69
LAGs for, 306
ACLs (access control lists), 64, 338
action objects, 341–346
actions, time-triggered, 341–347
adapt-qos command, 308
adaptation rules, 221–224, 237
adaptive playout buffers, 368
admin set-time command, 339
administrative rates in scheduling, 220
AF (Assured Forwarding) PHBs
classes, 38–39
DiffServ group, 24
drop precedence, 124–125
agg-rate-limit option, 272–273
aggregated traffic
 DiffServ, 22–23
LAGs, 271, 304–306
 in design, 392
 IOM redundancy, 309
 SLAs with, 306–309
 verification commands, 309
alarms in SAA tests, 332
Alcatel-Lucent 5620 Service Aware Manager, 7–8
Alcatel-Lucent 7450 Ethernet Switch Service, 7
Alcatel-Lucent 7710 Service Router, 7
Alcatel-Lucent 7750 Service Router, 7
Alcatel-Lucent Service Router Portfolio (ALSRP), 6–8, 60, 60
 end-to-end traffic management, 69–72, 71
 enforcement sequence, 64–65, 65
 fast-path complexes, 62–64, 62, 64
 forwarding classes and queuing priorities, 80–81
 input/output module, 61–64, 64
 media-dependent adaptors, 61–62
 network demarcation points, 66–69, 66, 68
 switch fabric and central processor module, 60–61
 angle brackets (<> in commands, 116
Apipe services, 10
Application-Specific Integrated Circuits (ASICs), 63
 applications
categorizing, 373–374
identifying, 373
 service needs analysis, 386–391
APS (Automatic Protection Switching), 271

INDEX 417
arbitrators in scheduling, 220–221
association rules, 224–225, 237
dual arbitrator mode, 227–230, 228
single arbitrator mode, 225–227, 226
ASICs (Application-Specific Integrated Circuits), 63
Assigned Internet Protocol Numbers, 94–95
categorizing applications into, 374
mapping, 376
service requirements, 371
Assured Forwarding (AF) PHBs
classes, 38–39
DiffServ group, 24
drop precedence, 124–125
assured forwarding class, 80
Asynchronous Transfer Mode (ATM), 61
auto-expedite rule, 229, 232–233, 400
Automatic Protection Switching (APS), 271
bandwidth
assured data, 371
best-effort data, 371
BTV, 368
data traffic, 370
dual arbitrator mode, 230
hierarchical scheduling for, 250–252, 400
LAGs for, 304
single arbitrator mode, 227
SLAs, 12
TCP streams, 173–175, 175
transactional data, 371
video streams, 369
video telephone services, 388
virtual scheduler, 252–254, 253
complex examples, 259–262, 259, 261
dynamics, 262–263
simple examples, 254–258, 255–258
banking case study, 372–373, 372
access ingress and access egress, 392
categorizing applications, 373–374
miscellaneous considerations, 392
network ingress and network egress, 384
network policies, 374–377, 375
queue parameters and Network-Queue policies, 378–383
reserved portion of access buffer pools, 392
reserved portion of network buffer pools, 384
scheduler policies, 386
service needs of applications
identifying, 373
SAP-egress policies, 390–391
SAP-ingress policies, 386–390
shared portion of access buffer pools, 392
shared portion of network buffer pools, 384–385, 385
Behavior Aggregates (BAs), 21
best-effort (BE) servers with PHBs, 37–38
best-effort data and services, 5–6
categorizing applications into, 374
forwarding classes, 80–81, 371
mapping, 376
network egress, 105
service requirements, 371–372
best-effort rule, 230, 233
best practices in design, 362–364
biased round robin scheduling, 228–229, 228
Broadband Service Aggregator (BSA)
functional groups of nodes, 374
hierarchical scheduling, 396–400
Broadband Service Router (BSR), 374
broadcast services, 9
broadcast TV (BTV) channels
hierarchical scheduling, 396–398, 400–403
traffic, 368–369
BSA (Broadband Service Aggregator)
functional groups of nodes, 374
hierarchical scheduling, 396–400
BSR (Broadband Service Router), 374
BTV (broadcast TV) channels
hierarchical scheduling, 396–398, 400–403
traffic, 368–369
buffers and buffer management, 171. See also queues
buffer pools
access, 392
network, 384–385, 385
queues in, 149, 149
roles, 146–148, 149
in enforcement sequence, 65
overview, 50–51, 50
parameters
CBS, 152–153
configuring, 160–161
example, 154
HPO, 154
MBS, 153
partitions, 144–145, 145
buffer pools, 146–149, 149
end-to-end traffic flow, 150–151, 150
playout, 368–369
RED. See Random Early Detection (RED) in buffer
management
size. See CBS (committed buffer size)
Slope policy, 180–184, 183
TAF, 178–179
tail drop, 171–172, 172
TCP slow-start algorithm, 172–175, 173–175
verification commands, 184–190
bursty traffic, 14
CAC (connection admission control), 18
calendar option, 342–344
Canonial Format Indicator (CFI) field, 43

case studies
- banking. See banking case study
- hierarchical scheduling. See hierarchical scheduling
 (HQoS)
categorizing applications, 373–374

CBS (committed buffer size)
- access policies, 161
determining, 380
HPO, 381–382
Network-Queue policy, 163, 166
policing by discarding, 292
policing by tagging, 295
policy overrides, 314
queue parameters, 378
queues, 148, 152–154
shapeless policing, 299
shaping, 298
soft policing, 297
video telephone services, 388

