INDEX

Note: Figures and Tables are indicated by italic page numbers, and footnotes by suffix ‘n’. ‘CW’ = ‘chemical warfare’, ‘CWA’ = ‘chemical warfare agent’, and ‘RCA’ = ‘riot control agent’

A-stoff see chloracetone
abrin 623–6, 664
chemical structure 623
ingestion 624
lethal dose 625
mechanisms of action 623–4
parenteral administration 624–5
toxicokinetics 624
see also ricin
abrin poisoning
clinical features 624, 625
diagnosis 625
management of 625–6
protective immunization strategies 626
absinthe 664
AC see hydrogen cyanide
accidental chemical releases 262
contrasted with deliberate releases 176
treatment after 293, 312
accidental exposure reports, nerve agents 235–6
acetic acid 664
acetonitrile 254, 281, 664
acrylamide 665
acrylonitrile 665
adamsite see diphenylamine chloroarsine
aerodynamic diameter, definition 40
aerosol(s)
behaviour of 26
definition 26
factors affecting stability 27–8
mathematical description 28–34
particle size distribution
area mean diameter 30, 31
area median diameter 30, 31
arithmetic mass diameter 31
count mean diameter 29, 30
count median diameter 29, 30, 30
count mode diameter 29, 30
mass mean diameter 30, 31
mass median diameter 30–1, 30
riot control agents 548–9, 563–4, 578–9
aflatoxins 665
agenda 21, on chemicals 647
agent 15 see BZ
agent BZ see BZ
agent CB see cyanogen bromide
agent CC see cyanogen chloride
agent CD see phosgene
agent CG see phosgene oxime
agent DM see diphenylamine chloroarsine
agent GA see GA; tabun
agent GB see GB; sarin
agent GD see GD; soman
agent GE see ethylsarin; GE
INDEX

1 Agent GF see cyclosarin; GF
2 Agent H see sulphur mustard
3 Agent HD see sulphur mustard
4 Agent HN1/HN2/HN3 see nitrogen mustards
5 Agent HT see HT
6 Agent L see lewisite
7 Agent Orange 665
8 Agent VX see VX
9 Agent W see ricin
10 aggregoserpentin 665
11 Air Raid Precautions (ARP) 10
12 airborne particles, deposition in respiratory tract 34–7, 38, 39
13 Albania, stockpiles of CW As 96
14 albumin adducts as biomarker to CW A exposure 128, 129
15 with nerve agents 141–2
16 with sulphur mustard 133, 135
17 algal blooms 665
18 see also anatoxins; saxitoxin
19 alkylating agents
20 bone marrow affected by 444–5
21 nitrogen mustard/sulphur mustard as 382–4, 426–8
22 alkylphosphates 211
23 alkylphosphonic acid esters 102
24 see also nerve agents
25 allyl isothiocyanate 376, 693
26 Amanita muscaria (fly agaric mushroom) 666
27 Amanita phalloides (death cap mushroom) 666
28 Ambergard resin, as decontaminant 419
29 amines, alkyl 666
30 Amiton 666
31 ammonia
32 neutralization of acid droplets by 46–8
33 production in mouth 46
34 amygdaelin 516, 666
35 amyl nitrate, cyanide poisoning treated with 520, 523
36 amyotrophic lateral sclerosis (ALS) 357
37 anaerobic glycolysis 432
38 anatoxins 191, 666
39 ancrod 666
40 Anemone sulcata (Wax Rose sea anemone) 668
41 angel dust 666
42 see also phencyclidine
43 antiline 666
44 animal studies 207, 208, 244–7
45 anticholinergic drugs 291–3
46 cyanide toxicity 509–12
47 diazepam 333–5
48 general considerations 244–5
49 long-term effects of low doses 246–7
50 nerve agents toxicity 197–8
51 oximes toxicity 317–18
52 riot control agent toxicity 562–4, 567–70, 575, 577–9, 582, 586–7
53 short-term effects of low doses 245–6
54 vesicants 433
55 anti-bacterial prophylaxis
56 bone marrow failure treated by 453–4, 462
57 phosphgene poisoning treated by 491
58 anticholinergic drugs 289–93
59 animal studies 291–3
60 anticonvulsant activity 292
61 in field treatment of nerve-agent exposure 268, 289, 291, 294–300
62 after dermal exposure 297, 298
63 after inhalation/vapour exposure 296–7
64 mechanism of action 288
65 see also atropine; benactyzine; pentifin;
66 trihexyphenidyl
67 anticholinesterases, nerve agents as 102, 140, 191, 196, 199–200, 208, 251, 252, 287
68 anticonvulsants 257, 258, 281, 288–9, 331–42
69 anticholinergic drugs as 292
70 see also benzodiazepines
71 antidotes
72 cyanide poisoning 521–5
73 Ca++ antagonists 522
74 cobalt compounds 523–4, 529
75 cyanohydrin formers 523
76 enzymes 522
77 geographical variation in recommendations 524–5
78 methaemoglobin 523
79 methaemoglobin generators 523
80 need for international agreement 524, 530
81 sulphur donors 521–2
82 vasogenic compounds 524
83 lewisite poisoning 472–3
84 nerve agent poisoning 256–7, 288, 305
85 effect of delay in administration 256, 292
86 military use 258, 289, 291, 294–300, 314
87 paediatric doses 258, 289, 299, 338
88 see also anticholinergic drugs; atropine;
89 benzodiazepines; oximes
90 anti-fungal therapy, in treatment of bone marrow failure 454–5, 462–3
91 ‘anti-gas’ ointments
92 formulations 418
93 historical developments 417–19
94 percutaneous toxicity of CWAs affected by 417, 419
95 antihistamines, sulphur mustard poisoning treated with 398, 435
96 anti-microbial therapy, in treatment of bone marrow failure 453, 462–3
antimony and compounds 667
anti-viral agents, in treatment of bone marrow failure 455
apamin 667
apiol 696
apoptosis, induction by sulphur mustard 385–6
aquinite see chloropicrin arecoline 667
arsenic 667
arsenic trichloride 667
arsenical poisoning 470
arsine 667
Arum maculatum (cuckoo pint) 667
assassination attempts with cyanide 527 with nerve agents 143, 145, 192, 253, 294 with ricin 526, 620, 699
asterosaponin L 667
astichoposide C 667
ATX II 668
Aum Shinrikyo (Japanese cult) 175, 192, 253, 277, 294
see also Matsumoto; Tokyo
autoinjectors 258, 289, 295, 314, 321, 331 advantages 290 paediatric poisoning from 319 stability of oximes in 374 wet/dry devices 257, 314
avizafone (diazepam pro-drug) 258, 331, 335–6 compared with diazepam 336 azides 668
B-Stoff see bromoacetone
BA see bromoacetone Bahia Declaration on Chemical Safety 648, 656 BAL (British Anti-Lewisite) 139, 432, 472 Baltic Sea, disposal of CWAs in 94, 100, 376 Bari Harbour disaster 100, 424 barium compounds 668 basal cell–basal lamina adhesion complex 387–8 disturbance by sulphur mustard 388–9, 429–31 basal lamina proteins, reaction with sulphur mustard 388–9 Basel Convention (on hazardous wastes) 646, 648 basement membrane 387–8, 430–1 effect of sulphur mustard 388–9, 431 batrachotoxin 668 BB see dichlorodiethylene sulphide BBC gas see bromobenzyl cyanide BCME see dichlorodimethyl ether Be-stoff see bromoacetone benzactyline 291, 292, 668 benzodiazepines clinical studies 337 in treatment of nerve agent poisoning 257, 258, 288–9, 331–42 see also avizafone; diazepam; lorazepam; midazolam benzyl bromide 480, 668 benzyl chloride 669 benzyl iodide 480, 669 Berger mixture 669 bertholite see chlorine betel nuts 669 Bhopal (India), methyl isocyanate release accident 175, 262
BBIB see dibromomethyl ether bicuculline 669 biological agent attacks 262–3 biological markers 127–56 analytical methods for 130–1 DNA adducts as 129 free metabolites as 128–9 protein adducts as 129
INDEX

1 biological reactions, of CWAs 127–8
2 Biological and Toxin Weapons Convention (BTWC) 633, 636–8
3 analysis 638
4 central prohibition 636, 638
5 Fifth Review Conference (2002) 660
6 First Review Conference (1980) 636
8 overlap with Chemical Weapons Convention 641
9 Second Review Conference (1986) 636–7
10 Third Review Conference (1991) 637
11 biological warfare, public’s dislike of 2
12 biological weapons vaccinations, and Gulf War ‘syndrome’ 358, 359, 361–2
13 biomarkers 127–56
14 bispyridinium oximes 288, 305
15 see also obidoxime; trimedoxime
16 bis(2-chloroethyl)ethylamine see HN1
17 bis(2-chloroethyl)methylamine see HN2
18 bis(2-chloroethyl) sulphide see dichloroethyl sulphide; sulphur mustard
19 1,2-bis(2-chloroethylthio)ethane 97, 100, 114, 673
20 bis[2-(2-chloroethylthio)ethyl] ether 410, 673
21 bis(chloromethyl) ether 678
22 bis(2-chlorovinyl)arsine 102, 115
23 black bryony berries 669
24 black widow spider venom 669
25 Blausäure see hydrogen cyanide
26 blindness, CWA-caused 392, 399, 448, 470
27 blister agents see lewisite; nitrogen mustards; sulphur mustard
28 blistering, by vesicant agents 381–2
29 blood–brain barrier permeability
30 hyoscine 348
31 phosgene 488
32 physostigmine 348
33 pyridinium oximes 315
34 pyridostigmine 346
35 blood cells, production in bone marrow 443–4
36 blood sample, free metabolites as biomarkers 129
37 blood transfusion, in treatment of bone marrow failure 451–2, 462
38 blue cross gases 669
39 BM (mixture) 669
40 BN-stoff see bromomethyl ethyl ketone
41 bone marrow
42 blood cell production 443–4
43 effect of sulphur mustard 393
44 treatment of 399, 401
45 embryological development 443
46 haematopoiesis sites 443, 444
47 long-term effects of alkylating agents 444–5
48 microenvironment 447–8
49 normal 443–8
50 red marrow 443
51 tissue typing 461
52 yellow marrow 443
53 bone marrow failure treatment of 448–61
54 anti-bacterial prophylaxis 453–4
55 anti-fungal therapy 454–5
56 anti-microbial therapy 453
57 anti-viral agents 455
58 blood product support 451–2
59 cytokine therapy 449–51
60 irradiated blood products 452–3
61 other supportive measures 455–6
62 stem cell transplantation 456–61
63 boric acid 669
64 botulinum toxin 526, 670
65 breathing mode, effect on particle deposition 44, 48–9
66 Bretonite see iodoacetate
67 British Anti-Lewisite (BAL) 139, 432, 472
68 British Type S smoke 670
69 brodifacoum 670
70 bromine 670
71 bromost see dibromoethyl sulphide
72 bromoacetone 480, 670
73 bromoacetophenone 670
74 bromobenzyl cyanide 25, 480, 670
75 bromomethyl ethyl ketone 670
76 bromophosgene see carbonyl bromide
77 bromopicrin 671
78 bromovinyl dibromoarsine 671
79 bronchorrhea 202, 255–6
80 Brownian motion 41
81 brucine 671
82 Brussels Declaration (1874) 633
83 BrTx see botulinum toxins
84 bufotalin 671, 704
85 bufotenine 671, 696, 704
86 bufotoxin 671, 704
87 buildings, atmospheric dispersion affected by 77–8
88 bungarotoxins 671
89 Bunsen coefficient 26
90 buoyancy, atmospheric dispersion affected by 71–2, 73
91 burdock root 671
92 butter of zinc see zinc chloride
93 butyrylcholinesterase (BuChE)
94 as biomarker for nerve agents 140, 141, 255
95 analytical methods 142–3, 210–11
96 inhibited by nerve agents 140, 208
97 BZ 671
98 biomarkers 145
99 hydrolysis of 145
INDEX 713

