Index

Page references followed by f indicate an illustrated figure; followed by t indicate a table

a
ab initio modeling. See ab initio molecular dynamics
ab initio molecular dynamics 609–611, 622–628
compressive process 624–626
modeling geometry and simulation procedures 622–624
tensile process 626–628
abrasive wear 23, 218–219, 281, 283, 601, 616
accelerated molecular dynamics (aMD) techniques 320–321
adhesion behavior 281–283
adhesion density functional study, at metal/ceramic interfaces calculations 612–616
surface energies effect 614–615
adhesive wear 218, 283, 602, 635
adhesive wear on Al-substrate molecular dynamics simulations 628–629
common wear sequence 630
modeling geometry and simulation procedures 629–630
wear rate analyses 632–636
wear sequence thermal analysis 631–632
advanced ceramics nanoindentation 459–472
coatings 463
coating elastic modulus 464
hardness 463–464
fracture toughness 462–463
indentation mechanics 460
deformation mechanics 460–461
elastic contact 461–462
elasto/plastic contact 462
nanoindentation applications to zirconia 465–466
damaged surface mechanical properties 468–471
hardness and elastic modulus 466–467
microstructure and local mechanical properties relation 471–472
plastic deformation mechanisms 468
stress–strain curve and phase transformation 467–468
reproducible results issues 464–465
Advanced Diamond Technologies, (Romeoville, IL) 248
advanced materials finite element simulations 374–375
ID structures 378–380
nanocrystalline porous materials and pressure-sensitive models 375–378
thin solid films nanoindentation 380–383
AFM. See atomic force microscopy (AFM)
Agilent Nano Indenter G200 206
Al 1100, nanoindentation experiment on nanoindentation experiment on 584
simulation and experimental results comparison
Al 1100, nanoindentation experiment on (contd.)
 hardness 588–589, 591
 load-displacement 584–588, 589–590
AL-substrate. See adhesive wear on
 AL-substrate molecular dynamics simulations
aluminum material and coating process 230–231
aMD. See accelerated molecular dynamics (aMD) techniques
amorphous alloys. See metallic glasses
annealing effect and hydrothermal degradation 471
anode configuration 162
Archard’s law 536
area function
determination 252–253
from SEM images 254–255
of tilted ideal four-sided pyramid 253–254
of tilted pyramid obtained by dilation method 254
ASTM E 2546–7, 115
Asylum Research MFP-3D® 271
Asylum Research MFP-3D (Santa Barbara, CA) 248, 250
ATM. See atomic force microscopy (ATM)
 virtual experiment 401–403
atomistically rough indenters 319
atomistic model 333, 337, 444, 648, 651–652, 654–659
atomistic simulations 186, 188–189, 191–195, 383
dislocation dynamics simulations 383–385
molecular dynamics simulations 385–386
atomistic simulations, of adhesion, indentation and wear 601–638
adhesion density functional study, at metal/ceramic interfaces 612–616
calculations 612–614
surface energies effect 614–615
adhesive wear on Al-substrate molecular dynamics simulations 628–629
common wear sequence 630
modeling geometry and simulation procedures 629–630
wear rate analyses 632–636
wear sequence thermal analysis 631–632
methodologies
 commercial software 611–611
density functional theory 604–606
molecular dynamics 607–611
pseudopotential approximation 606–607
nanoindentation molecular dynamics simulations 616
 ab initio modeling 622–628
 empirical modeling 616–622
average shear modulus 321
axisymmetric model, of indenter 580–581