CE (customer edge) nodes, 67, 68
CFI (Canonical Format Indicator) field, 43
children in hierarchical scheduling, 251–252
CIR (committed information rate), 80, 82
determining, 380
hierarchical scheduling, 251–253, 255, 260, 264–265
HPO, 381
policing by discarding, 292–295
policing by tagging, 295–297
policy overrides, 314
queue parameters, 378
scheduling, 220–226, 226, 230, 234–236
service queueing, 199
shapeless policing, 299–300
shaping, 298
soft policing, 297–298
video telephone services, 388
cir-level parameter, 251, 253, 255, 260, 262
cir-weight parameter, 251–253, 258, 260–261, 264–265
class-based forwarding, 22
class of service (CoS)
categorizing applications into, 373–374
DiffServ, 21

Class Selector (CS)
DiffServ, 24
PHBs, 38
classification, traffic. See traffic classification
clear command, 333
clear port command, 238–239
clear qos scheduler-stats command, 285
clear service statistics id command, 242
CLI (command line interface), 8, 81
closest rule, 223
CMAs (Compact MDAs), 62
Code Points (CPs), 35
codecs, BTV, 368
color-aware profiling, 122–124
color-aware profiling, 122–124
command line interface (CLI), 8, 81
commercial networks, 364
committed bandwidth, 251–262, 255–257
committed buffer size. See CBS (committed buffer size)
committed information rate. See CIR (committed information rate)
common management systems, 7–8
Compact MDAs (CMAs), 62
complexity in design, 365
conformance, 82, 146
congestion and congestion avoidance
datagram loss from, 14
RED for, 175
connection admission control (CAC), 18
Control (Ctrl) field, 42
control planes, 8, 61, 320–321, 355, 359, 366
Controlled Load Service, 19
convergence, 17–18
Differentiated Services model, 20
framework, 20–23, 21, 23
MPLS, 25–27, 26
per-domain behaviors, 24–25
per-hop behaviors, 24, 37–40
Integrated Services model, 18–20

CoS (class of service)
categorizing applications into, 373–374
DiffServ, 21
cost-efficiency, design for, 363
count command, 343
CPE (customer premises equipment)
SAA tests for, 319
service requirements, 387
cpe-ping tests, 320–321, 333
CPs (Code Points), 35
cron command, 341–347
CS (Class Selector)
DiffServ, 24
PHBs, 38
CTRL (Control) field, 42
CU (Currently Unused) bits, 34
customer edge (CE) nodes, 67, 68
customer experience, enhancing, 364
customer premises equipment (CPE)
SAA tests for, 319
service requirements, 387

D
daily command, 347–348
data Link Layer, 9
data traffic service requirements, 369–372
datagrams
defined, 6
delay, 13
loss, 14
profile states, 81–82
queueing and buffer management, 50–51, 50
rate-limiting, 52–53, 53
in traffic classification, 50
date stamps, 346
daylight saving time information, 339
declarations
queues, 84–85
rate, 294–295
defaults
buffer pool configurations, 148
forwarding class and priority, 87
Network QoS policy, 103–104
Network-Queue policy, 163–164
PHBs, 37–38
SAP-egress policy, 111
SAP-ingress policy, 83–84
Delay subfield, 33
delays
datagrams, 13
determining, 381
queue buffer size, 152
demarcation points, 66–69, 66, 68
denial of service (DoS) attacks, 40
dependencies, time, 338
deployment, validating before, 366
description command in time triggered actions, 343
description parameter in Scheduler policy, 264
design, 361–362
best practices, 362–364
case study, 372–373, 372
access ingress and access egress, 392
categorizing applications, 373–374
miscellaneous considerations, 392
network ingress and network egress, 384
network policies, 374–377, 375
queue parameters and Network-Queue policies, 378–383
reserved portion of access buffer pools, 392
reserved portion of network buffer pools, 384
scheduler policies, 386
service needs of applications, identifying, 373
service needs of applications, SAP-egress policies, 390–391
service needs of applications, SAP-ingress policies, 386–390
shared portion of access buffer pools, 392
shared portion of network buffer pools, 384–385, 385
commercial networks, 364
enterprise/organizational networks, 364–365
hierarchical scheduling, 398–399
maintenance and troubleshooting, 364–366
service requirements, 366–372
validating before deployment, 366
Destination Address field
IPv4, 32
IPv6, 33

 Destination MAC field, 41
 Destination Service Access Point (DSAP) field, 42
 DF (Do not Fragment) bit, 31
 Differentiated Service Code Point values. See DSCP
(Differentiated Service Code Point) values
 Differentiated Services (DiffServ) QoS model, 18, 20
 framework, 20–23, 21, 23
 MPLS, 25–27, 26
 per-domain behaviors, 24–25
 per-hop behaviors, 24, 37–40
 Digital Subscriber Line Access Multiplexer (DSLAM), 396–398, 400
discarding, policing by, 290, 292–295, 293, 379
distance, datagram loss from, 14
distribute option, 307–308
dns tests, 320, 322–323
Do not Fragment (DF) bit, 31
documentation, 365–366
Domain Name System (DNS) entities, tests for, 319
DoS (denial of service) attacks, 40
double-tagged frames, 132–133, 132
drops, AF PHBs
precedence handling, 124–125
probabilities, 39
DS domains, 20
DSAP (Destination Service Access Point) field, 42
DSCP (Differentiated Service Code Point) values
access ingress packet marking, 126
assured data, 371
best-effort data, 371
data traffic, 370
DiffServ, 21, 23–24
functional groups of nodes, 375
network control traffic, 366–367
network egress, 78, 104–106
network ingress, 107, 109
pools, 35–36
traffic mapping, 90–91
transactional data, 371
VoIP, 367
DSLAM (Digital Subscriber Line Access Multiplexer), 396–398, 400
dual arbitrator scheduling mode, 225, 227–230, 228
dynamic buffer management, 143