1 C-stoff 671
2 see also monochloromethyl chloroformate
3 Ca⁺⁺ antagonists, cyanide poisoning treated
4 with 522
5 CA see bromobenzyl cyanide
6 cadmium 671
7 calcium cyanamide 671
8 calcium peroxide 671
9 calmodulin 385, 386
10 calmodulin inhibitors 511
11 Camite see bromobenzyl cyanide
12 camphor 672
13 Campiellite 672
14 Campillit see cyanogen bromide
15 cancer, treatment of 380, 448–9
16 cantharadin 672
17 CAP gas see chloroacetophenone
18 capillary damage, sulphur mustard exposure 390
19 capillary walls, balance of forces across 485
20 capsaicin 583, 672
21 additional studies 587–8
22 biochemical mechanisms 586
23 eye irritation 585
24 identities and characteristics 583–4
25 metabolism 586
26 metabolites 149–50
27 oncogenicity 587
28 PCSI characteristics 585
29 structural formula 585
30 toxicity 585–6, 587
31 toxicokinetics 586
32 capsaicinoids 585
33 caramiphen, organophosphate poisoning treated
34 with 203, 292
35 carbamates 672
36 pretreatment with 246, 288, 291, 343–54, 698
37 mechanism of action 344
38 carbamide see calcium cyanamide
39 carbonyl hydrate metabolism 586
40 effect of cyanide 500
41 effect of sulphur mustard 384
42 carbolic acid see phenol
43 carbon disulphide 672
44 carbon monoxide 41
45 absorption in respiratory tract 57
46 intoxication from RCA solvent metabolite 552
47 toxicity 480
48 carbonyl bromide 672
49 carcinogenic effects, nitrogen mustard/sulphur
50 mustard 402–3, 448
51 cardiopulmonary arrest, nerve agent induced 202,
52 280, 294, 298
53 cardiotoxicity, cyanides 506–7
54 cardiotoxins 679
55 cardiovascular consequences
56 riot control agents 576, 590, 595–6
57 medical treatment 600
58 carottatoxin 672
59 cassava 672
60 castor oil beans 613, 614
61 allergic reactions to dust 621
62 ingestion of 618–19
63 toxin see ricin
64 casualty management 249–60, 275
65 casuistry 12
66 catalysis, decontamination affected by 185
67 catch-up therapies 419–21
68 CB see cyanogen bromide
69 CBR 672
70 CC see cyanogen chloride
71 CC-2 673
72 see also sym-bis-(chloro-2,4,6-trichlophenyl)urea
73 CDA see diphenylcyananarsine
74 Ce see cyanogen bromide
75 Cedentite 673
76 see also nitrobenzyl chloride
77 central nervous system (CNS)
78 effect of nerve agents 206–9
79 delayed effects 206–7
80 high-dose exposure 206–7
81 long-term effects 206, 283, 300
82 low-dose exposure 207–8
83 centrally acting neuropharmacological agents
84 548
85 CG see phosgene
86 chain of custody (for analytical samples) 130–1
87 charybdotoxin 673
88 chemical agent monitor 188, 265
89 chemical–biological hazard spectrum 263–4, 641
90 characteristics of agents 264
91 Chemical and Biological Warfare Agent Fate
92 Research Program 91
93 Chemical Defence Experimental Establishment
94 (CDEE – Porton Down, UK) 94, 191
95 Chemical Warfare Service (CWS – USA) 6
96 Chemical Weapons Convention (CWC) 96, 634,
97 638–42
98 analysis 641–2
99 central prohibition 638
100 definition of terms
101 ‘chemical weapons’ 638–9, 657
102 ‘toxic chemical’ 639
104 General Purpose Criterion 641–2, 644, 657, 658
105 implementation 644–5, 657
106 importance 645–6
107 implementation 642–5
108 on incapacitating chemicals 658–61
<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemical Weapons Convention (CWC) (cont.)</td>
</tr>
<tr>
<td>2</td>
<td>overlap with Biological and Toxin Weapons Convention</td>
</tr>
<tr>
<td>3</td>
<td>requirements 657–8</td>
</tr>
<tr>
<td>4</td>
<td>on riot control agents/incapacitating chemicals 639, 659–61</td>
</tr>
<tr>
<td>5</td>
<td>Scheduled Chemicals 643–4</td>
</tr>
<tr>
<td>6</td>
<td>Chernobyl nuclear reactor explosion 75, 82</td>
</tr>
<tr>
<td>7</td>
<td>chilli peppers components 149, 150–1, 583, 585</td>
</tr>
<tr>
<td>8</td>
<td>see also capsacin; oleoresin capsicum (OC)</td>
</tr>
<tr>
<td>9</td>
<td>chivalry and objections to CW 16–18</td>
</tr>
<tr>
<td>10</td>
<td>rules of 14, 15</td>
</tr>
<tr>
<td>11</td>
<td>chloramine, as decontaminant 186, 398, 417, 418</td>
</tr>
<tr>
<td>12</td>
<td>chlorine 673 first use in WW1 3, 5, 673</td>
</tr>
<tr>
<td>13</td>
<td>mixed with phosgene 477, 697</td>
</tr>
<tr>
<td>14</td>
<td>physicochemical properties 22</td>
</tr>
<tr>
<td>15</td>
<td>toxicity 56, 480, 673</td>
</tr>
<tr>
<td>16</td>
<td>chloroacetic acid 673</td>
</tr>
<tr>
<td>17</td>
<td>chloroacetone 480, 673</td>
</tr>
<tr>
<td>18</td>
<td>1-chlorooacetophenone (CN) 561, 562–7, 673</td>
</tr>
<tr>
<td>19</td>
<td>biochemical mechanisms 566</td>
</tr>
<tr>
<td>20</td>
<td>chemical identification 562</td>
</tr>
<tr>
<td>21</td>
<td>eye irritation/injuries 564–5, 592–3</td>
</tr>
<tr>
<td>22</td>
<td>human studies and in-use observations 566–7</td>
</tr>
<tr>
<td>23</td>
<td>metabolism 148–9</td>
</tr>
<tr>
<td>24</td>
<td>modes of dispersion 551, 562</td>
</tr>
<tr>
<td>25</td>
<td>oncogenicity 566</td>
</tr>
<tr>
<td>26</td>
<td>PCSI characteristics 559, 567</td>
</tr>
<tr>
<td>27</td>
<td>respiratory tract effects 577, 594</td>
</tr>
<tr>
<td>28</td>
<td>sensitzation 565</td>
</tr>
<tr>
<td>29</td>
<td>skin irritation/injuries 564, 594</td>
</tr>
<tr>
<td>30</td>
<td>toxicokinetics 480, 562–4, 565–6</td>
</tr>
<tr>
<td>31</td>
<td>uses 562</td>
</tr>
<tr>
<td>32</td>
<td>2-chlorobenzylidene malononitrile (CS) 561, 567–77, 673</td>
</tr>
<tr>
<td>33</td>
<td>additional studies 576</td>
</tr>
<tr>
<td>34</td>
<td>biochemical mechanisms 572–3</td>
</tr>
<tr>
<td>35</td>
<td>cardiovascular consequences 576, 595, 596</td>
</tr>
<tr>
<td>36</td>
<td>chemical identification 567</td>
</tr>
<tr>
<td>37</td>
<td>cyanide intoxication resulting 574</td>
</tr>
<tr>
<td>38</td>
<td>effectiveness, compared with CR aerosols 579</td>
</tr>
<tr>
<td>39</td>
<td>eye irritation/injuries 570–1, 593</td>
</tr>
<tr>
<td>40</td>
<td>half-life in blood 574</td>
</tr>
<tr>
<td>41</td>
<td>human studies and in-use observations 576–7</td>
</tr>
<tr>
<td>42</td>
<td>metabolism 147–8, 573–4</td>
</tr>
<tr>
<td>43</td>
<td>modes of dispersion 549, 551, 552, 567</td>
</tr>
<tr>
<td>44</td>
<td>oncogenicity 575–6</td>
</tr>
<tr>
<td>45</td>
<td>PCSI characteristics 559, 567, 574</td>
</tr>
<tr>
<td>46</td>
<td>physicochemical properties 567</td>
</tr>
<tr>
<td>47</td>
<td>respiratory tract effects 577, 594</td>
</tr>
<tr>
<td>48</td>
<td>sensitzation 571, 600</td>
</tr>
<tr>
<td>49</td>
<td>skin irritation/injuries 570, 594</td>
</tr>
<tr>
<td>50</td>
<td>structural formula 567</td>
</tr>
<tr>
<td>51</td>
<td>synonyms 567</td>
</tr>
<tr>
<td>52</td>
<td>toxicity 567–70, 571–2, 574–5</td>
</tr>
<tr>
<td>53</td>
<td>toxicokinetics 573–4</td>
</tr>
<tr>
<td>54</td>
<td>use in Northern Ireland 544, 555, 570</td>
</tr>
<tr>
<td>55</td>
<td>uses 543, 567</td>
</tr>
<tr>
<td>56</td>
<td>chloroform 673</td>
</tr>
<tr>
<td>57</td>
<td>chloroformoxine 674</td>
</tr>
<tr>
<td>58</td>
<td>chloropheronethane see DDT</td>
</tr>
<tr>
<td>59</td>
<td>chloropricin 674</td>
</tr>
<tr>
<td>60</td>
<td>persistence 25</td>
</tr>
<tr>
<td>61</td>
<td>as solvent for sulphur mustard 378</td>
</tr>
<tr>
<td>62</td>
<td>SVP calculations 23</td>
</tr>
<tr>
<td>63</td>
<td>toxicity 480</td>
</tr>
<tr>
<td>64</td>
<td>chlorostyryl dichloroarsine 674</td>
</tr>
<tr>
<td>65</td>
<td>chlorosulphonlic acid 674</td>
</tr>
<tr>
<td>66</td>
<td>2-chlorovinylarsonic acid 101, 102, 115</td>
</tr>
<tr>
<td>67</td>
<td>chlorovinylarsonous acid 101, 115, 138</td>
</tr>
<tr>
<td>68</td>
<td>analysis 138–9</td>
</tr>
<tr>
<td>69</td>
<td>2-chlorovinyl dichloroarsine 467, 674, 689</td>
</tr>
<tr>
<td>70</td>
<td>see also lewisite</td>
</tr>
<tr>
<td>71</td>
<td>chlorovinylmethylchloroarsine 674</td>
</tr>
<tr>
<td>72</td>
<td>cholera toxin 674</td>
</tr>
<tr>
<td>73</td>
<td>cholinergic crisis 200, 287</td>
</tr>
<tr>
<td>74</td>
<td>effect of diazepam 337</td>
</tr>
<tr>
<td>75</td>
<td>cholinergic neurotransmission system 200–1</td>
</tr>
<tr>
<td>76</td>
<td>cholinergic receptors 201</td>
</tr>
<tr>
<td>77</td>
<td>cholinesterase activity effect of vesicants 432</td>
</tr>
<tr>
<td>78</td>
<td>measurement of 142–3, 210–11</td>
</tr>
<tr>
<td>79</td>
<td>cholinesterase inhibitors, nerve agents as 102, 128, 140, 191, 196, 199–200, 208, 251, 252, 287</td>
</tr>
<tr>
<td>80</td>
<td>chronic fatigue syndrome (CFS) 364, 368</td>
</tr>
<tr>
<td>81</td>
<td>Churchill, Winston 10</td>
</tr>
<tr>
<td>82</td>
<td>CICI gas see dichlorodimethyl ether cicutoxin 674</td>
</tr>
<tr>
<td>83</td>
<td>ciguatoxin 674</td>
</tr>
<tr>
<td>84</td>
<td>civil disturbances 545</td>
</tr>
<tr>
<td>85</td>
<td>control of chemical agents used 546–8, 590</td>
</tr>
<tr>
<td>86</td>
<td>physical measures used 546</td>
</tr>
<tr>
<td>87</td>
<td>civilian casualties diagnosis of nerve agent poisoning 251, 253, 280–1</td>
</tr>
<tr>
<td>88</td>
<td>confirmation by laboratory findings 255, 280</td>
</tr>
<tr>
<td>89</td>
<td>management of 249–60</td>
</tr>
<tr>
<td>90</td>
<td>approach in France 268, 269–75</td>
</tr>
<tr>
<td>91</td>
<td>decontamination 180, 181–9</td>
</tr>
<tr>
<td>92</td>
<td>detection of agent 265</td>
</tr>
</tbody>
</table>
INDEX