b
ball-on-disk type friction tests 91
b.c.c metals. See body-centered cubic (b.c.c) metals
BeO modulus-porosity analysis 139
Berkovich indentation 12, 14f, 15, 372–373, 381
Berkovich indenter 26–28, 35, 73, 86, 89, 118–119, 121–122, 172, 206, 271, 316, 378, 584, 592
Berkovich tip 74, 79, 135, 137, 175, 290, 317, 379, 651
baxial intrinsic stresses 537–540
biological particles nanoindentation in silico 393–424
application
cylindrical particle and microtubule polymer 411–416, 417t
long polyprotein and microtubule protofilament 409–411
spherical particle and CCMV protein shell 416–421
computational methodology
coarse-graining 396–398
Graphics Processing Units (GPUs) as performance accelerators 399–400
molecular modeling 395–396
multiscale modeling primer 398–399
virtual AFM experiment 401–403
microtubule polymers 403–404
spherical particles 404–405
reversible changes probing, in near-equilibrium regime 406–407
near-equilibrium dynamics studying 407–409
Blöch’s theorem 606
body-centered cubic (b.c.c) metals 158, 315, 318, 321–323, 324f, 326, 330–331, 333–334, 336, 569–573
BOMD. See Born–Oppenheimer molecular dynamics (BOMD)
Born–Oppenheimer approximation 604, 609
Born–Oppenheimer molecular dynamics (BOMD) 609–610
Bragg-Nye bubble raft model 192
Brinell contact area 327
Brinell hardness 369
Brownian dynamics 401
Bruker D8 Advance 270
bulk modulus 321, 517, 519
Burgers circuit method 332
Burgers vector 191, 196, 277, 323, 326, 332

calcite single crystals indentation application 356–359
new results and analysis 361–364
prior work review 359–361
canonical ensemble 608
cantilever spring constants calibration 249
carbon types and properties 20t
carbon films, nanomechanical characterization of 19–59
applications 24
deformation in indentation contact cracking and delamination 32–33
DLC films, H/E variation and plasticity index for 31–32, 32t
H/E and plastic/elastic work, relationship between 30–31
silicon phase transformation 33–34, 34f
factors influencing hardness and elastic modulus determination
challenges in ultra-thin films 27–28, 37f
indenter geometry 28
International Standard for Depth-Sensing Indentation (ISO 14577) 24–26
surface roughness 28–29
friction properties 22–23
multilayering strategies 23	nano-scratch testing 34–46
contact pressure 36–37, 38f
probe radius, influence of 36
scan speed and loading rate 35–36
silicon substrate, role of 38–40, 38f, 39f, 39t
ta-C on Si, failure behavior of 40–42, 41t, 42f, 42t
optimization/testing challenges 24, 25t
processing methods 20–21
residual stress 21–22, 22t
carbon nanotubes (CNT) 466
Carl Zeiss MHP-160 device 174
Car–Parrinello molecular dynamics (CPMD) 610–611
cartography method 471
cathode configuration 162
cauchy stress and entropy 350
CCMV. See Cowpea Chlorotic Mottle virus (CCMV)
cellulosic fibers AFM-based nanoindentation 247–265
experiments
AFM-based nanoindentation 250–255
AFM instrumentation 248–250
comparison with classical NI results 255–256
sample preparation 256
mechanical properties
pulp fibers 257–259
swollen viscose fibers 259–265
centrosymmetry 619
CHARMM19 force-field 399
chemical vapor deposition (CVD) 20–21, 29, 105
plasma-enhanced (PECVD) 21, 22, 23, 43, 57
chitosan 269, 271–283
CNT. See carbon nanotubes (CNT)
CrAlN coating system investigations 504
continuum mechanics 185, 319, 337, 349, 429, 443, 481–482, 579, 597, 648, 653, 659
continuum model 616, 648, 652, 654–655, 658
continuum modeling and simulation, in transparent single crystalline minerals and energetic solids 347–349
calcite single crystals indentation application 356–359
new results and analysis 361–364
prior work review 359–361
material modeling 349
crystal plasticity theory 350–351
general multi-field continuum theory 349–350
phase field theory for twinning 351
RDX single crystals indentation application 352
new results and analysis 354–356
prior work review 353–354
continuum strain-gradient plasticity theories 562
controlled relative humidity 249–250
correspondence principle 226
Cowpea Chlorotic Mottle virus (CCMV) 395, 412f
shell 404–405, 416–421
CPMD. See Car–Parrinello molecular dynamics (CPMD)
continuum strain-gradient plasticity theories 562
failure criterion determination on nanolamination 507–509, 510f
flow curve dependency on chemical composition and microstructure 504–506
strain rate dependency 506, 507f
creep behavior 119, 121f, 136, 232–233, 252, 265, 290
Cr-Fe-N ternary equilibrium system 168
critical load 35–37, 39f, 41–44, 125, 127, 281–282, 328–329, 381, 449
continuum crystal plasticity finite element simulations 380–383
continuum elasticity approaches 185–188, 194, 361
core-graining 396–398
Coble-Kingery non-linear relation 139
combined indentation modulus 325
COMPASS force field 430
compressive process 624–626
compressive residual stress 4, 7–8
CrAlN coating system investigations 504
failure criterion determination on nanolamination 507–509, 510f
flow curve dependency on chemical composition and microstructure 504–506
strain rate dependency 506, 507f
creep behavior 119, 121f, 136, 232–233, 252, 265, 290
Cr-Fe-N ternary equilibrium system 168
critical load 35–37, 39f, 41–44, 125, 127, 281–282, 328–329, 381, 449
core-graining 396–398
Coble-Kingery non-linear relation 139
combined indentation modulus 325
COMPASS force field 430
compressive process 624–626
compressive residual stress 4, 7–8
CrAlN coating system investigations 504
failure criterion determination on nanolamination 507–509, 510f
flow curve dependency on chemical composition and microstructure 504–506
strain rate dependency 506, 507f
creep behavior 119, 121f, 136, 232–233, 252, 265, 290
Cr-Fe-N ternary equilibrium system 168
critical load 35–37, 39f, 41–44, 125, 127, 281–282, 328–329, 381, 449
core-graining 396–398
Coble-Kingery non-linear relation 139
combined indentation modulus 325
COMPASS force field 430
compressive process 624–626
compressive residual stress 4, 7–8
CrAlN coating system investigations 504
failure criterion determination on nanolamination 507–509, 510f
flow curve dependency on chemical composition and microstructure 504–506
strain rate dependency 506, 507f
creep behavior 119, 121f, 136, 232–233, 252, 265, 290
Cr-Fe-N ternary equilibrium system 168
critical load 35–37, 39f, 41–44, 125, 127, 281–282, 328–329, 381, 449
cross-hair calibration 298

