Contents

Preface

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction to System Identification</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>System Models and Simulation</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Systems and Signals</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3</td>
<td>System Identification</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Linear System Identification</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Nonlinear System Identification</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>NARMAX Methods</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>The NARMAX Philosophy</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>What is System Identification For?</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Frequency Response of Nonlinear Systems</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Continuous-Time, Severely Nonlinear, and Time-Varying Models and Systems</td>
<td>12</td>
</tr>
<tr>
<td>1.9</td>
<td>Spatio-temporal Systems</td>
<td>13</td>
</tr>
<tr>
<td>1.10</td>
<td>Using Nonlinear System Identification in Practice and Case Study Examples</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Models for Linear and Nonlinear Systems

<table>
<thead>
<tr>
<th>2</th>
<th>Models for Linear and Nonlinear Systems</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Linear Models</td>
<td>18</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Autoregressive Moving Average with Exogenous Input Model</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Parameter Estimation for Linear Models</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Piecewise Linear Models</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Spatial Piecewise Linear Models</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Models with Signal-Dependent Parameters</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Remarks on Piecewise Linear Models</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Volterra Series Models</td>
<td>30</td>
</tr>
</tbody>
</table>
2.5 Block-Structured Models
- **2.5.1 Parallel Cascade Models**
- **2.5.2 Feedback Block-Structured Models**

2.6 NARMAX Models
- **2.6.1 Polynomial NARMAX Model**
- **2.6.2 Rational NARMAX Model**
- **2.6.3 The Extended Model Set Representation**

2.7 Generalised Additive Models

2.8 Neural Networks
- **2.8.1 Multi-layer Networks**
- **2.8.2 Single-Layer Networks**

2.9 Wavelet Models
- **2.9.1 Dynamic Wavelet Models**

2.10 State-Space Models

2.11 Extensions to the MIMO Case

2.12 Noise Modelling
- **2.12.1 Noise-Free**
- **2.12.2 Additive Random Noise**
- **2.12.3 Additive Coloured Noise**
- **2.12.4 General Noise**

2.13 Spatio-temporal Models

References

3 Model Structure Detection and Parameter Estimation

3.1 Introduction

3.2 The Orthogonal Least Squares Estimator and the Error Reduction Ratio
- **3.2.1 Linear-in-the-Parameters Representation**
- **3.2.2 The Matrix Form of the Linear-in-the-Parameters Representation**
- **3.2.3 The Basic OLS Estimator**
- **3.2.4 The Matrix Formulation of the OLS Estimator**
- **3.2.5 The Error Reduction Ratio**
- **3.2.6 An Illustrative Example of the Basic OLS Estimator**

3.3 The Forward Regression OLS Algorithm
- **3.3.1 Forward Regression with OLS**
- **3.3.2 An Illustrative Example of Forward Regression with OLS**
- **3.3.3 The OLS Estimation Engine and Identification Procedure**

3.4 Term and Variable Selection

3.5 OLS and Sum of Error Reduction Ratios
- **3.5.1 Sum of Error Reduction Ratios**
- **3.5.2 The Variance of the s-Step-Ahead Prediction Error**
- **3.5.3 The Final Prediction Error**
- **3.5.4 The Variable Selection Algorithm**

3.6 Noise Model Identification
- **3.6.1 The Noise Model**
- **3.6.2 A Simulation Example with Noise Modelling**
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The Identification and Analysis of Nonlinear Systems in the Frequency Domain</td>
<td>6.1 Introduction, 6.2 Generalised Frequency Response Functions, 6.3 Output Frequencies of Nonlinear Systems, 6.4 Nonlinear Output Frequency Response Functions, 6.5 Output Frequency Response Function of Nonlinear Systems</td>
</tr>
<tr>
<td>7</td>
<td>Design of Nonlinear Systems in the Frequency Domain – Energy Transfer Filters and Nonlinear Damping</td>
<td>7.1 Introduction, 7.2 Energy Transfer Filters, 7.3 Energy Focus Filters, 7.4 OFRF-Based Approach for the Design of Nonlinear Systems in the Frequency Domain</td>
</tr>
</tbody>
</table>