1. effect of delaying treatment 256–7
2. identification of agent 179–80, 265, 281
3. Japan incidents 253–5, 277–85
4. life support 255–6, 273–5
5. manpower and logistics 272–3
6. medical treatment at attack site 257–8, 270, 272, 275, 280
7. medical treatment in hospital 254, 258, 270, 272, 281–2, 293–4
8. monitoring 188–9, 265
9. problems encountered 264–5
10. scene management 178–9, 258
11. triage 178, 179, 273–5
12. as objection to CW 16
13. operational planning for 175–81, 259
14. civilian population
15. attacks in Iraq 3, 67, 96, 191, 192
16. terrorists’ attacks
17. contrast to military attacks 250
18. in Japan 18, 96, 128, 175, 191, 253–5, 277–85
19. potential targets 193
20. CK see cyanogen chloride
21. Clairsite see perchloromethylmercaptan
22. Clark I see diphenylchloroarsine
23. Clark II see diphenylcyanoarsine
24. CN
25. metabolism 148–9
26. see also 1-chloroacetophenone; cyanide
27. CNS 675
28. cobalt compounds, cyanide poisoning treated with 523–4
29. COBE Spectra Apheresis System 459, 460
30. cocaine 675
32. data 48, 49
33. factors modelled 47–8
34. coelenterate toxins 675
35. cognitive effects, respirators 168
36. cognitive function
37. effect of hyoscine 348
38. effect of nerve agents 246
39. effect of physostigmine 348
40. colchicine 675
41. collagen, degradation by sulphur mustard 389, 429
42. Collongite see phosphene
43. colony-stimulating factors 447
44. use in bone marrow therapy 449–51
45. see also G-CSF; GM-CSF
46. ComboPen (autoinjector) 258, 331, 335
47. compPAC (portable) ventilator 271, 272
48. computational fluid dynamics (CFD) 81–2
49. limitations for atmospheric dispersion modelling 82
50. concentration–duration relationships 53–7
51. Haber’s relationship 55, 56
52. three-dimensional plots 57
53. conine 675
54. conotoxins 675
55. conspiracy theories, about Gulf Conflict illnesses 361, 366
56. contact lenses, riot control agent incidents 599
57. contingency planning
58. cyanide poisoning incident 528
59. and decontamination 180
60. key objectives 175–6
61. military knowledge and expertise used 176–7
62. teamwork 176
63. convicine 706
64. convulxin 675
65. cordons around attack scene 178
66. coriamyrtin 705
67. corneocytes, lipid lamella between 411–12
68. CR
69. metabolism 149
70. see also dibenz(b,f)-1,4-oxazepine
71. cricothyroidotomy 298
72. crotalocytin 675
73. crotamine 675
74. croton oil 675
75. crotxin 675
76. Crude Oil Smoke 676
77. CS
78. metabolites 147–8
79. see also 2-chlorobenzylidene malononitrile
80. cuckoo pint (Arum maculatum) 667
81. cucumariosides 686
82. Cunningham correction factor 39, 40
83. curare 676
84. customary international law 10, 14
85. CX see phosgene oxime
86. cyanide(s) 495–541, 676
87. anosmia 515–16, 528
88. background levels in humans 147
89. biodistribution, effect on toxicity 501
90. conversion to thiocyanates 146, 497–8
91. detection of 147
92. detoxification of 497–9
93. developmental toxicology 514
94. enzymes inhibited by 496
95. genotoxicity 515
96. industrial uses 495
97. metabolism 146–7, 497–9
98. natural occurrence 147
99. oncogenic potential 515
100. reproductive toxicity 515
101. sequestration by erythrocytes 499
102. terrorist use 525–30
INDEX

cyanide(s) (cont.)
 individual/small-group incidents 526–7
 major/international threats 527–8
 recent examples 529
 role of health care providers 528–30
 toxicity
 absorption effects 501
 biochemical basis 496–7
 biodistribution effects 501
 determinants 500–2
 implications of detoxification 500–1
 inhalation toxicity 502–4
 percutaneous absorption 504
 repeated exposures 505, 519
 warfare use 525
 see also hydrogen cyanide

cyanide intoxication
 biochemical sequelae 499–500
 cardiac effects 506–7
 neurotoxicity
 animal studies 509–12
 human observations 512–13
 by occupational exposure 513, 514, 519
 occurrences 516
 respiratory system affected by 508–9
 and riot control agents 574
 thyroid gland function affected by 513–14
 vascular reflexes affected by 507–8

cyanide poisoning
 management 519–25
 antidotal treatment 521–5
 first-aid measures 519–20
 supportive medical management 520–1
 sources 516
 symptoms and signs 516–19

cyanogen 676

cyanogen bromide 23, 525, 676

cyanogen chloride 90, 525, 676

cyanogen fluoride 676

cyanogen iodide 676

cyanogenic glycosides 147, 676–7

cyanohydrin formers, cyanide poisoning treated
 with 523

cyanuric triazide 677

cycasin 677

cyclite see benzyl bromide

cyclosarin 90, 193, 684
 inhibition of AChE 287
 reactivation by oximes 308, 309, 310, 311, 320, 321
 metabolites 139
 toxicity 198
 see also GF

cytisine 688

cytochrome c oxidase, inhibition by cyanides 496, 499, 509

cytokine therapy, bone marrow failure treated with 449–51

cytokines, effects of sulphur mustard 387

cytomegalovirus (CMV) infection, prevention of 452–3

d-D-stoff see dimethyl sulphate

DA see diphenylchlorarsine

Dalton’s law of partial pressures 24
dart-poison frog alkaloids 668, 677

Datura stramonium (thorn apple) 677

DC see diphenylcyanarsine

DDT 677

decontaminants
 action of 183
 characteristics 183
 chloramine-based 186, 398, 417, 418
 hypochlorite-based 184, 185, 186, 419
 modern reactive systems 419
 passive powder (fullers’ earth) 187, 398, 419, 683

decontamination 178, 180, 181–9
 chemical aspects 183–7
 cyanides 519
 of eyes 187–8
 field kits 185, 186
 first steps 182–3
 in France 269
 nerve agents 181, 182, 256
 objectives 182
 procedures 90, 180, 181, 188
 deciding on adequacy 188–9
 riot control agents 597–8
 of skin 188, 256
 sulphur mustard 181, 182, 398
 and Tokyo subway attack 255, 282, 284

DEET (diethyltoluamide) 677

degradation processes 90
 in decontamination procedures 90, 183–7
 sulphur mustard 97

degradation products, listed for various CW As 92–3, 99, 105, 107–8, 113–19

deliberate chemical releases
 contrasted with accidental releases 176
 management of civil casualties 249–60, 261–76
 delivery routes, impact of nerve agents affected by 209–10, 250
 delivery/dispersion/distribution of CW As 67–80
 modelling 80–7
 see also atmospheric dispersion
delphinine 664
dendrotoxin 677
INDEX 717

density of CWs, atmospheric dispersion affected by 71–2
depleted uranium (DU), and Gulf War ‘syndrome’ 359
dermabrasion, vesicant burns treated with 436, 437
dermal effects of CW As 409–21
see also skin
dermophin 677
desmosomes 387
developmental toxicology 209
cyanide 514
lewisite 471
nerve agent 208–9
riot control agents 554, 566, 574–5, 582, 586–7
dew point 26
diagnosis
cyanide poisoning 516–17
nerve agent poisoning 203, 251, 253, 280–1
confirmation by laboratory findings 255, 280
post-mortem 211–12
ricin poisoning 621
dianisidine 680
o-dianisidine chlorosulphonate 678
diazepam 332–5
as anxiolytic 332
compared with other benzodiazepines 336
dosage 338
indications 338
pharmacodynamics 333
pharmacokinetics 332–3
routes of administration 333
toxicology 335
in treatment of nerve agent poisoning 18, 257, 258, 281, 288, 331, 332, 333–5
animal studies 333–5
see also benzodiazepines
diazinon (organophosphate insecticide) 209, 244, 246
diazobenzol 678
diazomethane 678
dibenzo(b,f)-1,4-oxazepine (CR) 561, 577–83, 678
additional studies 582
cardiovascular consequences 583, 595, 596
chemical identification 577
effectiveness, compared with CS aerosols 579
eye irritation/injuries 580, 593
human studies and in-use observations 582–3, 584
metabolism 149, 581–2
modes of dispersion 551, 577
PCSI characteristics 559, 560, 577
physicochemical properties 577
sensitization 580
skin irritation 580
structural formula 577
toxicity 577–80, 580–1, 582
 toxicokinetics 581–2
uses 577
dibromoacetylene 678
dibromoethyl sulphide 678
1,2-dibromodimethyl ether 678
1,2-dichloroethane 678
1,2-dichloroethane 678
dichloroethyl sulphide 25, 678–9
see also sulphur mustard
dichloroformoxime see phosgene oxime
dichloromethane 679
dichloromethyl chloroformate 679
dichlorovinyl arsenious sulphide 679
dichlorovinylchloroarsine 679, 689
see also lewisite
dichlorovinylmethylarsine 679
dick(s) 474, 679
see also ethyl dichloroarsine; methyl dichloroarsine; phenyl dichloroarsine
dicobalt edetate, cyanide poisoning treated with 524
dicophane see DDT
dieldrin (organochlorine pesticide) 207
diethylarsine 679
diethyl dimethyl phosphoramidate 106, 118
diethylencetramine 185
diffusing capacity of lung 57–8, 63
diffusion of gases, factors controlling 57–8
diffusion of particles/chemicals 41, 412–13
diffusivity 413
temperature effect 413, 414
Digitalis purpurea glycosides 679
dihydrocapsaicin 149, 150
dihydroxybenzidine 680
dimethyl sulphate 680
dioscorine 680
dioxins 56, 665, 703
toxicity, concentration–time relationship 56
see also TCDD
diphenylaminechloroarsine 474, 561, 680
diphenylbromoarsine 680
diphenylchloroarsine 23, 474, 480, 561, 680
diphenylchlorostibine 680
diphenylcyanoarsine 474, 480, 680
diphenylcyanostibine 680
diphosgene see trichloromethyl chloroformate
diquat 696
disaster planning 175–81
in France 269–71
disease, meaning of term 355
disposal/destruction of CW As 94, 100, 376
disulfiram 680, 693
disulphur decafluoride 707
1,4-dithiane 99, 113, 115
physicochemical properties 99
toxicity 100
dithiols, reaction with lewisite 138–9, 472
dithiophosgene 680
ditran 680
DJ see phenyl dichloroarsine
DNA
reaction with sulphur mustard 133, 382–3, 383, 426–8
repair of 384, 427–8
DNA adducts as biomarkers to CWA exposure 128, 129
with nitrogen mustards 138
with sulphur mustard 133
analytical methods 135
in human-exposure samples 135
dose–mortality curves 51
log-probability plot 52, 53
drinking water supplies, contamination of 528
DS2 (decontaminant) 185
‘Dutch’ powder (decontaminant) 184, 419
dyes, as person markers 547
dynamic shape factor 40
dynamical models, atmospheric flow modelling by 83
EA 1701 see VX
EA 2192 92, 103, 104, 105, 107, 116
ED see ethyl dichloroarsine
elderly people, susceptibility to nerve agents 210
electrostatic precipitation 41
eledoisin 681
Ellman colorimetric method 142, 210
emergency medical organization 265–6
cyanide poisoning incident 528–30
in France 269–71
emergency services staff in contingency planning 176
despatch centre staff 177
military knowledge and expertise used by 176–7
protection of 178, 182, 258, 266, 267–8, 269
risk assessment by 177–8, 263
scene management by 178–9, 258
training of 181, 268
entrainment of CWAs in atmosphere 71–2
environmental awareness, ill health and 365–6
environmental effects, riot control agents 557
environmental fate of CWAs 89–125
enzymes cyanide poisoned treated with 522
dechlorination affected by 185
inhibition by cyanides 496, 499
protein adducts treated with 130
epidermis 409, 411
epilepsy, treatment of 332
episulphonium ion 131
equinatoxin 681
erabutoxin 681
 ergot alkaloids 681
 erucic acid 681
 ethylycyanide, cyanide sequestration by 499
 ethyropeptin 445, 447, 449, 451
eserin see physostigmine
ethically acceptable behaviour 13
ethics 12
ethyl-bis(2-chloroethyl)amine see HN1
ethyl bromide 681
ethyl bromoacetate 480, 543, 681
ethyl carbazol 681
ethyl chloroacetate 681
ethyl chlorosulphonate 682
ethyl cyanofomate 682
ethylidichloroarsine 474, 480, 682
ethyl fluoroformate 682
ethyl isocyanate 682
ethylmethylphosphonic acid (EMPA) 92, 103, 104, 105, 107, 116, 211
ethyl nitrite 682
ethylparain see GE
ethylsulphur chloride 480, 682
ethyleneglycol 682
ethylidenediamine 682
eucalyptol 682
Euler models, atmospheric flow modelling by 83
European Chemicals Bureau (ECB) 652
data reporting categories 652
notifications of new chemicals 653
toxicity classifications 654
toxicological data requirements 654
types 653
European Inventory of Existing Commercial Substances (EINECS) 651
INDEX 719