crosslinking effect, on tribological behavior 216

crystal plasticity modeling 565–567
 b.c.c. Ti-15–3–3 indentation 571–573
 b.c.c. Ti-64 indentation 569–571
 f.c.c. copper single crystal indentation 567–569

crystal plasticity theory 350–352

crystals and nanoindentation simulations 441–442
 dislocation nucleation 446–455
 load-displacement responses 444–446
 models and simulation methods 442–444

CSM. See continuous stiffness measurement (CSM)

cube corner indenter (pyramidal with triangular base) 118–119

CVD. See chemical vapor deposition (CVD)

CVD. See Chemical Vapor Deposition (CVD)

cyclic loading indentation 192

cylindrical particle and microtubule polymer 411–416, 417t

D

damaged surface mechanical properties 468–471

DDD. See discrete dislocation dynamics (DDD)

defective surfaces nanomechanical properties
 experimental techniques for surface defects visualization and generation 184–185
 heterogeneous dislocation nucleation 188–190
 homogeneous dislocation nucleation 186–188
 nanomechanical properties study and probe approaches 185–186
 rough surfaces 197–200
 subsurface defects 194–195
 sub-surface impurities and dislocations 195–197
 sub-surface vacancies 195
 surface defects role in plasticity 183–184
 surface steps 190–191
 studies 191–194
 deformation energy analysis 85
delamination 32–33
 exchange–correlation functional 605–606
 plane waves and supercell 606
 depth-sensing indentation (DSI) 136, 226
 design-of-experiment (DOE) approach 629, 633–635

