Index

activation functions 43, 264
adaptive parameter estimation 371
agents 431
Akaike information criterion (AIC) 119, 537
aliasing 341, 476, 586
analysis of nonlinear systems 137, 149, 217, 289
analysis of sub harmonic systems in the frequency domain 289, 305, 320
approximation 9, 266, 277, 291, 414, 459
ARMAX model 20
ARMAX model estimation 21
AR model 19
ARX model 19
ARX time varying model 26, 377
attenuation 218
autocorrelation 127
autoregressive model (AR) 19
auxetic foam 99
auxiliary model 65

back-propagation 264
basis functions 264
Bayesian information criteria (BIC) 537
Belosov Zhabotinsky reaction 402, 414, 434, 528
bias 72, 86, 91, 120, 262, 277, 282, 345, 347
bifurcation diagram (BD) 139, 142, 290, 302, 305
bifurcation to chaos 144, 308, 312
bilinear model 63
biobrick, biopart 535
bispectrum 166
block structured models 6, 31
feedback 33
general model 31
Hammerstein model 6, 31, 194
parallel cascade 32
Wiener model 6, 31
boundary conditions 461
Box and Jenkins model 20
B splines 392, 442, 540

case studies 473
causality 494, 498
causality detection and tracking 500
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell maps</td>
<td>140</td>
</tr>
<tr>
<td>cellular automata (CA)</td>
<td>391, 393, 529</td>
</tr>
<tr>
<td>identification</td>
<td>402, 421, 425</td>
</tr>
<tr>
<td>neighbourhood</td>
<td>394, 419, 425</td>
</tr>
<tr>
<td>and noise</td>
<td>399, 410, 424, 426</td>
</tr>
<tr>
<td>polynomial model</td>
<td>399, 403</td>
</tr>
<tr>
<td>probabilistic</td>
<td>399</td>
</tr>
<tr>
<td>rule</td>
<td>396</td>
</tr>
<tr>
<td>transition rule</td>
<td>393</td>
</tr>
<tr>
<td>chaos</td>
<td>76, 127, 138–40, 289, 297, 299, 308, 312, 326, 450</td>
</tr>
<tr>
<td>chi squared test</td>
<td>128, 131</td>
</tr>
<tr>
<td>Chua’s circuit</td>
<td>297, 308</td>
</tr>
<tr>
<td>classification</td>
<td>263, 266</td>
</tr>
<tr>
<td>CML</td>
<td>see</td>
</tr>
<tr>
<td>coupled map lattice (CML) models</td>
<td></td>
</tr>
<tr>
<td>CML models</td>
<td>392, 437</td>
</tr>
<tr>
<td>coloured noise</td>
<td>49, 51, 84, 262, 399</td>
</tr>
<tr>
<td>common structure models</td>
<td>95, 507</td>
</tr>
<tr>
<td>complex nonlinear phenomena</td>
<td>289, 391, 431, 456</td>
</tr>
<tr>
<td>confidence regions</td>
<td>122, 128</td>
</tr>
<tr>
<td>continuous time systems</td>
<td>12, 337, 535</td>
</tr>
<tr>
<td>correlated noise</td>
<td>49, 51, 84, 262, 399</td>
</tr>
<tr>
<td>coupled map lattice (CML) models</td>
<td>52, 392, 432, 437</td>
</tr>
<tr>
<td>coupled map lattice stochastic models</td>
<td>454</td>
</tr>
<tr>
<td>cross correlation</td>
<td>4, 122, 476</td>
</tr>
<tr>
<td>cross spectral density</td>
<td>4, 476</td>
</tr>
<tr>
<td>cubic damping</td>
<td>207, 212, 251, 256</td>
</tr>
<tr>
<td>damage detection using NOFRF’s</td>
<td>196</td>
</tr>
<tr>
<td>damping</td>
<td>207, 252, 256, 522</td>
</tr>
<tr>
<td>data collection</td>
<td>474, 475, 529</td>
</tr>
<tr>
<td>detecting causality</td>
<td>498, 500</td>
</tr>
<tr>
<td>detecting linearity and nonlinearity</td>
<td>121, 157, 504</td>
</tr>
<tr>
<td>differentiation</td>
<td>338, 352</td>
</tr>
<tr>
<td>diffuse optical tomography (DOT)</td>
<td>514</td>
</tr>
<tr>
<td>discrete lattice</td>
<td>393</td>
</tr>
<tr>
<td>Duffing equation</td>
<td>7, 34, 137, 138, 301</td>
</tr>
<tr>
<td>Duffing Holmes equation</td>
<td>307</td>
</tr>
<tr>
<td>Duffing Ueda equation</td>
<td>143, 303</td>
</tr>
<tr>
<td>dynamic invariants</td>
<td>61, 138, 150</td>
</tr>
<tr>
<td>dynamic models</td>
<td>17</td>
</tr>
<tr>
<td>electroencephalogram (EEG)</td>
<td>379, 498</td>
</tr>
<tr>
<td>emergence</td>
<td>392, 431</td>
</tr>
<tr>
<td>energy transfer</td>
<td>152, 217</td>
</tr>
<tr>
<td>energy transfer filters (ETF)</td>
<td>217</td>
</tr>
<tr>
<td>definition</td>
<td>218</td>
</tr>
<tr>
<td>design</td>
<td>222</td>
</tr>