European Union (EU) initiatives 651–4
future chemicals policy 653–4
evaluation of chemical risks 656–7
excessive suffering, as objection to CW 15–16
exercise(s)
effect on particle deposition 49–50
human exposure studies during 227–8
respirator testing 170
explosive weapons
compared with CWAs 15–16
use by terrorists 262
eye(s)
decontamination of 187–8
effects of nerve agents 18, 182, 202, 230–1, 279, 280
effects of nitrogen mustards 392
effects of ricin and abrin 621, 625
effects of riot control agents 564–5, 570–1, 580, 585, 588, 592–4
medical treatment 598–9
effects of sulphur mustard 379–80, 391–2, 395–6
delayed effects 397
medical treatment 398–9
F gas 682
F-stoff see titanium tetrachloride
face-scanning techniques, for respirator fitting 170
fenamiphos 309, 310
fentanyl derivative 548, 658–9
Fichlor (sodium dichlorocyanate) 186
Fick’s laws of diffusion 58, 412–13
fire coral toxins 682–3
first aid measures
cyanides 519–20
lewisite 471–2
riot control agents 596–7
sulphur mustard 397–8
first responders see emergency services staff
flame photometry 169
fluorides 683
fluoroacetates 683, 691
FM see titanium tetrachloride
Foreisite see hydrogen cyanide
Fraissite see benzyl iodide
Fraissite see benzyl bromide; benzyl chloride; benzyl iodide
France
CWAs used 525, 676
cyanide poisoning antidote 524
disaster planning 269–71
emergency services response plans 268, 269–75
Plan Biotox 271
Plan Piratox, (‘red plan’) 269–71, 274
respirator designs 158
riot control agents used 543
see also SAMU
free radicals 386–7, 483
French, [Sir] John, on use of ‘gas’ 6
French 4 see hydrogen cyanide
French 4B see cyanogen chloride
‘friendly fire’ (in military conflicts) 367
FS (mixture) 683
see also chlorosulphonic acid; sulphur trioxide
fuller’s earth (decontaminant) 187, 398, 419, 683
fumergerite see titanium tetrachloride
fungal infections, prophylaxis against 454–5, 462–3
furocoumarins 683
fusariotoxin see mycotoxin T2
fusarium mycotoxins 693, 707
G agents 683–4
development and production in Germany 3, 7, 10, 90, 191, 223, 683
human exposure studies 224–32
see also GA; GB; GE; GF
G-CSF, use in bone marrow therapy 450–1
GA 683–4
chemical structure 194
degradation products 106, 118
guidelines for restoration 106
toxicity 106
environmental degradation 92, 106
health-based environmental screening levels 101
hydrolysis of 106, 108
impurities 106, 118
physicochemical properties 106, 195, 410, 683
production by Germany 683
toxicity 197–8, 684
see also tabun
galantamine 684
gas chromatography (GC) 130
gases
absorption of 57–60
concentration–duration relationships 53–7
concentration units 22–3
critical temperatures and pressures 21
listed for various gases 22
exposure, definition 53–4
solutions in solvent(s) 25–6
gastrointestinal effects, riot control agents 600
Gaussion plume 68, 70
approximation used in dispersion modelling 68, 83–4
meandering 70, 74–5
as time-averaged measurement 74
Gaussion puff method (for atmospheric dispersion modelling) 84, 85
advantages 84
720 INDEX

1 GB 684
chemical structure 194
2 degradation products 93, 109, 119
guidelines for restoration 110
toxicity 110
3 environmental degradation 93, 106, 109
health-based environmental screening levels
 101
4 hydrolysis of 109, 184
impurities 109, 119
metabolites 139
physicochemical properties 102, 109, 195, 410, 683, 684
production by Germany 3, 90
production by USA 95
stabilizers 109, 119
toxicity 54–5, 197–8
use by terrorists, in Japan 18, 96
see also sarin
18 GD 684
chemical structure 194
degradation products 93, 110, 119
guidelines for restoration 111
toxicity 111
environmental degradation 93, 110–11
health-based environmental screening levels
 101
hydrolysis of 110, 184
metabolites 139
physicochemical properties 195, 410, 684
toxicity 197–8
see also soman
30 GE 194, 684
see also ethylsarin
gelisopiperine 696
gelsemine 684
General Service (GS) respirator 158
genetic toxicology
cyanides 515
riot control agents 554, 575, 582, 587
Geneva Protocol 9, 11, 633, 634–6
current position 635–6
and riot control agents 545
Germany
chemical/dye industry, effects on CWA development 7, 477
chlorine first used 3, 5, 673
cyanide used 525
nerve agents developed and produced 3, 7, 10, 90, 191, 223, 683–4
phosgene used 3, 477, 697
production and use of CWAs 3, 5–6, 91, 94
respirator designs 158
sulphur mustard used 3, 375, 424, 678
GF 90, 193, 684
antidote 257
chemical structure 194
human exposure studies 226
odour 228
physicochemical properties 193, 195, 410, 684
toxicity 198
see also cyclosarin
global airflows 75–6
Global Information Network on Chemicals (GINC) 656
glucose catabolism, effect of cyanide 500
glutathione, reactions with CWAs 127–8
α–glycerotoxin 684
glycol 684
glycolysis, inhibition by vesicants 384, 431, 432
glycyrizin 684
GM-CSF, use in bone marrow therapy 450–1
gonydaiotins 684
goon see angel dust
governments, policy on CW 5–6
graft-versus-host disease 452
gavity current, movement of CWAs as 73
grayanotoxins 684
‘Greek fire’ 2, 543
green cross gases/shells 685
see also chloropicrin; phosgene; trichloromethyl chloroformate
growth factors
role in haematopoiesis 447
as support in treatment of bone marrow failure 449–51, 462
Gulf War ‘syndrome’ 355–73
aetiological research 367–8
Australian experience 358
Canadian experience 358
in civilian population 364
Danish experience 358
early studies 356
epidemiological studies 210, 356–7
French experience 358–9
possible causes 206, 210, 243, 347, 358, 359–62
biological weapons vaccinations 358, 359, 361, 367
depleted uranium 359, 367
low doses of nerve agents 243, 360–1, 367
organophosphate pesticides 360
polymorphism in detoxification pathways 210, 360
pyridostigmine prophylaxis 346, 347, 358,
359–60, 367
as post-conflict ill-health 362–4
as ‘post-modern’ illness 368–9
and public confidence/distrust 366–7
INDEX 723

1 isopropylmethylphosphonic acid (IMPA) 93, 109, 119, 211
2 Italy, sulphur mustard used by 3, 10, 376, 424, 678
3 Japan
4 CWAs used by 90, 95, 376, 424, 525
5 terrorists’ attacks using nerve agents 18, 96, 128, 143, 175, 191, 253–5, 277–85
6 see also Matsumoto; Tokyo
7 Japanese star anise 687
8 JBR (mixture) 688
9 jequirity bean 623
10 see also abrin
11 JL (mixture) 688
12 joro spider toxin 688
13 ‘just war’, conditions to be satisfied 11–12, 15, 16
14 K-stoff 688
15 kainic acid 688
16 katabatic airflow 76
17 Kelvin effect 27, 42
18 Kelvin equation 28
19 keratin, reaction with sulphur mustard 133, 388
20 Khamisiyah (Iraq), destruction of CWAs 243, 360–1, 366, 367
21 Kitchener, [Lord], on CW 17
22 KJ see tin tetrachloride
23 klop see chloropicrin
24 kratom (from Mitragyna speciosa) 692
25 Krogh’s coefficient of diffusion 58
26 KSK (mixture) 688
27 L see lewisite
28 L-Gel 185
29 laburnum alkaloid(s) 688
30 lachrymators 3
31 lacrimite see thiophosgene
32 laetrile 516, 666
33 Lagrangian models, atmospheric flow
34 modelling 82–3
35 Laplace equation 487
36 lasers, vesicant burns treated with 436–8
37 latency 264
38 lathyrism 688
39 latrotoxin 669
40 LC50 hydrogen cyanide vapour 502, 503–4, 503
41 nerve agents 197–8
42 LCr50 54
43 hydrogen cyanide 55, 502, 503
44 lewisite 468
45 phosphene 478
46 physiological factors affecting 54–5
47 riot control agents 564, 568, 569, 579, 585
48 LD50
49 50 cyanides 498, 501, 504
50 graphical determination of 52, 53
51 lewisite 50, 468
52 nerve agents 197–8
53 ricin 618
54 riot control agents 562–3, 567–8, 577–8
55 sulphur mustard 379
56 leaching index 99
57 lead poisoning 688–9
58 Lefebure, V. 7
59 legally acceptable behaviour 13
60 leptodactyline 689
61 lethal index, listed for various gases 480
62 lethality coefficient (Haber’s law) 55, 264
63 leucocyte-depleted blood products, in bone marrow therapy 452–3
64 leucopenia 393, 402, 448, 453
65 lewisite 467–73, 689
66 absorption of 467–8
67 composition of weapons-grade 138
68 degradation products 92, 101, 115
69 guidelines for restoration 102
70 toxicity 101–2
71 developmental toxicity 471
72 environmental degradation 92, 101
73 health-based environmental screening levels 101
74 hydrolysis of 101, 138, 139, 467
75 impurities 102, 115
76 mechanism of action 469
77 metabolites 138
78 analytical methods 138–9
79 mixtures with sulphur mustard 21, 468, 685
80 mode of exposure 468
81 mutagenicity 471
82 occurrences of use 7, 90
83 pathology
84 respiratory tract effects 469
85 skin effects 469
86 systemic effects 469–71
87 persistence 25, 467
88 physicochemical properties 410, 468
89 production by USA 95
90 protein adducts 138
91 analytical methods 139
92 public opinion on 7
93 reactions with thiols 138–9, 472
94 reproductive toxicity 471
95 sub-chronic toxicity 470–1
96 toxicity 468, 480
97 lewisite B 689
lewisite poisoning
clinical management 471–3
first aid measures 471–2
symptoms and signs 470
light-scattering methods, aerosol characteristics measured using 169–70
Light-Type respirator 158, 161
lindane 689
Lindol (tricresyl phosphates) 705
linear airflow models 76–7, 82
liquid chromatography (LC) 130
liquid CW As, behaviour 23–4
lobeline 689
log-normal distribution (of aerosol particle size) 28–31
cumulative plot 32
log-probability plot 32, 33
log-probability plots
aerosol particle size distribution 32, 33–4, 33, 35, 36
dose–mortality plot 52, 53
lophotoxin (LTX) 689
lorazepam 332, 339
LOST see sulphur mustard
low dose, meaning of term 241
low-dose effects, nerve agents 207–8, 241–8, 360–1
low-friction polymers 547, 592
LSD 689
lung parenchyma, changes due to sulphur mustard exposure 393
lymphopenia 462
M-1 see chlorovinyldichloroarsine; lewisite
MACE spray 551, 592
maculotoxin 689
lorazeepam 332, 339
LOST see sulphur mustard
low dose, meaning of term 241
low-dose effects, nerve agents 207–8, 241–8, 360–1
low-friction polymers 547, 592
LSD 689
lung parenchyma, changes due to sulphur mustard exposure 393
lymphopenia 462
M-1 see chlorovinyldichloroarsine; lewisite
MACE spray 551, 592
maculotoxin 689
Madagascar ordeal poison 689
magnesium cyanide 690
mae fern extract 690
malodorous substances 547
mambog (from Mitragyna speciosa) 692
manganite see hydrogen cyanide
marking agents 547
dispersal of 548
marsite see arsenic trichloride
martonite 690
mass spectrometry (MS) 130
mass-per-unit-volume system (for gas concentrations) 22–3
mastoparans 690
Matsumoto (Japan), terrorist attack 18, 96, 143, 175, 191, 253–4
biomarkers 128, 255, 280
long-term effects 207, 243, 299–300
symptoms of victims 203, 204, 254, 280
Mauguinite see cyanogen chloride
MD see methyl dichloroarsine
median incapacitating dose (ID50) 55
median incapacitating exposure (IC50) 55
median lethal dose (LD50) 50
graphical determination 52, 53
median lethal exposure (LC50) 54
physiological factors affecting 54–5
medical responders see emergency services staff
medical treatment
cyanide poisoning 520–1
lewisite poisoning 471–3
nerve agent poisoning 257–8, 270, 272, 275, 281–2, 288–9
phosgene poisoning 490–2
riot control agent effects 598–600
sulphur mustard poisoning 398–9, 401–2, 435–8
mellitin 690
mercaptans 690
mercury and compounds 690
merophen (nitrogen mustard) 400
mescaline 690–1
methaldehyde 691
meteorological factors, impact of nerve agents affected by 250
methaemoglobin generators, cyanide poisoning treated with 523
methaemoglobin, stroma-free, cyanide poisoning treated with 523
methamidophos 309, 310, 315
methoxime 305, 306
reactivation of organophosphate-inhibited AChE by 309, 311
stable in aqueous solution 313
toxicity 318
1-methoxycycloheptatriene 561
methyl-bis(2-chloroethyl)amine 691
methyl bromide 691
methyl chloroformate 691
methyl chlorosulphonate 671, 691
methyl cyanoformate 691
methyldichloroarsine 23, 410, 474, 480, 691
methyl ethyl ketone 691
methyl ethyl ketone peroxide 691
methyl fluoroacetate 691
methyl fluorooctylate 691
methyl fluorophosphonicchlorine iodide 309, 310
methylfluorophosphonic homocholine iodide 309
methylfluorophosphonyl-β-methylcholine iodide 309
methyl fluorosulphonate 691
methyl formate 691
methyl guanidine 692
methyl mercury 690
INDEX 725