References
8 Neural Networks for Nonlinear System Identification

8.1 Introduction 261
8.2 The Multi-layered Perceptron 263
8.3 Radial Basis Function Networks 264
 8.3.1 Training Schemes for RBF Networks 266
 8.3.2 Fixed Kernel Centres with a Single Width 266
 8.3.3 Limitation of RBF Networks with a Single Kernel Width 268
 8.3.4 Fixed Kernel Centres and Multiple Kernel Widths 269
8.4 Wavelet Networks 270
 8.4.1 Wavelet Decompositions 271
 8.4.2 Wavelet Networks 272
 8.4.3 Limitations of Fixed Grid Wavelet Networks 273
 8.4.4 A New Class of Wavelet Networks 274
8.5 Multi-resolution Wavelet Models and Networks 277
 8.5.1 Multi-resolution Wavelet Decompositions 277
 8.5.2 Multi-resolution Wavelet Models and Networks 280
 8.5.3 An Illustrative Example 282

References 284

9 Severely Nonlinear Systems

9.1 Introduction 289
9.2 Wavelet NARMAX Models 291
 9.2.1 Nonlinear System Identification Using Wavelet Multi-resolution NARMAX Models 292
 9.2.2 A Strategy for Identifying Nonlinear Systems 299
9.3 Systems that Exhibit Sub-harmonics and Chaos 301
 9.3.1 Limitations of the Volterra Series Representation 301
 9.3.2 Time Domain Analysis 302
9.4 The Response Spectrum Map 305
 9.4.1 Introduction 305
 9.4.2 Examples of the Response Spectrum Map 306
9.5 A Modelling Framework for Sub-harmonic and Severely Nonlinear Systems 313
 9.5.1 Input Signal Decomposition 314
 9.5.2 MISO NARX Modelling in the Time Domain 317
9.6 Frequency Response Functions for Sub-harmonic Systems 320
 9.6.1 MISO Frequency Domain Volterra Representation 320
 9.6.2 Generating the GFRFs from the MISO Model 322
9.7 Analysis of Sub-harmonic Systems and the Cascade to Chaos 326
 9.7.1 Frequency Domain Response Synthesis 326
 9.7.2 An Example of Frequency Domain Analysis for Sub-harmonic Systems 332

References 334

10 Identification of Continuous-Time Nonlinear Models

10.1 Introduction 337
10.2 The Kernel Invariance Method

10.2.1 Definitions 338
10.2.2 Reconstructing the Linear Model Terms 342
10.2.3 Reconstructing the Quadratic Model Terms 346
10.2.4 Model Structure Determination 348

10.3 Using the GFRFs to Reconstruct Nonlinear Integro-differential Equation Models Without Differentiation

10.3.1 Introduction 352
10.3.2 Reconstructing the Linear Model Terms 355
10.3.3 Reconstructing the Quadratic Model Terms 358
10.3.4 Reconstructing the Higher-Order Model Terms 361
10.3.5 A Real Application 364

References 367

11 Time-Varying and Nonlinear System Identification 371

11.1 Introduction 371

11.2 Adaptive Parameter Estimation Algorithms

11.2.1 The Kalman Filter Algorithm 372
11.2.2 The RLS and LMS Algorithms 375
11.2.3 Some Practical Considerations for the KF, RLS, and LMS Algorithms 376

11.3 Tracking Rapid Parameter Variations Using Wavelets

11.3.1 A General Form of TV-ARX Models Using Wavelets 376
11.3.2 A Multi-wavelet Approach for Time-Varying Parameter Estimation 377