<tr>
<td>energy focus</td>
<td>240, 245</td>
</tr>
<tr>
<td>energy splitting</td>
<td>217</td>
</tr>
<tr>
<td>energy spreading</td>
<td>217</td>
</tr>
<tr>
<td>moving energy</td>
<td>182, 217, 219, 232</td>
</tr>
<tr>
<td>error reduction ratio (ERR)</td>
<td>68, 73, 75, 81, 82, 85, 111, 349, 405, 482, 487</td>
</tr>
<tr>
<td>error reduction ratio is not affected by noise</td>
<td>94, 499</td>
</tr>
<tr>
<td>error reduction ratio, sum of (SERR)</td>
<td>see</td>
</tr>
<tr>
<td>sum of error reduction ratio values (SERR)</td>
<td></td>
</tr>
<tr>
<td>estimation engine</td>
<td>78</td>
</tr>
<tr>
<td>estimation of noise models</td>
<td>49, 84, 399</td>
</tr>
<tr>
<td>estimation set</td>
<td>123, 476</td>
</tr>
<tr>
<td>excitable media</td>
<td>415, 419, 422, 434, 533</td>
</tr>
<tr>
<td>experiment design</td>
<td>474–6</td>
</tr>
<tr>
<td>extended least squares (ELS)</td>
<td>4, 21, 84</td>
</tr>
<tr>
<td>extended model set</td>
<td>39, 40, 79</td>
</tr>
<tr>
<td>external parameters</td>
<td>26</td>
</tr>
<tr>
<td>fading memory requirement</td>
<td>154, 301</td>
</tr>
<tr>
<td>fault detection</td>
<td>197, 371</td>
</tr>
<tr>
<td>feature extraction</td>
<td>105, 106, 109</td>
</tr>
<tr>
<td>feature ranking</td>
<td>109, 113</td>
</tr>
<tr>
<td>feature selection</td>
<td>105, 106, 109</td>
</tr>
<tr>
<td>filter design using OLS</td>
<td>232, 239</td>
</tr>
<tr>
<td>filters</td>
<td>217</td>
</tr>
<tr>
<td>attenuation</td>
<td>217, 218</td>
</tr>
<tr>
<td>energy transfer filters</td>
<td>217, 218, 222</td>
</tr>
<tr>
<td>linear</td>
<td>218, 476</td>
</tr>
<tr>
<td>nonlinear</td>
<td>218, 222</td>
</tr>
<tr>
<td>final prediction error</td>
<td>83</td>
</tr>
<tr>
<td>finite impulse response model (FIR)</td>
<td>19</td>
</tr>
<tr>
<td>focusing energy</td>
<td>240</td>
</tr>
<tr>
<td>forecasting</td>
<td>539</td>
</tr>
<tr>
<td>forgetting factor</td>
<td>375</td>
</tr>
<tr>
<td>forward regression orthogonal least squares (FROLS)</td>
<td>70, 73, 76, 268, 348, 377, 381, 405</td>
</tr>
</tbody>
</table>
forward regression orthogonal least squares
variants 76
Fourier transform (FT) 4, 150, 224, 353, 467
frequency response 10, 149, 156
nonlinear systems 149, 162
partial differential equations 466
spatiotemporal systems 466
frequency ridges 172, 182, 470
FROLS see forward regression orthogonal least squares (FROLS)
fruit fly 505

Game of Life 400
generalisation 120, 137, 138, 262
generalised additive model 40
generalised frequency response functions (GFRF) 149, 151, 176, 322, 352, 381, 469
estimation 165, 172, 176, 322, 352
feature tracking 381, 385
interpretation 172, 182
MIMO systems 322
MISO systems 322
non parametric estimation 166
parametric estimation 176
probing method 167, 168, 322
recursive computation 172
resonances and ridges 150, 172, 182, 386, 388, 470
tracking with time variation 371, 381, 383
generalised least squares (GLS) 4, 21, 342, 345, 507
general model 31, 269
GFRF see generalised frequency response functions (GFRF)
Greenberg Hastings model 415
Greenland icebergs 493
grey box models 40
growth patterns 391, 402, 435
Hammerstein model 6, 31, 194
harmonics 152, 187, 381, 386
harvesting energy 240, 245
higher order moments 166
Hodgepodge model 418
hysteresis 522, 527
identification 3, 5, 61
Belosov Zhabotinskey reaction 402
cellular automata 391
common structured models 95
continuous time systems 337
coupled map lattice models 391, 437
Greenland icebergs 493
hysteresis 522, 527
linear models 3, 18
metal rubber devices 522
mobile robots 478
model parameters as a function of another variable 27, 99
NARMAX models 7, 33, 72
noise models 84
nonlinear partial differential equation models 458
rapidly changing systems 371
space weather 484
synthetic biology system 534
systems with hysteresis 522, 527
time varying systems 371
visual system of a fruit fly 505