1 methyl methacrylate 111, 692
2 methylphosphonic acid (MPA) 92, 93, 103, 104, 105, 107, 110, 116, 119
3 as biomarker for nerve agent exposure 140, 143, 144, 145, 211
4 methylsulphuryl chloride 692
5 metridiolysin 692
6 MFA see methyl fluoroacetate
7 Michaelis–Menten complex 198
8 military effectiveness, and nerve agents 230
9 military necessity 14
10 miosis
11 animal studies 245
12 meaning of term 202–3
13 as symptom of nerve agent poisoning 18, 182, 202, 203, 223, 224, 230, 231, 251, 253, 254, 279, 280, 284, 294
14 Mitragyna speciosa alkaloids 692
15 mixing of CWAs in atmosphere 71–3
16 modeccin 692
17 momentum of discharge, atmospheric dispersion of CWAs affected by 72–3
18 Monin–Obukhov lengthscale 71
19 equivalence with Pasquill stability classes 71
20 monkshood see aconite
21 monochloromethyl chloroformate 671
22 monopyridinium oximes 288, 305
23 see also pralidoxime
24 Montreal Protocol on Substances that Deplete the Ozone Layer 646
25 morally acceptable behaviour 13
26 morals 12
27 mortality rates
28 gunshot wounds 15
29 as objection to CW 15
30 sulphur mustard 15, 375
31 motor neuron disease 357
32 MPPP 692
33 MPTP 692
34 multiple chemical sensitivity (MCS) 364
35 murexine 692
36 muscarine 666, 692
37 muscarinic receptor antagonists 289, 290, 291
38 muscarinic receptors 201, 289
39 clinical effects 202, 245, 288
40 muscimol 666, 693
41 muscle fasciculation, nerve agent induced 202, 204, 209, 280, 287
42 mushrooms 693
43 mustard compounds see nitrogen mustard; sulphur mustard
44 mustard gas see sulphur mustard
45 mustard oil 376, 693
46 mustard sulphone 113, 377, 693
47 physicochemical properties 99
48 mustard sulphoxide 113, 377, 693
49 physicochemical properties 99
50 mustard gas exposure
51 steps to protect against bone marrow damage due to 461–3
52 see also nitrogen mustards
53 mustine hydrochloride
54 clinical uses 378, 448
55 toxicity 380
56 see also HN2
57 mutagenicity
58 lewisite 471
59 nitrogen mustards 448
60 mydaleine 693
61 mydatoxine 693
62 myopathy, organophosphate-induced 204–5
63 myotoxin A 693
64 myristicin 693
65 naphthalene 693–4
66 NAPS (Nerve Agent Pretreatment Set) 345, 346
67 Navier–Stokes equation 80–1
68 flow models derived from 82
69 NBC (nuclear–biological–chemical) protective suits 364
70 NC 694
71 see also chloropicrin
72 neosaxitoxin 700
73 nerve agent poisoning, medical treatment 257–8, 270, 272, 275, 281–2, 288–9
74 nerve agents
75 anticholinesterase action 102, 140, 191, 196, 199–200, 208, 251, 252, 287
76 biological distribution 139
77 clinical effects 201–2, 224, 251, 253, 254, 279–80, 287–8, 298, 300
78 development and production in Germany 3, 7, 10, 90, 191, 223, 683–4
79 diagnosis of poisoning 203, 251, 253, 280–1
80 effect of delivery/exposure route 209–10, 250
81 effect on specific organs 203–9
82 environmental degradation 102–11
83 health-based environmental screening levels 101, 212
84 history 3, 90, 95, 191–2
85 human exposure studies 223–39
86 G agents 224–32
87 VX 232–5
88 low-dose effects 207–8, 241–8
nerve agents (cont.)
 mechanisms of poisoning 102, 191, 196,
 198–201, 250–1
 metabolites 139–40
 analytical methods 142
 in human-exposure samples 142, 144, 145
 non-anticholinesterase effects 202–3
 physicochemical properties 193, 195, 249–50
 post-mortem diagnosis 211–12
 protein adducts 140–2
 analytical methods 142–3
 in human-exposure samples 144, 145
 targets in warfare 192
 terrorist targets 193
 terrorist use 18, 96, 191, 192
 use by Iraq 3, 96, 143, 175, 191, 253,
 245–5, 277–85, 526
 toxicity 196, 197–8, 250
 toxicology 193, 196–203
 use by Iraq 3, 96, 191, 192
 use by terrorists, in Japan 18, 96, 143, 175, 191
 see also GA; GB; GD; GE; GF; VE; VG;
 VM; VX
 nervous system, effect of nerve agents 204
 'nettle' gases 16
 see also phosgene oxime
 neurine 694
 neurotoxicity
 cyanides 509–13
 animal studies 509–12
 human observations 512–13
 nerve agents 206–9
 neutropenia 453, 462
 New European Chemicals Strategy (NECS) 654
 new technology, health risks 366
 nga/ngwa 694
 niacin deficiency 385
 nickel carbonyl 694
 nicotinamide 384, 428
 nicotine 694
 nicotinic receptor antagonists 291
 nicotinic receptors 201
 clinical effects 202, 288
 niespulver see o-dianisidine chlorosulphonate
 Nikolsky's sign 395, 434
 nitriles
 cyanide poisoning treated with 524
 disadvantages 524
 nitrobenzene 694
 nitrobenzyl chloride 694
 nitrochloroform see trichloronitrosomethane
 nitrogen mustards 685–6, 691
 chemical structure(s) 378
 clinical uses 375, 378, 380, 448
 DNA adducts 138
 environmental degradation 90
 eye effects 392
 metabolites 137
 analytical methods 138
 physicochemical properties 378, 410, 685, 686, 691
 protein adducts 137–8
 toxicity 380–1
 reduction by various pretreatments 400, 401
 volatility 410, 685, 686
 see also HN1; HN2; HN3; merophan;
 methyl-bis(2-chloroethyl)amine
 nitrolime see calcium cyanamide
 nitroprusside therapy
 cyanide poisoning caused by 516
 thiocyanate poisoning caused by 518
 nitrous oxide, absorption in respiratory tract 57
 nivalenol 694, 705
 NMR (nuclear magnetic resonance) spectrometry 130
 non-reactive gases, absorption in respiratory tract 57–9
 normal distribution 28
 normal equivalent deviates 52
 relationships with probits 52, 53
 nor-nitrogen mustard, haemoglobin adducts 138
 North Sea, disposal of CWAs in 94, 100
 Northern Ireland, use of riot control agents 544, 555, 570
 notexin 694
 Notification Of New Substances (NONS) Regulations 658
 noxiustoxin 694
 nuclear weapons 262
 nutmeg compounds 693

 obidoxime 305, 306
 elimination rate data 317
 metabolism and excretion 315–16
 reactivation of organophosphate-inhibited AChE by 309, 311, 320, 321, 322
 stability in aqueous solution 312–13, 314
 stability of phosphyloximes 308
 toxicity 318–19, 318
 in treatment of nerve agent poisoning 257, 288, 321
 obscuring smoke agents 26, 60, 543, 547
 obstacles, atmospheric dispersion affected by 76–80
 OC, see also oleoresin capiscum ochratoxins 695
 octopamine 695
 odour perception, nerve agents 228, 235
 oedema, causes 484–5
oleoresin capsicum (OC) 561, 583–9, 695iochemical mechanisms 586
composition 583, 585
eye effects 588, 593
human studies and in-use observations 588–9
respiratory tract effects 588–9, 594
skin effects 589
toxicity 585, 586–7
see also capsaicin

eoleum (fuming sulphuric acid) 695
ololiuqui 695
oncogenic potential, cyanide 515
oncogenicity, riot control agents 553, 566, 575–6, 587
opacite see tin tetrachloride
operational planning 175–81
French approach 269–71, 275
opinions on CW 1–20
organic arsenicals 467–75
listed 468
as riot control agents 561
see also lewisite; phenylchloroarsine
Organization for Economic Co-operation and Development (OECD), recommendations on chemicals 649–50
Organization for the Prohibition of Chemical Weapons (OPCW), Scientific Advisory Board 640
organomercury compounds 690, 695
organophosphate-induced delayed polyneuropathy 205–6, 283
organophosphorus cholinesterase inhibitors, first synthesized 223
organophosphorus pesticides 191
central nervous system affected by 207, 209, 243
and Gulf War ‘syndrome’ 360
inhibition of AChE, reactivation by oximes 309, 310
treatment of poisoning 335, 337
organophosphorus cholinesterase inhibitors, first

toxicology 193, 196–203
uses 192–3
see also GA; GB; GD; GE; GF; VE; VG; VM; VX
organophosphate pesticides 191

pacifist movement 6–7

physicochemical properties
99
toxicity 100

oxidation of CWAs 184–5

oximes 305–29
development of 305–6
distribution in body 314–15
efficacy against nerve agent exposure
in animals in vivo 310–12
assessment by theoretical models 320
factors affecting 306–7
in humans in vivo 281, 293–4, 312
elimination rate 316, 317
metabolism and excretion 315–16
pharmacokinetics 314–15
protective action of 205, 231
investigations into 200
reactivation of phosphorylated AChE by 233, 235, 305–22
efficacy in animals in vivo 310–12
factors affecting efficacy 306–7
kinetics in vitro 309–10
mechanism of action 306–9
shelf-lives 314
stability 312–14
structural formulae 306
therapeutic safety 316–20
toxicity
animal studies 317–18
human studies 318–20
see also methoxime; obidoxime; pralidoxime; trimedoxime