E
E-LSP (EXP-inferred-class LSPs), 25
ECN (Explicit Congestion Notification), 33, 36–37
edges, network, 66
EF (Expedited Forwarding)
DiffServ, 23–24
PHBs, 39–40
egress
access. See access egress
MDA buffer units, 145
multi-service-site assignment configuration, 272–273
network. See network egress
SAP-egress. See SAP-egress policies; SAP-egress queues
802.1p field
markings, 44–45
network egress, 78, 104–108
Q tagging, 137–139
SAP egress, 112
TCI, 43
trafﬁc mapping, 88
802.1Q tagging, 133–135
element failures, datagram loss from, 14
datagram loss from, 14
end-time command, 343
end-to-end trafﬁc
buffering aspect, 150–151, 150
management, 69–72, 71
mapping and marking, 77–79, 77
enforcement sequence, 64–65, 65
Enhanced Subscriber Management, 314
element failures, datagram loss from, 14
end-time command, 343
enterprise/organizational networks, 364–365
entry ID values, 91–92
EtherType ﬁeld, 41
event conﬁguration, 331–333
EtherType ﬁeld, 41
evolution of routers, 8
excess bandwidth distribution pass, 253
multipoint shared, 208–209
service, 200
shared, 204–205
Ethernet frame formats
fields, 40–43, 41, 43
MAC criteria for, 96
Ethernet ports, 168–169, 168–169
EtherType ﬁeld, 41
event conﬁguration, 331–333
Ethernet ports, 168–169, 168–169
Flags ﬁeld, 31
FCs.
See forwarding classes (FCs)
FCS (Frame Check Sequence) ﬁeld, 42
filtering
in enforcement sequence, 65
overview, 54, 54
tod-suite, 350
first-in, ﬁrst-out (FIFO) service basis, 5
Flags ﬁeld, 31
flow diversity with LAGs, 307
flow identiﬁcation in Integrated Services model, 18
Flow Label ﬁeld, 32
flow latency tests, 318
Floyd, Sally, 175
ﬂuid dynamics analogy, 12
force keyword, 122
forwarding classes (FCs)
ALSBRP, 80–81
assured data, 371
best-eﬀort data, 371
data traﬃc, 370
DiﬀServ, 21–22
functional groups of nodes, 375–376
hierarchical scheduling case study, 399–401
HPO, 381
mapping, 378, 380, 399–400
SAP-ingress policy, 87
in scheduling, 220
subclasses, 120–122
transactional data, 371
VoD, 369
forwarding subclasses, 120–122
Fsripe services, 10
Fragment Offset ﬁeld, 31
Frame Check Sequence (FCS) ﬁeld, 42
frame payload size, 13
frame-relay, 6, 8, 10–11, 18, 25, 80
functional groups of nodes, 374–377, 375
G
G.114 standard, 367
G.711 standard, 368
G.723.1 standard, 368
G.729 standard, 368
gaming service requirements, 368
Generic Routing Encapsulation (GRE), 78, 128–129
global synchronization of TCP streams, 174–175, 174
groups of nodes for network policies, 374–377, 375
Guaranteed Service, 19
H
hardware addresses in Ethernet frames, 41
hardware queue enabling options at access ingress, 193–194
multipoint shared queuing, 206–209, 208
scaling, 194–198, 197
service queuing, 198–201, 199
shared queuing, 201–206, 203
veriﬁcation commands, 210–216

F
fabric core, 60
fast-path complexes, 62–64, 62, 64
FCs. See forwarding classes (FCs)
FCS (Frame Check Sequence) ﬁeld, 42
head-of-line blocking, 194, 198, 202

header fields
- Ethernet, 40–43, 41, 43
- IPv4, 30–32, 31
- IPv6, 32–33, 32
- MPLS shim, 44–45, 45

Header Checksum field, 31

Hierarchical scheduling (HQoS), 8, 51, 249–251
case study, 395–396
- basic scheduling, 400–402, 401
- configuration, 399–400
- design requirements, 398–399
- details, 396–398, 397–398
- single-tier virtual scheduling, 402–404, 403
- two-tier virtual scheduling, 404–406, 405, 407

in design, 392
- parameters, 251–252
- policies. See Scheduler policies
- schedulers, 63

verification commands, 276
- monitor scheduler-stats, 285–287
- scheduler-hierarchy, 279–283
- scheduler-name, 276–277
- scheduler-policy, 277–279
- scheduler-stats, 283–285

virtual scheduler bandwidth distribution, 252–254, 253
complex examples, 259–262, 259, 261
- dynamics, 262–263
- simple examples, 254–258, 255–258

high-priority arbitrators, 227–230, 228

high-priority forwarding classes, 80–81

high priority only buffers. See HPO (high priority only)
- buffers
- high-priority queues
- LFI, 310–312, 311
- network egress, 105–106
- traffic classification, 49

High-speed in RED, 176, 181

High Speed Internet (HSI)
- hierarchical scheduling case study, 396–406
- service delivery changes, 5

Hop Limit field, 33

HPO (high priority only) buffers
- buffer-related access policies, 161
- buffer space, 154–155
- determining, 381–383
- policing by tagging, 295–296
- policy overrides, 314
- queue parameters, 378
- shapeless policing, 299
- tail drop buffer management, 172
- video telephone services, 388

HQoS: See hierarchical scheduling (HQoS)