imaging the brain 392
infinite impulse response model (IIR) 7, 339
input design 475
instrumental variables (IV) 21, 357, 363
inter-modulation 150, 182, 381, 386

Kalman filter (KF) 371, 372
kernel centre 266
kernel invariance method (KIM) 339

lattice dynamical systems (LDS) 432
learning 262
least mean squares (LMS) 371, 375
least squares (LS) 4, 20
linear filtering 218
linear in the parameters models 20, 34, 262, 265, 380
linearisation 22, 475
linear system identification 3
logistic equation 142, 311, 437, 447
low pass filtering 218, 476
Lyapunov exponent 446, 453

MA model 19
mean squared errors 120, 262
MIMO models 49, 76
MISO model 291, 317, 334
mobile robots 478
modelling sub harmonic systems 289, 313
model predicted output (MPO) 126, 426, 448, 457, 476, 492, 507
model reduction 100
models 1, 17
AR 19
ARMA 19
ARMAX 20
ARX 19
block structured 31
Box and Jenkins 20
cellular automata 52, 391
common structure 95, 98
coupled map lattice 52, 391
feedback block structured models 33
FIR 7, 19
as a function of another variable 27, 98
generalised additive 40
IIR 7
linear in the parameters 64, 403
MA 19
MIMO 49, 441
multi resolution wavelet 45, 270, 277, 291
NARMA 35
NARMAX 7, 33, 35, 174, 291, 364, 479
NARX 50, 174, 198, 220, 317, 340
neural networks 41, 261
noise 10, 49, 51, 84
nonlinear in the parameters 48, 403
output affine 38
parallel cascade 32
parameter dependent 26
partial differential equations 458
piecewise linear 22, 29
signal dependent parameters 26, 27
SISO 33

spatial piecewise linear models 23
state space 48, 438, 455
term and variable selection 79
Volterra series 30
wavelet 45, 291, 292, 447
model structure detection 8, 10, 61, 64, 70, 80, 348, 352, 405, 458, 473
model term selection 8, 61, 62, 64, 348
model validation 119, 299, 392, 458, 507
bifurcation diagram 138, 142
cell mappings 140
correlation tests 89, 127, 128
input output models 127, 128
mean squared errors 120
MIMO models 133
model predicted output 126, 284, 426
neural networks 129, 132
one step ahead predictions 124, 426
Poincare map 138–40
qualitative 137, 302
simulated output 126
statistical 127
time series models 132
moving average model (MA) 19
moving energy 182, 218
multi dimensional spectral estimation 466
multi layered networks 41, 263
multi layered perceptron 42, 263, 290, 543
multi resolution wavelet models,
 networks 277, 292
multi tone inputs 185
mutual information (MI) 76, 403, 407, 412, 420

NARMAX 7, 33, 174, 291, 364, 479
estimation 64, 72, 83, 479, 487, 509
extended model set model 39
methods 7, 61
models 7, 33, 174, 291, 364, 479
model estimation 61
model structure 64
model term clustering 135
model validation 119
multi resolution wavelet 45, 290
philosophy 8, 61, 93, 414, 473
polynomial 53
rational 37, 176
term and variable selection 79
wavelet 45, 270, 291
NARX models 36, 174, 220, 292, 317
NARX time varying model 371, 380
neighbourhood 394, 407, 410, 438
neighbourhood detection 405, 407, 419, 425
neighbourhood selection 402, 405, 407, 419
neural network model 41, 261
neural networks 41, 143, 261
activation functions 42, 43
multi layered perceptrons 41, 263, 290
network training 262, 264, 266, 276
radial basis functions 42, 44, 264, 290
recurrent NARX network 41, 138
types 263
wavelet networks 45, 270, 274
NOFRF see nonlinear output frequency response functions (NOFRF)
noise model identification 72, 84, 410, 444
noise models 10, 49, 51, 72, 84, 343, 466, 477
nonlinear autoregressive moving average with exogenous inputs model (NARMAX) see NARMAX
nonlinear damping 251, 254
nonlinear design 249, 254
nonlinear filtering 217
nonlinear frequency range 184
nonlinear frequency response function 150, 372
nonlinear in the parameters models 48, 261
nonlinearity 121
nonlinearity detection 121
nonlinear output frequency response functions (NOFRF) 191, 195
nonlinear partial differential equations 458
nonlinear pattern formation 391, 414
nonlinear resonance 169, 182
nonlinear system identification 5, 61
N state systems 414, 425