Oxone 185

ozone, absorption in respiratory tract 59–60

oleocratin 695
INDEX

1 pain-causing weapons 16
2 pain management, in sulphur mustard poisoning 398, 435
3 Palite 695
4 see also monochloromethyl chloroformate
5 palytoxin 696
6 2-PAM see pralidoxime; 2-pyridine aldoxime methiodide
7 panic injuries associated with RCAs 592
8 papite 696
9 paraoxon and compounds, inhibition of AChE, reactivation by oximes 309, 310
10 paraaxonase 1 polymorphism(s) 210
11 paraquat 696
12 toxicity 386
13 parathion poisoning, oximes used in treatment 315
14 pardaxins 696
15 parsley, oil of 696
16 partial pressures of gas in liquid solution 26, 58
17 of gases in mixture 24
18 partial-pressure gradients, gaseous diffusion controlled by 58
19 particle deposition mechanisms 37, 39–42
20 particle size distribution, aerosols 28–34
21 particle-counting methods, aerosol characteristics measured using 170
22 particles, hygroscopic growth of 27, 42–6
23 particulate dust/granules, absorption of CWAs on 60–3
24 Pasquill stability classes 68–9
25 equivalence with Monin–Obukhov lengthscale 71
26 PAVA (nonivamide) 561, 590, 593
27 PD see phenyl dichloroarsine
28 peace pills see angel dust
29 peacekeeping
30 chemical injuries resulting 592–6
31 circumstances 544–5
32 peripheral chemosensory irritants used
33 situations when used 589–91
34 specific agents 561–89
35 physical injuries resulting 591–2
36 pellargonic acid morpholide 696
37 pentin 291
38 pepper spray see oleoresin capsicum
39 perchloromethylmercaptan 696
40 percutaneous absorption factors affecting 413–17
41 hydrogen cyanide vapour 504
42 see also skin absorption
43 pererine 696
44 peripheral chemosensory irritant (PCSI) chemicals 546–7
45 classification 558
46 duration of induced effects 559
47 effectiveness 558–9
48 assessment of 556–7
49 factors affecting 560–1
50 effects 546
51 harasing effects 558
52 incapacitating concentration 558
53 latency 559
54 military use 543, 546
55 physiological effects 558–9
56 specific materials 561–89
57 1-chloroacetophenone (CN) 562–7
58 2-chlorobenzylidene malononitrile (CS) 567–77
59 dibenz(b,f)-1,4-oxazepine (CR) 577–83
60 oleoresin capsicum (OC) 583–9
61 terrorist use 546–7
62 threshold concentration 558
63 see also riot control agents
64 Pershing, General, on CW 1
65 persistence of agents 24, 264
66 calculation of 24–5
67 effect of absorbent particles 60–3
68 nerve agents 103, 250, 684
69 various CWAs 25, 96, 377, 467
70 personal protection devices 544, 550–1, 551
71 personal protective equipment classification of protection levels 266
72 for emergency services staff 178, 182, 266,
73 267–8, 269
74 Perstoff see trichloromethyl chloroformate
75 pesticides, central nervous system affected by 207, 209, 243
76 peyote see mescaline
77 pfiffikus see phenyl dichloroarsine
78 PG, see also chloropicrin; phosgene
79 Phalaris tuberosa alkaloids 696
80 phalloidine see Amanita phalloides
81 phenarsazine chloride see diphenylamine chloroarosine
82 phenecyclidine 697
83 phenol 697
84 phenylcarbylamine chloride 480, 697
85 phenylbromoarsine 697
86 phenylchloroarsine 468, 473–4, 697
87 mixture with sulphur mustard 21, 378
88 phenytoin 337
89 phosgene 477–94, 697
90 environmental degradation 90
91 long-term effects 492–3
92 mechanisms of action 481–4
<table>
<thead>
<tr>
<th>Page</th>
<th>Index Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>metabolites 145–6</td>
</tr>
<tr>
<td>2</td>
<td>mixed with chlorine 477, 697</td>
</tr>
<tr>
<td>3</td>
<td>mode of exposure 478</td>
</tr>
<tr>
<td>4</td>
<td>odour 697</td>
</tr>
<tr>
<td>5</td>
<td>persistence 25</td>
</tr>
<tr>
<td>6</td>
<td>pharmacological effect 479–84</td>
</tr>
<tr>
<td>7</td>
<td>physicochemical properties 22, 23, 477, 478</td>
</tr>
<tr>
<td>8</td>
<td>protein adducts 146</td>
</tr>
<tr>
<td>9</td>
<td>reactions 480, 481</td>
</tr>
<tr>
<td>10</td>
<td>toxicity 478–9, 480, 697</td>
</tr>
<tr>
<td>11</td>
<td>used by Germany 3, 477, 697</td>
</tr>
<tr>
<td>12</td>
<td>phosgene-induced lung damage, pathology 488</td>
</tr>
<tr>
<td>13</td>
<td>phosgene-induced pulmonary oedema, pathophysiology 484–8</td>
</tr>
<tr>
<td>14</td>
<td>phosgene oxime 16, 410, 697</td>
</tr>
<tr>
<td>15</td>
<td>phosgene poisoning</td>
</tr>
<tr>
<td>16</td>
<td>first aid measures 489–9</td>
</tr>
<tr>
<td>17</td>
<td>first-hand account 489</td>
</tr>
<tr>
<td>18</td>
<td>symptoms and signs 488–9</td>
</tr>
<tr>
<td>19</td>
<td>treatment of 490–2</td>
</tr>
<tr>
<td>20</td>
<td>efficacy of various drugs 492</td>
</tr>
<tr>
<td>21</td>
<td>phosgene-induced lung damage, pathology 488</td>
</tr>
<tr>
<td>22</td>
<td>phosphine 697</td>
</tr>
<tr>
<td>23</td>
<td>phosphorus 697–8</td>
</tr>
<tr>
<td>24</td>
<td>red 697–8</td>
</tr>
<tr>
<td>25</td>
<td>white 697</td>
</tr>
<tr>
<td>26</td>
<td>phosphorus pentachloride 698</td>
</tr>
<tr>
<td>27</td>
<td>phosphorus pentoxide 547</td>
</tr>
<tr>
<td>28</td>
<td>phosphorus trichloride 698</td>
</tr>
<tr>
<td>29</td>
<td>physostigmine</td>
</tr>
<tr>
<td>30</td>
<td>ocular effects 231</td>
</tr>
<tr>
<td>31</td>
<td>pretreatment together with hyoscine 347–9, 350–1</td>
</tr>
<tr>
<td>32</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>33</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>34</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>35</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>36</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>37</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>38</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>39</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>40</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>41</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>42</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>43</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>44</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>45</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>46</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>47</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>48</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>49</td>
<td>protection factor/ratio 345</td>
</tr>
<tr>
<td>50</td>
<td>protection factor/ratio 345</td>
</tr>
</tbody>
</table>
INDEX

1. prussic acid see hydrogen cyanide
2. PS see chloropicrin
3. pseudotritontoxin 698
4. psoralen 683
5. psoriasin 376
6. psychological effects
 7. nerve agents 234–5, 283
 8. riot control agents 598
7. ptomaines 693, 698
8. pulmonary capillaries, balance of forces
 across 485–7
9. pulmonary oedema, causes 484–5, 567, 571
10. pumilotoxin B 677
11. pyrethrins 698
12. pyridine 698–9
13. 2-pyridine aldoxime methiodide (2-PAM) 305
14. as antidote for nerve agents 18, 277, 279, 281,
 284, 288, 293, 312, 322
15. chemical formula 306
16. metabolism and excretion 315
17. reactivation of organophosphate-inhibited AChE
 by 309, 311, 320, 321, 322
18. stability of phosphyloximes 305, 308
19. toxicity 317–18
20. see also pralidoxime
21. 4-pyridine aldoxime methiodide (4-PAM), stability
 of phosphyloximes 305, 308
22. pyridinium aldoximes see oximes
23. pyridostigmine
 24. pretreatment with 288, 311, 344–7
 25. acceptability 346–7
 26. compared with physostigmine/hyoscine
 27. pretreatment 348–9
 28. effectiveness 344–5
 29. and Gulf War ‘syndrome’ 346, 347, 358,
 359–60
 30. practicability 345
31. pyriminil 699
32. pyrotechnically generated RCA smokes 548–9
33. inhalation toxicity 549–50
34. specific agents 568–9, 579
35. Q (sesqui-mustard) 97, 114, 699
36. see also 1,2-bis(2-chloroethylthio)ethane
37. Q sulphonium 97–8, 114
38. quebracho alkaloids 699
39. 3-quinoctimidyl benzilate see BZ
40. Raoult’s law 25
41. Rationite 699
42. reactive airways dysfunction syndrome (RADS) 577, 594
43. reactive gases, absorption in respiratory tract
 59–60
44. recombinant human stem cell factor 447, 451
45. red blood cells, in treatment of bone marrow
 failure 462
46. red phosphorus 697–8
47. red squill 699
48. reference concentrations (RfCs), degradation
 products 91
49. reference doses (RfDs)
 50. degradation products 91
 51. organophosphate nerve agents 212
52. Regnault’s equation 23
53. reprisal principle 10, 14
54. reproductive toxicology 208
55. cyanide 515
56. lewisite 471
57. riot control agents 554, 566, 586–7
58. respirators
 59. air-leakage measurements 170
 60. airflow management in 158, 163, 164
 61. cognitive effects 168
 62. conative effects 168
 63. cyanide-protection 530
 64. design issues 159–60, 163, 165
 65. effect on exercise endurance 167
 66. equipment compatibility 169
 67. ergonomics 168–9
 68. future developments 170–1
 69. history 157–9
 70. up to present 158–9
 71. WWI 157–8
 72. WWII 158
73. materials of construction 160
74. NATO standard 161
75. perceptual-motor effects 168
76. respiratory deadspace 167, 167–8
77. respiratory effects 167–8
78. sizing of 160, 165–6
79. structure
 80. drinking facility 165
 81. eyepiece(s) and visors 158, 163–4
 82. facepiece 158, 160
 83. faceseal 160–1
 84. filter canisters 161–2
 85. filters 162
 86. speech module 164–5
 87. valves and deadspace 162–3
 88. testing of 169–70
 89. agents used 169
 90. exercises during 170
 91. measurement methods 169–70
 92. procedures 170
 93. thermoregulatory effects 166–7
 94. respiratory protection 157–73
INDEX 731