HSI (High Speed Internet)
- hierarchical scheduling case study, 396–406
- service delivery changes, 5

hydraulic flow analogy, 12

INDEX
IOMs (input/output modules), 61
fast-path complexes, 220
LAGs for, 304, 307–308
layout, 62–64, 62, 64
redundancy, 309
IP criteria in traffic classification, 91–97
IP (Internet Protocol), 323
headers, 30–37, 31–32, 34
packet marking, 125–127
ToS field. See ToS (Type of Service) field
IP/MPLS networks, 8
IP precedence bits, 89
Ipipe services, 10
IPTV (Internet Protocol Television), 396
IPv4 header fields, 30–32, 31
IPv6 header fields, 32–33, 32
ISPs (Internet Service Providers), 4
ISSLL (Integrated Services over Specific Link Layers) working group, 19
J
Jacobson, Van, 175
jitter
BTV, 368
as network restriction, 13
SAA tests for, 318
streaming video, 369
traffic, 299, 369
video telephone services, 388
VoIP, 368
jitter-event metric, 331
K
KISS (keep it short and simple) principle, 365
L
L-LSP (Label-inferred-class LSPs), 25
label edge router (LER), 325
Label field, 45
Label-inferred-class LSPs (L-LSP), 25
label switched paths (LSPs), 20, 319–320, 325–327
label switched routers (LSRs), 325
LACP (Link Aggregation Control Protocol), 309
LAGs (Link Aggregation Groups), 271, 304–306
in design, 392
IOM redundancy, 309
SLAs with, 306–309
verification commands, 309
Link Fragmentation and Interleaving (LFI), 310–313, 311
link option, 307–308
local area networks (LANs), 5, 40
loss concealment algorithm, 368
loss distance, 14
loss-event metric, 331
loss period, 14
low-priority arbitrators, 227–230, 228
low-priority queues
LFI, 310–312, 311
network egress, 105–106
traffic classification, 49
low-queuing occupancy, 40
low-slope in RED, 176, 181
Lower Effort Per-Domain Behavior (LE PDB), 24
lsp-ping tests, 320, 325–326
lsp-trace tests, 320, 326–327
LSPs (label switched paths), 20, 319–320, 325–327
LSRs (label switched routers), 325
MAC (media access control) addresses
Ethernet frames, 41
tests for, 319–320, 327–328
traffic classification based on, 91–97
mac-ping tests, 320, 327–328
mac-trace tests, 320, 327–328
maintainability, design for, 364–366
MANs (metropolitan area networks), 40
mapping
at access egress, 111–113
at access ingress, 77–78, 83–87
classifying traffic, IP and MAC criteria, 91–97
classifying traffic, multiple field values, 97–99
classifying traffic, ToS fields, 88–91
default forwarding class and default priority, 87
media access control (MAC) addresses
 Ethernet frames, 41
tests for, 319–320, 327–328
traffic classification based on, 91–97
metering in rate-limiting, 290
metropolitan area networks (MANs), 40
MF (More Fragments) bit, 31
microflows in DiffServ, 22
min rule, 223–224
mission-critical data, 370
monitor port command, 241–242
monitor scheduler-stats command, 285–287
monitor service id command, 245
More Fragments (MF) bit, 31
MPLS (Multi Protocol Label Switching), 20
 DiffServ, 25–27, 26
 EXP field for, 78
 functional groups of nodes, 375
 network egress marking, 78, 128–129
 SAA tests for, 319
 shim header, 44–45, 45
 multi-service sites
 hierarchical scheduling, 250
 Scheduler policy, 267, 270–275, 270, 274
tod-suite, 350–351
multicast traffic
 BTV, 397
 queues, 163–164, 236
 services, 9
multiple field values, traffic classification based on, 97–99
multiplexing gain, 146–147, 149, 163
multipoint keyword
 Network-Queue policy, 165
 SAP-egress queue creation, 159
 multipoint queues and services
 buffering aspects, 150
 defined, 9
 forwarding classes mapping to, 378, 380
 scaling options, 195
 Multipoint Shared Queuing option, 196, 206–210, 208

N

names
 policy
 Network-Queue, 162
 Scheduler policy, 263
 Slope, 180
 subclasses, 121–122
negotiated bandwidth in SLAs, 12
Network control class of service
 categorizing applications into, 374
 mapping, 376
network convergence, 17–18
 Differentiated Services model, 20
 framework, 20–23, 21, 23
 MPLS, 25–27, 26
per-domain behaviors, 24–25
per-hop behaviors, 24, 37–40
Integrated Services model, 18–20
network egress
buffer pools
reserved portion, 384
role, 146
shared portion, 384–385, 385
end-to-end traffic management, 71–72
marking at, 78–79, 104–106, 128–131
networking points, 69
queuing points, 151
shaping at, 299
network ingress
buffer pools
reserved portion, 384
shared portion, 384–385, 385
end-to-end traffic management, 72
mapping at, 79
networking points, 69
queuing points, 151
Network Layer, 9
network management, 332, 336, 367, 387
Network Processor Arrays (NPAs), 63
Network QoS policies, 102–104
application, 110
creating, 374–377, 375
functional groups of nodes, 377
mapping
network egress, 79, 104–106
network ingress, 79, 106–109
with ports, 67
Network-Queue policies
application, 166–170, 168–169
configuring, 378–383
scheduling parameters, 235–238
unicast queues, 203
working with, 162–166
Network Time Protocol (NTP), 340
networks
bandwidth utilization in TCP streams, 173–175, 175
core network service requirements, 366–367
core network (convergence). See network convergence
decommissioning points, 66–69, 66, 68
deelement failures, datagram loss from, 14
demarcation points, 67–69
LAGs for, 306
service restrictions, 11, 11
datagram loss, 14
delay, 13
handling, 14–15
jitter, 13
throughput, 12–13
traffic policing, 291–298, 293, 296
Next Header field, 32
nodal scheduling, 231–233, 231
nodes, network, 66–67
noise, 14
NPAs (Network Processor Arrays), 63
NTP (Network Time Protocol), 340
Null Service, 19