OFRF see output frequency response function (OFRF)
OLS see orthogonal least squares (OLS)
one step ahead prediction (OSA) 124, 426, 445
one step ahead prediction errors 82, 128
on-line OLS 162
operating regions 24
orthogonal functions 64
orthogonalisation 64
orthogonal least squares (OLS) 9, 64, 70, 232, 239, 294, 342, 403, 443
estimation algorithm 64, 73, 443
estimation engine 78
forward regression 70, 73, 268, 377, 381, 457, 462, 506
model reduction 100
principal components algorithm 106, 108, 113
recursive 102, 371, 388
output affine model 38
output frequencies of nonlinear systems 184, 188
general inputs 187
multi tone inputs 185
output frequency response 222, 466
output frequency response function (OFRF) 202, 249, 250, 256, 506, 507
oxygenation in brain 434

parameter dependent model structure 26, 95, 98
parameter estimation 4, 20, 21, 61
parameter tracking 376, 383
partial differential equations (PDE) 392, 432, 458
pattern classification 105, 261, 266
pattern formation 391, 394, 400–402, 416–18, 426, 435, 528
percentage contribution of the model terms 68, 70
persistently exciting 474, 475
piecewise linear models 22, 29
Poincare map (PM) 138–40, 302, 305
polynomial NARMAX model 35, 71
power spectral density 4, 51, 177, 290, 305, 319, 378, 379
practical system identification 474
PRBS 4, 475
prediction 21, 124, 126
prediction error 21, 36, 82, 264, 456
prediction error methods 5, 21
principal component analysis (PCA) 106, 107, 113
multiple regression 106
OLS algorithm 61, 108, 113
probabilistic rule 399
probing method 167, 322

qualitative model validation 137

radial basis functions (RBF) 44, 264, 290, 297, 512
random noise 46
ranking 63, 79
rapid time variation 371, 376, 381
rational NARMAX model 37, 356
recurrent NARX network 43
recursive computation of GFRF’s 172
recursive estimation 102
recursive least squares 371, 375
recursive OLS 5, 102, 371
residuals 85, 345
resonance 150, 168, 220, 372, 470
response spectrum map (RSM) 290, 305, 308, 312

sample rate selection 476
sampling 337, 476
SERR see sum of error reduction ratio values (SERR)
severely nonlinear systems 289
Shannon’s sampling theorem 306, 476
signal dependent parameter models 26
signal to noise ratio (SNR) 23
simulated model output 77
simulation 1, 3
single layered networks 264
SISO models 19, 23
sliding window 388, 495
spatial derivatives 460
spatial piecewise linear models 23
spatiotemporal chaos 431, 437, 438, 444, 447, 450, 465
spatiotemporal system frequency response functions 466
spatiotemporal systems 13, 52, 391, 431
spectral density 4, 151, 178, 199, 476
splitting energy 218
spreading energy 218
statistical model validation 119
stem cells 433
stochastic CML models 454
stochastic systems 49, 84
structure detection 8, 61, 64, 70, 73, 392, 457, 458, 473
sub harmonics 289, 301, 313, 334
sum of error reduction ratio values (SERR) 80, 82, 90, 494
sum of mean squared errors 120
super harmonics 289
synthetic biology 534
system identification 1, 3, 5, 61
system invariants 10, 137, 150
system models 17
term clustering 76, 135
term selection 8, 61, 79, 87
test set 123
time dependent spectral analysis 378
time series modelling 19, 132, 521, 540
time variation rapid 371, 376, 381
time variation slow 371, 376
time varying systems 102, 371, 495
totalistic rule 398
training 262, 264
training set 123

Van der Pol oscillator 7, 138, 140
variable selection 8, 61, 79, 87, 276
Venice lagoon 539
vibration control, isolation 251, 522
Volterra series 30, 154, 289, 339, 353
continuous time 154, 339
discrete time 5, 30, 155
fading memory 30, 154, 309
kernels 30, 340
model 30, 339
series 30, 154, 289, 339, 353
symmetric kernel 30, 156, 341, 355
wavelet models 45, 292, 372, 376, 377, 447, 453
wavelet NARMAX model 274, 291
wavelet networks 270, 274
wavelets multi resolution 280, 292, 295
wavelet transform 291
weakly nonlinear 289, 299, 332
what is system identification for? 9
white noise 4, 166, 343, 375, 506
width 266
Wiener model 6, 31, 153