1 respiratory tract
2 3-compartment model 36
3 deposition of particles as function of particle size 37, 38, 39
4 absorption of gases in 57–60
5 deposition of airborne particles 34–7, 38, 39
6 mechanisms 40–2
7 effects of cyanides 508–9
8 effects of nerve agents 203–4, 229–30
9 effects of riot control agents 566–7, 577, 588–9, 594–5
10 medical treatment 599–600
11 effects of sulphur mustard 392–3, 396
12 medical treatment 399
13 neutralization of acid droplets in 46–8
14 relative humidity in 42, 43
15 rhinorrhea 202, 224, 225, 254, 297, 396
16 rhodanese 498, 522
17 ricin 613–23, 699
18 administration modes
19 ingestion 618–19
20 inhalation 621
21 intramuscular 619–20
22 intravenous 620–1
23 subcutaneous 620
24 topical 621
25 binding to mammalian cells 616
26 biosynthesis 614–15
27 chemical structure 613–14
28 endocytosis 616–17
29 lethal dose 618
30 mechanism of action 615–16
31 possible terrorist use 526, 613
32 release into cytosol 617–18
33 substrate for 615
34 toxicokinetics 618
35 transport to endoplasmic reticulum 616, 617
36 see also abrin
37 ricin poisoning
38 assassination by 526, 620, 699
39 clinical features 618, 620
40 diagnosis 621
41 management of 621–2
42 protective immunization strategies 622–3
43 riot, meaning of term 544
44 riot control agents (RCAs) 543–612
45 assessment of effectiveness 556–7
46 biochemical mechanisms 566, 572–3, 586
47 biomarkers after exposure 147, 149–50
48 cardiovascular consequences 576, 590, 595–6
49 medical treatment 600
50 Chemical Weapons Convention on 639
51 circumstances of exposure 589–91
52 full-scale civil disturbances 590
53 hostage situations 548, 591
54 mentally ill/old patients 590–1
55 small-group activity 589–90
56 by terrorists 591
57 by vandals 590
58 decontamination procedures 597–8, 598
59 developmental toxicology 554, 566, 574–5, 582, 586–7
60 dispersal of 548, 550–2
61 evaluation of health hazards 552–6
62 eye irritation/injuries 564–5, 570–1, 580, 585, 588, 592–4
63 medical treatment 598–9
64 gastrointestinal effects 600
65 generation of 548–50
66 genetic toxicology 554, 575, 582, 587
67 historical background 543–4
68 human (volunteer) studies 555–6
69 inhalation toxicity 549–50, 563–4, 568–70, 571, 578–80, 581, 585
70 metabolism 554–5
71 specific agents 573–4, 581–2, 586
72 occupational exposure 557
73 oncogenicity 553, 566, 575–6, 587
74 panic injuries associated with 592
75 PCSI response 558–60
76 for specific agents 562, 567, 577, 585
77 projectile injuries associated with 546, 591
78 repeated-exposure toxicity 554, 565–6, 571–2, 580–1, 585–6
79 reproductive toxicology 554, 566, 586–7
80 respiratory tract effects 566–7, 577, 588–9, 594–5
81 sensitization 554, 565, 571, 580, 600
82 skin irritation/injuries 564, 570, 580, 589, 594
83 medical treatment 599
84 thermal injuries associated with 591–2
85 threshold values 577, 585
86 toxicokinetics 554–5, 573–4, 581–2, 586
87 toxicology studies 553–5
88 acute toxicity 554
89 compound-specific studies 555
90 primary irritation 554
91 use in Northern Ireland 544, 555
92 see also capsaicin; CN; CR; CS; OC; peripheral chemosensory irritant (PCSI) chemicals
93 risk assessment
94 chemicals
95 European Union initiatives 651–4
96 international initiatives 656
97 national initiatives 654–5
98 by emergency services 177–8
99 rotenone 699
100 Rotterdam Convention (on hazardous chemicals and pesticides) 646, 648
101 RSDL decontaminant 419
102 rubber bursting grenade 549
732 INDEX

1 rules of war
2 CW in relation to 11–14
3 origins 14–15
4 Russia
5 Moscow theatre hostage seige 548, 658–9
6 treatment of sulphur mustard poisoning 402
7 see also Soviet Union (former)
8 S see methyl-bis(2-chloroethyl)amine
9 S6 respirator 158, 161, 164
10 S10 respirator 158–9, 161, 162, 163, 164–5
11 Safety Triggers for Emergency Personnel (STEP)
12 rules 177, 178
13 salamander toxins 699–700
14 saliva, free metabolites as biomarkers 129
15 SAMU (emergency medical service in France) 268, 270
16 CWA response teams 272
17 mobile intensive-care units 275
18 protective equipment 268, 269
19 sanguinarine 700
20 santonin 700
21 saponin 700
22 sapotoxins 700
23 sarafotoxins 700
24 sarin 700
25 chemical structure 194
26 clinical effects 203
27 development and production in Germany 3, 90, 191
28 effect of delaying treatment 256
29 effect of pretreatment 311, 345, 347, 349, 350–1
30 environmental degradation 93
31 human exposure studies 224–6, 227–8
32 inhibition of AChE 287
33 reactivation by oximes 308, 309, 310, 311
34 metabolites 139
35 odour 228
36 physicochemical properties 195, 249, 250, 684
37 targets in warfare 192
38 terrorist use 18, 96, 128, 143, 175, 191, 253, 254–5, 277–85, 526
39 toxicity 54–5, 197–8, 250
40 see also GB
41 saturated vapour concentration (SVC), calculations 24
42 saturated vapour pressure (SVP) 23
43 calculations 23–4
44 factors affecting 23
45 saurine see scombroid fish poisoning
46 sauvagine 700
47 savin oil 700
48 saxitoxin 700
49 scale dependency, of dispersion behaviour 73–6
50 scene management 178–9, 258
51 Schrader, Dr Gerhard, nerve agents developed by 7, 10, 191, 223, 683
52 scombroid fish poisoning 700–1
53 scopolamine 290, 300
54 see also hyoscine
55 scorpion toxins 701
56 Scoville units 585
57 sea, disposal of CW As in 94, 100, 376
58 sea anemone toxins 668, 681, 692
59 sea breeze 75
60 secondary contamination 182
61 cyanides 519
62 nerve agents 255, 282, 284–5
63 sedimentation 37, 39–40
64 segmental myopathy 211
65 selenium 701
66 selenium dioxide 701
67 selenium oxychloride 701
68 self-defence principle 14
69 self-reported symptoms 357
70 Senf gas see dichloroethyl sulphide; sulphur mustard
71 sesqui-mustard
72 see 1,2-bis(2-chloroethylthio)ethane: Q
73 sheep dips, exposure to 210, 244, 246
74 ‘shell shock’ 368
75 shiga toxin 706
76 sick-building syndrome 368
77 silicon tetrachloride 701
78 silver sulphadiazine cream 398, 435
79 single-breath technique, human exposure studies 227, 229
80 sister chromosome exchange (SCE) 209
81 SK see ethyl iodoacetate
82 skeletal muscle, effect of nerve agents 204
83 skin
84 abrasion/debridement agents/techniques 420, 436–8
85 connective tissue matrix, effect of sulphur mustard 387–9, 429–30
86 decontamination of 188, 256, 398, 417–19, 420
87 effects of hydrogen cyanide 504
88 effects of nerve agents 225–7, 232–4
89 effects of ricin 621
90 effects of riot control agents 564, 570, 580, 589, 594
91 medical treatment 599
92 effects of sulphur mustard 380, 389–91, 394–5
93 medical treatment 398, 435–8
94 human exposure studies, nerve agents 225–6, 233–4
95 protein adducts as biomarkers 129, 133
96 structure and function 409, 411–12
97 see also dermal effects
INDEX 733

1 skin absorption of CWAs
2 catch-up therapies 419–21
3 factors affecting 413–17
4 anatomical variation 414, 415, 416
5 sweating 414, 416
6 temperature effects 414, 415
7 volatility of CWA 416–17
8 mitigation strategies 417–21
9 principles 412–13
10 topical treatment 417–19, 420–1, 435
11 slippery riot control agents 547, 592
12 smokers 26, 60, 543, 547
13 generation and dispersal of 548–9
14 snake neurotoxins 701
15 societal concerns, and subjective health effects 366
16 sodium chlorate 701
17 sodium dichlorocyanate, as decontaminant 186
18 sodium fluoride 701
19 solanaceous alkaloids 701
20 see also atropine; hyoscine; hyoscyamine
21 solanine 701
22 solenodon venom 702
23 solid-phase extraction, biomarkers 130
24 solubility in water, nerve agents 250
25 solutions
26 behaviour of 25–6
27 gas(es) in solvent 25–6
28 volatile liquid(s) in solvent 25
29 solvents
30 decontamination by 187, 398, 420
31 in riot control agents 551–2
32 soma (legendary drug) 702
33 soman
34 antidotes 236, 293, 312, 333–4
35 chemical structure 193, 194
36 development and production in Germany 3, 191
37 effect of delaying treatment 256
38 effect of pretreatment 288, 311, 344–5, 347, 349, 350–1
39 environmental degradation 93
40 human exposure studies 226
41 inhibition of AChE 199, 251, 252, 287
42 reactivation by oximes 308, 311, 311, 335
43 metabolites 139
44 odour 228
45 physicochemical properties 195, 250, 684
46 targets in warfare 192
47 toxicity 197–8, 250
48 see also GD
49 Soviet Union (former)
50 disposal of CWAs 95
51 production of CWAs 10–11, 95, 223
52 sparteine (alkaloid) 702
53 spying 12–13
54 stack-plume observations 68–73
55 characteristic plumes 68–9, 72–3
56 stannic chloride 704
57 staphylococcus enterotoxin B 702
58 Starling equation 485
59 Starling forces 485
60 starvesacre seeds 664
61 stem cell factor 447, 451
62 stem cell transplantation 456–61
63 bone marrow harvesting for 456–8
64 historical background 456
65 peripheral blood stem cell harvesting for 458
66 problems associated 459–61
67 stem cells
68 activity in physiological situations 446–7
69 characteristic features 443–4, 445
70 harvesting from bone marrow 457–8
71 problems associated 459–60
72 harvesting from peripheral blood 458
73 cell separators used 459, 460
74 ‘mobilization’ of stem cells prior to 458–9, 460–1
75 problems associated 460–1
76 prospective collection 461
77 Stermitz 702
78 steroid therapy
79 phosgene poisoning 490–1
80 sulphur mustard poisoning 399, 401, 435
81 stibane 702
82 see also antimony and compounds
83 Stockholm Convention on Persistent Organic Pollutants 646, 648
84 Stokes' equation 39
85 stramonium cigarettes 668, 677
86 stratum corneum (in skin), ‘brick-and-mortar’ model 411, 412
87 strychnine 702
88 suberitine 702
89 suicides (and attempts) 512–13, 620
90 sulphur dioxide, as possible CWA 2, 3
91 sulphur donors, cyanide poisoning treated with 521–2
92 sulphur monochloride 702
93 sulphur mustard 375–407, 678–9
94 absorption of 379
95 alternative names 376, 410, 425, 678
96 apoptosis induced by 385–6
97 basal cell–basal lamina adhesion complex disturbed by 388–9
98 biochemical reactions 382–5
99 biological distribution 131
INDEX

sulphur mustard (cont.) 131–7
 biomarkers 131–7
 carbohydrate metabolism affected by 384
 carcinogenic effects 402–3
 casualties in WWI 375, 424
 chemical structure and synonyms 376, 425
 in clinical medicine 376
 cutaneous enzyme systems affected by 431–2
 cytokine production affected by 387
 decontamination of 187, 398
 degradation products 92, 97–100, 113–14
 guidelines for restoration 100–1
 physicochemical properties 99
 toxicity 100
 distilled (Agent HD) 96, 376
 hydrolysis of 97, 98
 DNA adducts 133
 analytical methods 135
 in human-exposure samples 137
 environmental degradation 92, 96–100
 excretion of 379
 eye effects 379–80, 391–2, 395–6
 first aid measures 397–8
 first-hand accounts of effects 396–7
 first used in warfare 3, 375, 424
 health-based environmental screening levels 101
 histopathology of injured skin 389–93, 432–5
 in HT blend 96
 hydrolysis of 97, 98, 184, 376
 impurities 97–8, 114
 mechanisms of action 381–9
 metabolism 131–3, 379
 mixtures with other CWAs 21, 378, 468, 685
 mode of exposure 378–9
 non-metabolized 137
 and oxygen free radical production 386–7
 percutaneous absorption
 effect of wetting/sweating 414, 416, 416
 temperature effects 414, 416
 persistence 25, 96, 377, 467
 physicochemical properties 96–7, 376, 377, 410, 425
 production by UK 3, 94, 396, 423
 production by USA 94–5
 protein adducts 133
 analytical methods 134–5
 in human-exposure samples 135, 136, 137
 psychological effects 396
 reactions 133, 377, 382–3, 425–32
 basement membrane 430–1
 connective tissue matrices 429–30
 DNA 133, 382–3, 383, 426–8
 and effect on cutaneous enzyme systems 431–2
 proteases 428–9
 respiratory tract changes due to 392–3
 saturated vapour concentration calculations 24
 skin effects 380, 389–91, 432–5
 clinical management 398, 435–8
 healing pattern 391, 436
 synthesis 375, 423
 toxicity 379–80, 480
 effect of absorbent particles 60
 toxicology and pharmacology 381–9
 urinary metabolites 132–3
 analytical methods 133–4
 in human-exposure samples 135, 136
 use in warfare 3, 10, 90, 375–6, 423–5, 678
 volatility 377, 410, 678
 sulphur mustard poisoning
 long-term effects 402–3
 mortality rates 15, 375, 424
 prognosis for casualties 402
 symptoms and signs 394–6
 eye lesions 395–6
 non-specific symptoms 396
 respiratory tract lesions 396
 skin lesions 394–5
 therapeutic measures 398–9, 401–2, 435–8
 bone marrow depression 399, 401
 eye effects 398–9
 respiratory effects 399
 skin effects 398, 435–8
 sulphur trioxide 702
 sulphuric acid, fuming (oleum) 695
 sulphuric acid droplets
 growth in respiratory tract 42–4, 45
 neutralization in respiratory tract 46–8
 sulphuryl chloride 703
 Sulvanite 703 see also ethyl chlorosulphonate
 superoxide dismutase 386, 483
 Surpalite see trichloromethyl chloroformate
 sweating
 percutaneous absorption of CWAs affected
 by 414, 416
 and respirators 166
 synergistic effects, particles and gases/vapours 61–3
 T 703 see also bis[2-(2-chloroethylthio)ethyl] ether
 T2 mycotoxin 410, 693
 T-stoff see xylyl bromide
INDEX