O

OAM (Operation and Maintenance)
functions, 8
network control, 367
SAA utilities, 319–320
oam saa command, 334
1-bucket 2-color-markers, 292, 293
one SAP per subscriber model, 396–397, 398
one-way datagram loss, 14
one-way jitter, 13
oneshot option for time triggered actions, 342, 344
Open Shortest Path First (OSPF) protocol, 61
Open Systems Interconnection (OSI) model, 9
Operation and Maintenance (OAM)
functions, 8
network control, 367
SAA utilities, 319–320
operational rates in scheduling, 220
optional command parameters, 116
Organizationally Unique Identifiers (OUIs), 42
OSI (Open Systems Interconnection) model, 9
OSPF (Open Shortest Path First) protocol, 61
out-of-profile datagrams, 81–82
overhead
throughput restrictions from, 12
VoIP, 368
overrides
policy, 313–317, 392
QoS, 139–141, 140

P

P-nodes, 67
packet loss
data traffic, 369
interactive video and gaming, 368
SAA tests, 318
streaming video, 369
video telephony services, 388
VoIP, 368
packets
marking, 125–127
overhead, 368
parameters in commands, 116
parents
hierarchical scheduling, 251–252
Scheduler policy, 265
partitions, buffer, 144–145, 145
buffer pools, 146–149, 149
demarcation points, 306
end-to-end traffic flow, 150–151, 150

INDEX 425
Payload field, 42
Payload Length field, 32
PDBs (per-domain behaviors), 24–25
PE (provider edge) nodes, 66, 68
peak information rate. See PIR (peak information rate)
per-domain behaviors (PDBs), 24–25
per-hop behaviors (PHBs). See PHBs (per-hop behaviors)
performance, predictable, 363
periodic option, 342–343
PHBs (per-hop behaviors), 37
assured forwarding
classes, 38–39
DiffServ group, 24
drop precedence, 124–125
class selector, 38
defaults, 37–38
DiffServ, 21–22, 24
DSCP pools, 35–36
Expedited Forwarding, 39–40
physical layer errors, 14
pipe (|) in commands, 116
PIR (peak information rate), 80
assured data, 371
description, 82
determining, 380
HPO, 381
LAGs, 306–307
and MBS, 153
policing by discarding, 292, 294
policing by tagging, 295–297
policy overrides, 314
queue parameters, 378
scheduling, 220–226, 226, 230, 234
service queuing, 199
shapeless policing, 299–300
shaping, 298
soft policing, 297
video telephone services, 388
playout buffers
VoD, 369
VoIP, 368
POC (proof-of-concept) tests, 366
point-to-point protocol (PPP) links, 310
multi-point sites, 271
point-to-point traffic and services buffering aspects, 150
defined, 9
scaling options, 195
service queuing, 201
police keyword, 293–295
policies
names
Network-Queue, 162
Scheduler policy, 263
Slope, 180
Network QoS, 102–104
application, 110
creating, 374–377, 375
functional groups of nodes, 377
marking, 79, 104–109
with ports, 67
Network-Queue
application, 166–170, 168–169
configuring, 378–383
scheduling parameters, 235–238
unicast queues, 203
working with, 162–166
overrides, 313–317, 392
SAP. See SAP-egress policies; SAP-ingress policies
Scheduler, 250–252
configuring, 386
creating and configuring, 263–267
multi-service-site configuration, 267, 270–275, 270, 274
under SAP, 267–270, 268–269
two-tiered, 259–262, 259, 261
tod-suite, 349–350
verification commands, 115–117
policing
conceptual representation, 53, 53
network traffic, 291–292
by discarding, 290, 292–295, 293, 379
soft, 297–298, 379
by tagging, 290, 292, 295–297, 296, 379
shapeless, 299–300
pools, buffer
access, 392
network, 384–385, 385
queues in, 149, 149
roles, 146–148, 149
ports
802.1Q tagging, 133–135
demarcation points, 67–69
Ethernet, 168–169, 168–169
LAGs for, 306
SONET/SDH, 170, 171
verifying traffic on, 238–242
PPP (point-to-point protocol) links, 310
multi-point sites, 271
Preamble field, 41
Precedence subfield, 33
predictability, design for, 363, 365
priorities
arbitrators, 227–230, 228
queue scheduling, 221
queuing, 80–82
SAP-ingress policy, 87
priority modes
accessing ingress queues, 156
with policing, 294
profile modes, 389
access ingress queues, 156
with policing, 294
profiles
color-aware, 122–124
datagram state, 81–82
markings, 221
SLA, 195–197, 197
traffic classification, 49
proof-of-concept (POC) tests, 366
Protocol field, 31
provider edge (PE) nodes, 66, 68
provider-nodes, 67
Q
Q tagging, 42–43, 43, 132
QinQ encapsulated frames, 132–133, 132
marking, 137–139
port and SAP configuration, 133–135
traffic classification, 135–137
QoS override, 139–141, 140
quality of experience, 303, 361
quality of service (QoS) definition, 5–6
queue-mode options, 159
queue-type rule, 225, 230
queues, 143–144, 193. See also buffers and buffer management
in buffering pools, 149, 149
creating
SAP-egress, 158–159
SAP-ingress, 155–156
declarations, 84–85
enabling options at access ingress, 193–194
multipoint shared queuing, 206–209, 208
scaling, 194–198, 197
service queuing, 198–201, 199
shared queuing, 201–206, 203
verification commands, 210–216
LFI, 310–312, 311
mapping to
SAP-egress, 159–160
SAP-ingress, 157–158
Network-Queue policies
application, 166–170, 168–169
configuring, 378–383
scheduling parameters, 235–238
unicast queues, 203
working with, 162–166
overflows, 14
overview, 50–51, 50
parameters
CBS, 152–153
configuring, 160–161
determining, 378–383
example, 154
HPO, 154

