## Contents

**Preface**  

1. **Introduction to Prehension Technology**  
   1.1 Grippers for Mechanization and Automation  
   1.2 Definitions and Conceptual Basics  
   1.3 Grasping in Natural Systems  
   1.4 Historical Overview of Technical Hands

2. **Automatic Prehension**  
   2.1 Active Pair Mating  
   2.2 Strategy and Procedures  
   2.2.1 Prehension Strategy  
   2.2.2 Gripping Procedure, Conditions and Force  
   2.2.3 Gripper Flexibility  
   2.3 Gripper Classification  
   2.4 Requirements and Gripper Characteristics  
   2.5 Planning and Selection of Grippers

3. **Impactive Mechanical Grippers**  
   3.1 Gripper Drives  
   3.1.1 Electromechanical Drives  
   3.1.2 Pneumatic Drives  
   3.1.3 Electrostrictive and Piezoelectric Actuation  
   3.2 Design of Impactive Grippers  
   3.2.1 Systematics and Kinematics  
   3.2.1.1 Parallel Impactive Grippers  
   3.2.2 Angular Impactive Grippers  
   3.2.3 Radial Impactive Grippers (Centring Grippers)  
   3.2.4 Internal Grippers  
   3.2.5 Gripper with Self-blocking Capability  
   3.2.6 Rotatable Jaw Grippers  
   3.2.7 Gripper Finger and Jaw Design
3.2.8 Self Securing Grippers 142
3.2.8.1 Securing Through Spring Forces 142
3.2.8.2 Securing Through Object Mass 146
3.2.9 Three-finger Grippers 153
3.2.10 Four-finger Grippers and Four-point Prehension 157

4 Ingressive Grippers 161
4.1 Flexible Materials 161
4.1.1 Pinch Mechanisms 162
4.1.2 Intrusive Mechanisms 163
4.1.3 Non-Intrusive Mechanisms 166

5 Astrictive Prehension 169
5.1 Vacuum Suction 169
5.1.1 Vacuum Production 170
5.1.2 Vacuum Suckers 176
5.1.3 Passive Suction Caps 199
5.1.4 Air Jet Grippers 202
5.2 Magnetoadhesion 204
5.2.1 Permanent Magnet Grippers 204
5.2.2 Electromagnetic Grippers 207
5.2.3 Hybrid Electromagnetic Grippers 215
5.4 Electroadhesion 216
5.4.1 Electroadhesive Prehension of Electrical Conductors 216
5.4.2 Electroadhesive Prehension of Electrical Insulators 220

6 Contiguitive Prehension 227
6.1 Chemoadhesion 227
6.2 Thermaadhesion 232

7 Miniature Grippers and Microgrippers 237
7.1 Impactive Microgrippers 238
7.1.1 Electromechanically Driven Impactive Microgrippers 238
7.1.2 Thermally Driven Impactive Microgrippers 240
7.1.3 Electrostatically Driven Impactive Microgrippers 245
7.2 Astrictive Microgrippers 248
7.2.1 Vacuum Microgrippers 248
7.2.2 Electroadhesive Microgrippers 249
7.3 Contiguitive Microgrippers 250

8 Special Designs 253
8.1 Clasping (Embracing) Grippers 253
8.2 Anthropomorphic Grippers 257
8.2.1 Jointed Finger Grippers 258
8.2.2 Jointless Finger Grippers 264
8.3 Dextrous Hands 268
9 Hand Axes and Kinematics 279
9.1 Kinematic Necessities and Design 280
9.2 Rotary and Pivot Units 285

10 Separation 291
10.1 Separation of Randomly Mixed Materials 291
10.2 Separation of Rigid Three Dimensional Objects 292
10.3 Separation of Rigid Sheet Materials 292
10.3.1 Gripping of Thin Blanks from a Magazine 292
10.3.2 Air Flow Grippers 295
10.4 Separation of Non-Rigid Sheet Materials 298
10.4.1 Roller Grippers 301

11 Instrumentation and Control 309
11.1 Gripper Sensor Technology 309
11.2 Perception Types 309
11.2.1 Tactile Sensors 310
11.2.2 Proximity Sensors 313
11.2.3 Measurement sensors 317
11.2.4 Finger Position Measurement 323
11.2.5 Measuring Procedures in the Gripper 324
11.3 Sensory Integration 326
11.3.1 Discrete and Continuous Sensing 327
11.3.2 Software and Hardware Interrupts 328
11.3.3 Sensor Fusion 328
11.4 Gripper Control 328
11.4.1 Control of Pneumatically Driven Grippers 329
11.4.2 Control of Electrically Driven Grippers 331

12 Tool Exchange and Reconfigurability 333
12.1 Multiple Grippers 333
12.1.1 Double and Multiple Grippers 333
12.1.2 Multiple Gripper Transfer Rails 336
12.1.3 Turrets 338
12.2 Specialized Grippers 342
12.2.1 Composite Grippers 342
12.2.2 Reconfigurable Grippers 344
12.2.3 Modular Gripper Systems 345
12.3 Gripper Exchange Systems 348
12.3.1 Tool Exchange 348
12.3.2 Task, Functions and Coupling Elements 350
12.3.3 Joining Techniques and Process Media Connection 353
12.3.4 Manual Exchange Systems 354
12.3.5 Automatic Exchange Systems 358
12.3.6 Finger Exchange Systems 362
12.4 Integrated Processing 363
13 Compliance 367
  13.1 Remote Centre Compliance (RCC) 368
  13.2 Instrumented Remote Centre Compliance (IRCC) 372
  13.3 Near Collet Compliance (NCC) 374
  13.4 Parts Feeding 375
  13.5 Mechanical Compliance 377
  13.6 Pneumatic Compliance 383
      13.6.1 Internal Prehension Through Membrane Expansion 384
      13.6.2 External Prehension Through Membrane Expansion 387
  13.7 Shape Adaptive Grippers 391
      13.7.1 Partially Compliant Shape Adaptive Grippers 391
      13.7.2 Totally Compliant Shape Adaptive Grippers 393
  13.8 Collision Protection and Safety 396
      13.8.1 Safety Requirements 396
      13.8.2 Collision Protection Systems 396
      13.8.3 Failure Safety 397

14 Selected Case Studies 401
  14.1 Simple Telemanipulation 401
  14.2 Grippers for Sheet and Plate Components 405
      14.2.1 Impactive Grippers for Sheet Metal Handling 406
      14.2.2 Astrictive Grippers for Sheet Metal 409
      14.2.3 Astrictive Grippers for Glass Sheet 412
      14.2.4 Astrictive Grippers for Composite Material Handling 412
  14.3 Prehension of Cuboid Objects 413
  14.4 Prehension of Cylindrical Objects 417
      14.4.1 Serial Prehension of Tubes 418
      14.4.2 Prehension of Wound Coils 419
      14.4.3 Prehension of Slit Coils 420
  14.5 Prehension of Objects with Irregular Topology 420
      14.5.1 Handling of Castings 420
      14.5.2 Mounting of Dashboards for Automobiles 421
      14.5.3 Prehension of Water Pumps 422
      14.5.4 Astrictive Prehension of Irregular Surfaces 422
  14.6 Multiple Object Prehension 423
      14.6.1 Packaging of Candies 424
      14.6.2 Bottle Palletization 425
      14.6.3 Multiple Irregular Shaped Objects 425
  14.7 Prehension of Flexible Objects 426
      14.7.1 Bag and Sack Grippers 426
      14.7.2 Gripping and Mounting of Outside O-rings 428
  14.8 Medical Applications 430

References 433

Subject Index 443