11.4 Time-Dependent Spectral Characterisation

11.4.1 The Definition of a Time-Dependent Spectral Function 378

11.5 Nonlinear Time-Varying Model Estimation 380

11.6 Mapping and Tracking in the Frequency Domain

11.6.1 Time-Varying Frequency Response Functions 381
11.6.2 First and Second-Order TV-GFRFs 382

11.7 A Sliding Window Approach 388

References 389

12 Identification of Cellular Automata and N-State Models of Spatio-temporal Systems 391

12.1 Introduction 391

12.2 Cellular Automata

12.2.1 History of Cellular Automata 393
12.2.2 Discrete Lattice 393
12.2.3 Neighbourhood 394
12.2.4 Transition Rules 396
12.2.5 Simulation Examples of Cellular Automata 399

12.3 Identification of Cellular Automata 402

12.3.1 Introduction and Review 402
12.3.2 Polynomial Representation 403
12.3.3 Neighbourhood Detection and Rule Identification 405
12.4 N-State Systems 414
12.4.1 Introduction to Excitable Media Systems 414
12.4.2 Simulation of Excitable Media 415
12.4.3 Identification of Excitable Media Using a CA Model 419
12.4.4 General N-State Systems 424
References 427

13 Identification of Coupled Map Lattice and Partial Differential Equations of Spatio-temporal Systems 431
13.1 Introduction 431
13.2 Spatio-temporal Patterns and Continuous-State Models 432
13.2.1 Stem Cell Colonies 433
13.2.2 The Belousov–Zhabotinsky Reaction 434
13.2.3 Oxygenation in Brain 434
13.2.4 Growth Patterns 435
13.2.5 A Simulated Example Showing Spatio-temporal Chaos from CML Models 435
13.3 Identification of Coupled Map Lattice Models 437
13.3.1 Deterministic CML Models 437
13.3.2 The Identification of Stochastic CML Models 454
13.4 Identification of Partial Differential Equation Models 458
13.4.1 Model Structure 458
13.4.2 Time Discretisation 459
13.4.3 Nonlinear Function Approximation 459
13.5 Nonlinear Frequency Response Functions for Spatio-temporal Systems 466
13.5.1 A One-Dimensional Example 467
13.5.2 Higher-Order Frequency Response Functions 468
References 471

14 Case Studies 473
14.1 Introduction 473
14.2 Practical System Identification 474
14.3 Characterisation of Robot Behaviour 478
14.3.1 Door Traversal 478
14.3.2 Route Learning 482
14.4 System Identification for Space Weather and the Magnetosphere 484
14.5 Detecting and Tracking Iceberg Calving in Greenland 493
14.5.1 Causality Detection 494
14.5.2 Results 495
14.6 Detecting and Tracking Time-Varying Causality for EEG Data 498
14.6.1 Data Acquisition 499
14.6.2 Causality Detection 500
14.6.3 Detecting Linearity and Nonlinearity 504
14.7 The Identification and Analysis of Fly Photoreceptors 505
14.7.1 Identification of the Fly Photoreceptor 506
14.7.2 Model-Based System Analysis in the Time and Frequency Domain 507
14.8 Real-Time Diffuse Optical Tomography Using RBF Reduced-Order Models of the Propagation of Light for Monitoring Brain Haemodynamics 514
 14.8.1 Diffuse Optical Imaging 515
 14.8.2 In-vivo Real-Time 3-D Brain Imaging Using Reduced-Order Forward Models 517
14.9 Identification of Hysteresis Effects in Metal Rubber Damping Devices 522
 14.9.1 Dynamic Modelling of Metal Rubber Damping Devices 523
 14.9.2 Model Identification of a Metal Rubber Specimen 526
14.10 Identification of the Belousov–Zhabotinsky Reaction 528
 14.10.1 Data Acquisition 529
 14.10.2 Model Identification 530
14.11 Dynamic Modelling of Synthetic Bioparts 534
 14.11.1 The Biopart and the Experiments 535
 14.11.2 NARMAX Model of the Synthetic Biopart 536
14.12 Forecasting High Tides in the Venice Lagoon 539
 14.12.1 Time Series Forecasting Problem 540
 14.12.2 Water-Level Modelling and High-Tide Forecasting 541

References 543

Index 549