MBS, 153
scheduling-related, 220–225, 223
priority
access ingress, 78
network egress, 105–106
traffic classification, 49
profile states, 81–82

R
Random Early Detection (RED) in buffer management, 36–37
access buffer pools, 392
considerations, 179–180
and HPO, 382
network buffer pools, 384–385, 385
overview, 175–176
slopes, 8
characteristics, 176–177, 176
Slope policy, 180–184
TAF, 178–179
and TCP, 172–175, 173–175
rate limiting. See traffic rate-limiting
throughput, 12
rate statements, 264–265, 294–295
real-time automated control system traffic, 370
Real Time Communication class of service
categorizing applications into, 374
mapping, 376
Real-time Transport Protocol (RTP), 369
RED. See Random Early Detection (RED) in buffer management
redundancy, IOM, 309
Reliability subfield, 33
 remarking, 104
reserved portions
buffer partitions, 144
buffer pools
access, 392
network, 384
vs. shared, 149
residential customer, 139, 140, 250, 315, 317, 338
Resource ReSerVation Protocol (RSVP), 19–20
Resource ReSerVation Protocol (RSVP) working group, 19
revenue maximization, design for, 364
RFCs (Requests for Comments)
RFC 791, 33, 366
RFC 792, 323
RFC 1305, 340
RFC 1633, 18
RFC 1812, 37
RFC 2030, 340
RFC 2205, 19
RFC 2211, 19
RFC 2212, 19
RFC 2474, 34–35, 37–38, 298, 366
RFC 2475, 20, 24
RFC 2481, 36
RFC 2547, 10
RFC 2547bis, 10
RFC 2597, 37–38, 124
RFC 2598, 37, 39
RFC 2679, 13
RFC 2680, 14
RFC 2698, 296
RFC 2997, 19
RFC 3086, 24
RFC 3168, 36–37
RFC 3246, 39–40, 294
RFC 3247, 39, 294
RFC 3270, 25
RFC 3357, 14
RFC 3393, 13
RFC 3662, 24
RFC 4379, 325
robust network design, 363
root scheduler, 260
round robin servicing
dual arbitrator mode, 228–229, 228
single arbitrator mode, 226, 226
Router-CON model, 196
router evolution, 8
RSVP (Resource ReSerVation Protocol), 19–20
RSVP (Resource ReSerVation Protocol) working
group, 19
RTP (Real-time Transport Protocol), 369

S

S (Stack) field, 45
SAA. See Service Assurance Agent (SAA)
sampling rate in VoIP, 368
SAP (service access point), 67
characteristics, 68
configuration for 802.1Q tagging, 133–135
LAGs as, 306
queuing points, 151
Scheduler policy, 267–270, 268–269
in scheduling, 231–232
verifying traffic on, 242–246
SAP-egress policies, 67
application, 113–114, 114–115
Scheduler policy, 265–270, 275
scheduling parameters, 233–235
service needs analysis, 390–391
and traffic mapping at access egress, 111–113
SAP-ingress policies, 67
application, 100–101, 101–102
marking IP packets, 125–127
Scheduler policy, 268–270, 275
scheduling parameters, 233–235
service needs analysis, 386–390
and traffic mapping at access ingress, 83–87
Classifying traffic, IP and MAC criteria, 91–97
Classifying traffic, multiple field values, 97–99
Classifying traffic, ToS fields, 88–91
default forwarding class and default priority, 87
SAP-ingress queues
creating, 155–156
hierarchical scheduling. See hierarchical scheduling (HQoS)
mapping traffic to, 157–158
parameters, 160–161
SCADA (Supervisory Control and Data Acquisition), 370
scaling
access ingress queuing options
comparing, 209, 209
configuring, 194–198, 197
multipoint shared queuing, 206–209, 208
service queuing, 198–201, 199
shared queuing, 201–203
verification commands, 210–216
design for, 363
IntServ, 20
schedule objects in time triggered actions, 341–342
scheduler-hierarchy command, 279–283
scheduler-name command, 276–277
scheduler-override option, 272
Scheduler policies, 250–252
configuring, 386
creating and configuring, 263–267
multi-service-site configuration, 267, 270–275, 270, 274
under SAP, 267–270, 268–269
two-tiered, 259–262, 259, 261
scheduler-policy command, 277–279
scheduler-stats command, 283–285
scheduling, 51, 52, 219–220
in enforcement sequence, 65
extending, 247
hierarchical. See hierarchical scheduling (HQoS)
modes, 225–230, 225, 228
nodal, 231–233, 231
queue parameters, 220–225, 223
access, 233–235
network, 235–238
time-triggered actions, 341–347
verification commands, 238–246
script objects in time triggered actions, 341, 344, 346
sdp-ping tests, 32, 332–333
SDPs (service distribution points)
SAA tests for, 319
VPLS, 197
service access point. See SAP (service access point)
Service Assurance Agent (SAA), 318–319
event configuration, 331–333
tests, 319–322
CPE, 322
in design, 392
DNS, 322–323
ICMP, 323–325
LSP, 325–327
MAC, 327–328
SDP, 329
triggering and verifying, 333–337
VLL connectivity, 329–330
VPRN, 330–331
service delivery changes, 4–5
service distribution points (SDPs)
SAA tests for, 319
VPLS, 197
service egress. See access egress
service ingress. See access ingress
service identification, 373
service level agreements (SLAs)
design principles, 362
DiffServ, 22
with LAGs, 306–309
network restrictions, 11, 11
datagram loss, 14
delay, 13
handling, 14–15
jitter, 13
throughput, 12–13
in rate-limiting, 291
standards, 5–6
service packages for policy overrides, 317
service providers, 5
service quality in VoIP, 368
Service Queuing option
access ingress queuing, 198–201, 199
optimization equation, 206
vs. Shared Queuing option, 210
service requirements, 366
data, 369–372
egress, 390–391
ingress, 386–390
interactive video and gaming, 368
network control traffic, 366–367
streaming video, 366–369
VoIP, 367–368
service restrictions, 11, 11
datagram loss, 14
delay, 13
handling, 14–15
jitter, 13
throughput, 12–13
service routers
purpose, 8
services, 9–10
Service Scaling option, 195
SF/CPM (switch fabric and central processor module), 60–61
SFP (small form factor pluggable) optics, 62
shapeless policing, 299–300, 379
shaping, 290–291, 298–299, 379
shaping function, 53, 53
shared portions of buffer pools
access, 392
average utilization calculations, 178–179
network, 384–385, 385
partitions, 144
vs. reserved, 149
Shared-Queue policy, 203–204
Shared Queuing option
access ingress queuing, 201–206, 203
optimization equation, 206
vs. Service Queuing option, 210
show cron action command, 344, 351–352
show cron time-range command, 353–354
show cron tod-suite command, 354–355
show lag command, 309–310
show log command, 337
show pools command, 187–189
show pools access- ingress command, 212–216
show port command, 238–240
show qos commands, 116, 185–187
show ssh command, 335
show scheduler-hierarchy command, 279–283
show scheduler-name command, 276–277
show scheduler-policy command, 277–279
show scheduler-stats command, 283–285
show service id command, 242–245
show shared-queue default command, 211
show system time command, 339
shutdown command, 343
Simple Network Management Protocol (SNMP), 318
Simple Network Time Protocol (SNTP), 340
single arbitrator scheduling mode, 225–227, 226
single-tier virtual hierarchical scheduling, 402–404, 403
size
buffer pools, 146–148
frame payload, 13
queue buffer. See CBS (committed buffer size); MBS (maximum buffer size)
SLA-profile feature, 314
SLAs. See service level agreements (SLAs)
slopes, RED
characteristics, 176–177, 176
network buffer pools, 384–385, 385
Slope policy, 67, 180–184, 183
slow-start algorithms, 172–175, 173–175
small form factor pluggable (SFP) optics, 62
SNAP (Subnetwork Access Protocol), 42
SNMP (Simple Network Management Protocol), 318
SNTP (Simple Network Time Protocol), 340
soft policing, 297–298, 379