1. tabun
 - chemical structure 194
 - development and production in Germany 3, 191,
 683
 - environmental degradation 92
 - human exposure studies 224, 226–7
 - hydrolysis of 140
 - reactivation by oximes 308, 309, 310, 311
 - physicochemical properties 195, 249,
 250, 683
 - toxicity 197–8, 250
 - use 3, 192
 - see also GA

2. taipoxin 703

3. Tamus communis (black bryony) 669

4. taxine 703

5. tasers 546, 591, 592

6. TCCD (tetrachlorodibenzo-p-dioxin) 703

7. ‘tear gas’
 - personal protection devices 544, 550–1, 551
 - use in riot control 544
 - see also chloroacetophenone;
 chlorobenzoxazepine
tentonacatl 703
TMB-4 see trimedoxime
techo toxins 671, 704

8. technology, health risks 366

9. Tedania ignis neurotoxins 703

10. tellurium and compounds 703

11. temperature changes, atmospheric dispersion of
 CWAs affected by 73
12. temperature inversion, effect on plume 70

13. teonanacatl 703

14. TEP (tetraethyl pyrophosphate) 703

15. terrorist attacks
 - contingency planning for 175–81, 265–6, 271–5,
 528
 - cyanide as possible agent 525–30
 - individual/small-group incidents 526–7
 - major/international threats 527–8
 - recent examples 529
 - role of health care providers 528–30
 - identifying agents used in 179–80, 254, 265, 281,
 529
 - in Japan 18, 96, 128, 143, 175, 191, 253, 254–5,
 277–85
 - possible use of chemicals 4, 19–20, 526
 - potential targets 193
 - riot control agents 591
 - tetanus toxin 703
 - tetrachlorodinitroethane 703
 - Tetr 666
tetrodotoxin 704
thallium 704

16. thelenotoside B see astichoposide C

17. thickened CWAs 181, 250
 - decontamination of 181, 184
Thiocit mixture 401
thiodiglycol (TDG) 92, 97, 113
 - background level in humans 135
 - as biomarker 135
 - physicochemical properties 99
 - toxicity 100
thiodiglycol sulphoxide (TDGO)
 - background level in humans 135
 - as biomarker for sulphur mustard exposure 132,
 135
thiophosphene 704
thiosulphates
 - cyanide poisoning treated by 521–2
 - sulphur mustard protection/treatment using 400,
 401

18. threat, meaning of term 263

19. threshold limit values (TLVs), riot control agents 553

20. thrombocytin 704

21. thrombopoietin 445, 447, 449

22. thyroid gland function, effects of cyanide
 intoxication 513–14

tin tetrachloride 704

tissue dose modelling, absorption of reactive
gases 60

tissue typing 449, 461
 - after chemical attack 462
 - titanium tetrachloride 547, 704

tityustoxin 704

23. TMB-4 see trimedoxime

24. toad toxins 671, 704

25. TOCP (tri-o-cresyl phosphate) 205, 704
 - see also tricresyl phosphate
Tokyo (Japan), terrorist attacks 18, 96, 128, 143,
 175, 191, 253, 254–5, 277–85, 526
 - biomarkers 128, 255, 280
 - Fire Department’s misidentification of agent 254,
 281
 - long-term effects 207, 243, 282–4
 - medical treatment at attack sites 280
 - medical treatment in hospital 254, 281–2, 293–4,
 337
 - movement of people after 180
 - recommendations 284–5
 - secondary exposure 255, 282
 - summary details 277–9
 - symptoms of victims 203, 209, 254, 279–80

toluene diisocyanates 704–5

26. Tonite see chloroacetone
torsade de pointes 204

27. TOXALS (toxic trauma advanced life support) 273,
 274
INDEX

1 toxic release, indicators for 177–8, 251, 253, 263
2 toxicity
cyanide 500–2
3 definitions 50, 52, 53–4, 264
effect of absorbent particles 60
4 factors affecting 89–90
general concepts 50–7
5 of hydrogen cyanide 55, 480
6 lewisite 468, 470–1, 480
7 nerve agents 54–5, 196, 197–8, 250
8 nitrogen mustards 380–1
9 oximes 317–20
10 phosgene 478–9, 697
11 riot control agents 480, 562–4, 567–70, 577–80, 585
12 sulphur mustard 379–80, 480
13 various chemicals 480
14 toxicokinetics
15 abrin and ricin 618, 624
16 riot control agents 554–5, 573–4, 581–2, 586
17 toxicity
18 CWAs
19 factors affecting percutaneous absorption 413–17
general considerations 50–7
20 nerve agents 193, 196–203
21 oximes 316–20
22 riot control agents 553–5
23 C-toxiferines 705
24 toxin var 3 (scorpion toxin) 705
25 tracheal intubation 281, 298
26 transmissibility of agents 264
27 transulphurases 498
28 treaty law 14
29 trees, atmospheric dispersion affected by 78
30 trench warfare, CWAs used 71
31 triage 178, 179
32 nerve agent incidents 273–5, 284
33 riot control agent incidents 598
34 trialkylphosphine compounds 705
35 trichloromethyl chloroformate 705
36 persistence 25
37 trichloronitrosomethane 705
38 see also chloropicrin
39 trichlorovinylarsine 705
40 trichothecene mycotoxin 694, 705
41 tricresyl phosphate (TCP) 705
42 trihexyphenidyl 291, 347
43 trimedoxime, toxicity 318, 319
44 trimedoxime (TMB-4) 288, 305, 306
45 metabolism and excretion 316
46 stability in aqueous solution 313, 314
47 stability of phosphoroxyximes 308
48 in TAB mixture 291
49 trimethylvinylammonium hydroxide 694
50 tricucytran see aggregoserpentin
51 tris(2-chloroethyl)amine see HN3
52 tutin 705
53 tyrrotoxicon see diazobenzol
54 UK
55 chemicals strategy 654–5
56 CWAs produced and used by 3, 10, 94
57 offensive R&D policy 11, 94, 191
58 respirator designs 157, 158–9
59 riot control agents used 544
60 uncontrolleability, as objection to CW 15
62 United Nations Environment Programme (UNEP), chemicals programme 646–7
63 United Nations Institute for Training and Research (UNITAR), programmes on chemical and waste management 650–1
64 unpredictability, as objection to CW 15
65 uranium, depleted, and Gulf War ‘syndrome’ 359
66 Urban Dispersion Model (UDM) 76, 78, 84, 85
67 urban heat island 75
68 urinary metabolites
as biomarkers to CWA exposure 128–9
of sulphur mustard 132–3
after human exposure 135, 136
analytical methods 133–4
urine sample collection 128, 129
urotropine 706
69 US Army Center for Health Promotion and Preventive Medicine 91
70 USA
71 Chemical Warfare Service/Chemical Army Corps 6, 11
72 chemicals strategy 655
73 CWAs produced and stockpiled by 94–5
74 policy on CW 6, 9, 11
75 respirator designs 158, 159
76 V agents 102, 706
see also VE; VG; VM; VR; VX
77 vaccinations, multiple, and Gulf War ‘syndrome’ 358, 359, 361–2
78 Vacor (pyriminil) 699
79 vanillin 150, 151
80 vapour
meaning of term 21
nerve agents 209, 226–7, 232–3
RCAs dispersed as 550
81 vapour pressure
CWAs (various) 23
82 hydrogen cyanide 495, 496
nerve agents 195, 249, 683, 684, 707
phosgene 478
riot control agents 562, 567, 577, 584
vesicant agents 23, 377, 425, 468, 685, 686
water-saturated air 26
vascular leak syndrome 618, 620
vascular permeability studies, sulphur mustard exposure 390–1
vascular toxicity, cyanides 507–8
vasogenic compounds, cyanide poisoning treated with 524
lewisite poisoning 472–3
VE 706
chemical structure 194
Vedder, [Lt Col.] E.B. 8, 478
veratrine 706
verotoxin 706
vesicant agents
and inhibition of hexokinase 384
listed 410
volatility 377, 410, 678, 685, 686
see also lewisite; nitrogen mustards; sulphur mustard
vesicant-injured skin
animal models 433
clinical management 435–8
histopathology 389–93, 432–5
gross pathology 433–4
microscopic observations 434
ultrastructural observations 434–5
vesication, enzyme theory 431, 432
vetch (Lathyrus sativus) 688
VG 194, 706
vicine 706
Villantite see methyl chlorosulphonate
Vincennite 706
viral infections, prophylaxis against 455
viscum lectin 706
visual field defects 208, 231
VM 194, 706
volatile organic compounds, absorption in respiratory tract 57–9
volatility of CWAs
nerve agents 195, 249, 410, 683, 684
percutaneous absorption of CWAs affected by 416–17
vesicants 377, 410, 678, 685, 686
volkensin 706
volume-fraction system (for gas concentrations) 22
vomiting gas see chloropicrin
vomixatin 707
VR
inhibition of AChE 287
reactivation by oximes 309, 310
VX 707
assassination attempts using 145, 192, 253, 294
chemical structure 194
degradation products 92, 103–4, 116–17
guidelines for restoration 106
physicochemical properties 105
reference doses/concentrations 107–8
toxicity 104
effect of delaying treatment 256
effect of pretreatment 311, 345, 347
environmental degradation 92, 102–4
first synthesized 191
health-based environmental screening levels 101
human exposure studies 233–5
hydrolysis of 103, 140, 184
impurities 116, 117
inhibition of AChE 287
reactivation by oximes 308, 309, 310, 311, 320, 322
medical treatment after exposure to 253, 294
metabolites 139, 145
odour 235
percutaneous absorption
anatomical variation 414, 415
temperature effects 414, 415
persistance 103
physicochemical properties 102–3, 195, 250, 410, 707
targets in warfare 192
terrorist use 253
toxicity 197–8, 250
in US weapons 95
warfarin 707
Washington Conference/Treaty (1921–1922) 8, 9, 634
water, decontamination by 180, 181, 187, 188, 398
water cannon 550, 592
‘weapons of mass destruction’ (WMDs) 262, 363–4
white cross gases 707
see also bromoacetone; chloroacetophenone
white phosphorus 697
Winterlost mixture 21, 378
wolfsbane see aconite
World Summit on Sustainable Development (2002) 648–9
X gas 707
xylene bromide 707
xylyl bromide 480, 707
yellow cross gases 376, 707
‘yellow rain’ 4
yellow star gas 707
yew (Taxus baccata) 703
yohimbine 707
Yperite see sulphur mustard

INDEX

yellow cross gases 376, 707
‘yellow rain’ 4
yellow star gas 707
yew (Taxus baccata) 703
yohimbine 707
Yperite see sulphur mustard

Z (disulphur decafluoride) 707
zinc chloride 547, 707
zinc oxide 547
zoning of attack scenes 178–9, 265–6
Zusatz see phosgene
Zyklon A 708
Zyklon B 708