INDEX 429
SONET/SDH ports, 170, 171
Source Address field
IPv4, 32
IPv6, 33
Source MAC field, 41
Source Service Access Point (SSAP) field, 42
specified rates, 291
square brackets ([]) in commands, 116
SSAP (Source Service Access Point) field, 42
Stack (S) field, 45
statistical multiplexing gain, 146–147, 149, 163
storage and seating partitions example, 144–145
streaming video service requirements, 368–369
subclasses, forwarding, 120–122
Subnetwork Access Protocol (SNAP), 42
Subscriber-profile, 314
sum value
hierarchical scheduling, 251
Scheduler policy, 265
Supervisory Control and Data Acquisition (SCADA), 370
switch fabric and central processor module (SF/CPM), 60–61
synchronization
system time, 340
TCP streams, 174–175, 174
synchronous optional networking (SONET)/synchronous
digital hierarchy (SDH) ports, 170, 171
system time, 338–340
T
TAF (time-average factor)
buffer pools, 178–179
within Slope policy, 182
Tag Control Information (TCI) field, 43
tagging
802.1Q, 133–135
policing by, 290, 292, 295–297, 296, 379
VLAN, 42–43, 43
tail drop buffer management, 171–172, 172
TCI (Tag Control Information) field, 43
TCP (Transport Control Protocol)
data traffic, 370
RED streams, 180
slow-start algorithm, 172–175, 173–175
VoD, 369
telephone services, 388–391
temporary queuing priority, 82
tests
configurations, 366
SAA, See Service Assurance Agent (SAA)
thresholds in SAA test events, 332, 337
throughput rates, 12–13
Throughput subfield, 33
tiers, virtual hierarchical scheduling
single-tier, 402–404, 403
two-tier, 404–406, 405, 407
time-average factor (TAF)
buffer pools, 178–179
within Slope policy, 182
time-based QoS, 338
actions, 341–347
system time, 338–340
Time of Day policy, 347–351
verification commands, 351–356
time dependencies, 338
Time of Day policy, 347–351
time-range configuration, 347–350
time-share properties example, 147
time stamps, 346
time-zone-related information, 339
tod-suite, 349–351
tolerable limits, 15
ToS (Type of Service) field, 30
access egress, 79
access ingress, 77, 125–126
DiffServ, 21
Ethernet frames, 136–137
IP, 33–37, 34
IPv4, 30–32, 31
IPv6, 32–33, 32
network egress, 78–79, 104–106, 128
network ingress, 107
QinQ encapsulated frames, 132–133, 132
marking, 137–139
port and SAP configuration, 133–135
traffic classification, 135–137
SAP-ingress traffic classification based on, 88–91
total bandwidth assigned for virtual scheduler, 255
Total Length field, 31
Traffic Class field, 32
traffic classification, 48–49, 49, 119
access egress, 111–113
access ingress, 83–87
default forwarding class and default priority, 87
IP and MAC criteria, 91–97
IP packet marking, 125–127
multiple field values, 97–99
quiz, 99–100
ToS fields, 88–91
color-aware profiling, 122–124
drop precedence of AF PHBs, 124–125
drop precedence of AF PHBs, 122–125
end-to-end mapping and marking, 77–79, 77
forwarding classes and queuing priorities, 80–81
forwarding subclasses, 120–122
Network policy, 102–104
application, 110
network egress, 104–106
network ingress, 106–109
profile states of datagrams and queues, 81–82
SAP-egress policy, 113–114, 114–115
SAP-ingress policy, 100–101, 101–102
ToS field in QinQ encapsulated frames, 132–139, 132
trust nature of interfaces and network egress marking, 128–131
verification commands, 115–117
traffic flow direction, 69
traffic forwarding characteristics, 8
traffic mapping and marking
access ingress, 77–78
determining, 378
end-to-end, 69–72, 71, 77–79, 77
network egress, 104–106
network ingress, 106–109
SAP-ingress, 83
traffic rate-limiting
datagram loss from, 14
determining, 378
in enforcement sequence, 65
HQoS for, for, 250
network traffic policing, 291–292
by discarding, 290, 292–295, 293, 379
soft, 297–298, 379
by tagging, 290, 292, 295–297, 296, 379
overview, 52–53, 55, 289–291
shapeless policing, 299–300
shaping, 298–299
summary, 300–301
traffic types, 378–379
Transaction Data class of service
categorizing applications into, 374
mapping, 376
service requirements, 370–371
transactions in bank case study, 388–391
Transport Control Protocol (TCP)
data traffic, 370
RED streams, 180
slow-start algorithm, 172–175, 173–175
VoD, 369
triggering SAA tests, 333–337
triple-play service providers, 4, 8
triple-tagged frames, 137
troubleshooting, design for, 364–366
trust nature of interfaces, 128–131
TTL field
IPv4, 31
MPLS header, 45
tunnel encapsulations, 79
tunnel termination, 139–141, 140
TV
hierarchical scheduling, 396–398, 400–403
traffic, 368–369
2-bucket 3-color-markers, 296, 296
2-tier virtual hierarchical scheduling, 404–406, 405, 407
two-tiered scheduler policies, 259–262, 259, 261
type command, 341–343
Type of Service field. See ToS (Type of Service) field
UDP (User Datagram Protocol)
data traffic, 370
RED for, 180
VoD, 369
UDP/RTP (User Datagram Protocol/Real-time Transport Protocol), 180
unicast queues
forwarding classes mapping to, 378, 380
Network-Queue policies
default, 163
parameters, 236
unicast traffic and services
BSA, 397
defined, 9
shared queuing, 201–202, 205
unknown-cast services, 9
User Datagram Protocol (UDP)
data traffic, 370
RED for, 180
VoD, 369
User Datagram Protocol/Real-time Transport Protocol (UDP/RTP), 180
validating before deployment, 366
variable bitrate (VBR) service, 80
variable latency in shaping, 298
VCCV (Virtual Circuit Connectivity Verification), 319
vccv-ping tests, 320, 329–330
verification commands
buffer management, 184–190
hierarchical scheduling, 276
monitor scheduler-stats, 285–287
scheduler-hierarchy, 279–283
scheduler-name, 276–277
scheduler-policy, 277–279
scheduler-stats, 283–285
LAGs, 309
QoS policy application, 115–117
scaling options, 210–216
scheduling, 238–246
time-based policies, 351–356
verification commands, 115–117
verifying SAA tests, 333–337
Version field
IPv4, 30
IPv6, 32
VID field, 43
video
service requirements, 368
telephone services, 388–391
Video on Demand (VoD)
hierarchical scheduling case study, 396–400
requirements, 368–369
Virtual Circuit Connectivity Verification (VCCV), 319
virtual hierarchical scheduling
single-tier, 402–404, 403
two-tier, 404–406, 405, 407
virtual leased line (VLL) service
buffering aspects, 150
configuration, 10
scaling options, 195
tests for, 319, 329–330
trust nature, 128, 130
virtual local area network (VLAN) tagging, 42–43, 43
virtual private LAN service (VPLS)
buffering aspects, 150
hierarchical scheduling case study, 399, 402
multipoint shared queuing, 206–207
policy overrides, 315–316
scaling options, 195
shared queuing, 201–202
trust nature, 128, 130
virtual private network (VPN) service
bank case study, 372
support for, 9
virtual private routed networks (VPRNs)
buffering aspects, 150
configuration, 10
tests for, 319
trust nature, 128–131
virtual private wire service (VPWS), 10
virtual scheduler bandwidth distribution, 252–254, 253
complex examples, 259–262, 259, 261
dynamics, 262–263
simple examples, 254–258, 255–258
VLAN (virtual local area network) tagging, 42–43, 43
VLL (virtual leased line) service
buffering aspects, 150
configuration, 10
scaling options, 195
tests for, 319, 329–330
trust nature, 128, 130
VoD (Video on Demand)
hierarchical scheduling case study, 396–400
requirements, 368–369
Voice over IP (VoIP) application
hierarchical scheduling case study, 396–404, 406
service requirements, 367–368
VPLS. See virtual private LAN service (VPLS)
VPLS subscriber SLA profiles, 195–197, 197
VPN (virtual private network) service
bank case study, 372
support for, 9
vprn-ping tests, 320, 330–331
vprn-trace tests, 320, 331
VPRNs (virtual private routed networks)
buffering aspects, 150
configuration, 10
tests for, 319
trust nature, 128–131
VPWS (virtual private wire service), 10

W

WANs (wide area networks), 5
warnings in SAA, 337
water pipes analogy, 12
water wheel analogy, 222–223, 223
weekdays command, 347–348
weekend command, 347–348
weekly command, 347–348
weight distributions in TAF, 178–179
weight parameter in hierarchical scheduling, 251–254, 256, 258
well-known port numbers, 94–95
wide area networks (WANs), 5