DFT. See density functional theory (DFT)
diamond-like carbon (DLC) 85
 coatings 25t
 corrosion performance of 23
 PECVD and PVD types of 22t
 residual stress in 22t
 types and mechanical properties 19
 films
 H/E variation and plasticity index for 31–32, 32t
 ternary phase diagram of 20f
diffuse relaxation time 305
direct current plasma nitrided parts
 basic aspects of
 abnormal glow discharge potential distribution 160–161
 cathode surface, plasma-surface interaction 161–162
electrical configuration modes 162–163
direct current plasma nitried parts (contd.)
low-temperature plasma nitriding processes 158
in metallurgical-mechanical field 157
nanoindentation
crystallographic orientation 177–178
examples of 167–169
important aspects 159
mechanical polishing: in niobium 169–170
in nitried surfaces 163–167
nitrogen-concentration gradients 176–177
surface roughness 170–176
Vickers and Knoop hardness tests 158
discrete dislocation dynamics (DDD) 186
dislocation 51, 461. See also defective surfaces nanomechanical properties;
plasticity onset; plastic zone
dislocation density 160, 167, 169, 196, 316, 331–333
dislocation dynamics simulations 383–385
dislocation extraction algorithm (DXA) 332
dislocation length and density quantification 331–333
dislocation loops 188–189, 198–199, 335, 356, 601, 619
dislocation network evolution 325–327
dislocation nucleation 186–196, 200, 316, 319, 327, 352, 370, 381, 442, 446–455, 601, 619, 636
dislocation slip 316, 348–349, 468
DLC. See diamond-like carbon (DLC)
DMA. See dynamic mechanical analysis (DMA)
DOE. See design-of-experiment (DOE) approach
DOF. See degrees of freedom (DOF)
double contact model 379
double etching method 196
Drucker–Prager (DP) model 375–377
DSI. See depth-sensing indentation (DSI)
DSM. See dynamic stiffness measurement (DSM)
DXA. See dislocation extraction algorithm (DXA)
dynamic mechanical analysis (DMA) 206, 210
dynamic stiffness measurement (DSM) 127
EAM. See embedded-atom method (EAM)
EBSD. See electron backscatter diffraction (EBSD)
ECR-CVD. See electron cyclotron resonance plasma chemical vapor deposition (ECR-CVD)
EDX. See Energy Dispersive X-ray (EDX) analysis
effective indenter concept 521–522
and extension to layered materials 514
elastic anisotropy 322, 353, 361, 381
elastic constants 191, 321–322, 323f, 354, 356, 357f
elasticity equation, in isotropic case 538
elastic models, of indentation simulations 450–451
elastic modulus 214–215, 596. See also macro-porous materials,
nanoindentation of coating 464
and hardness 276–278, 466–467
elastic recovery parameter (ERP) 123
elastic regime 324–325
electrodeposition 224–225, 230, 239, 270, 283, 376f
electron backscatter diffraction (EBSD) 159–160, 228, 230, 234, 237, 239, 316
electron cyclotron resonance plasma chemical vapor deposition (ECR-CVD) 95
electron localization function (ELF) 613f
electron probe microanalysis (EPMA) 177
ELF. See electron localization function (ELF)
embedded-atom method (EAM) 321–322, 385–386, 444, 608, 616, 629
potential 330
empirical modeling 616–622
loading force effect 620–621
modeling geometry and simulation procedures 617–618
neck formation, local melting, and dislocation and emission 618–620
temperature, tip-substrate bonding and substrate orientation effects 621–622
Energy Dispersive X-ray (EDX) analysis 271
ENVWI 152, 116
EPMA. See electron probe microanalysis (EPMA)
EPON 862, 655–658
epoxy resins 648–649
equi-biaxial residual stress 4, 7, 10, 15 in low hardening materials 12–13
ERP. See elastic recovery parameter (ERP)
exchange–correlation functional 605–606
extended Finnis-Sinclair potential 323f, 324f, 328–329, 332f

f
face-centered cubic (f.c.c) metals 158, 188, 315, 318, 321–323, 324f, 325, 329–330, 381–386, 441, 567–569, 573
f.c.c. See face-centered cubic (f.c.c) metals
FCVA. See filtered cathodic vacuum arc (FCVA) technique
FEA. See finite element analysis (FEA)
FEM. See finite element method (FEM)
FENE. See finite extensible nonlinear elastic (FENE) potential
Fermi-Dirac exponential interpolation function 362
FESEM. See field emission scanning electron microscope (FESEM)
FIB. See focused ion beams (FIB)
fiber-fiber bonding mechanisms 247–248
field emission scanning electron microscope (FESEM) 206, 217–219
FilmDoctor® 26, 514, 517–520f, 544
film stress 22, 43–44
film thickness 22, 25, 35, 41f, 43, 52, 54, 117, 120–121, 145, 489
filtered cathodic vacuum arc (FCVA) 40, 85
finite-difference method 608
finite element analysis (FEA) 395, 579
hard phase indentation embedded in matrix 490–495
isotropic materials indentation 482–488
stress contours and deformation of material and nanoindentation experiment 589–590f
thin films indentation 489–490
finite element simulation 580
boundary condition 582
graphology 580–581
interaction 582
material characteristics 581–582
meshing 582–583
verification 583
nanoindentation experiment on Al 1100, 584
simulation and experimental results for Al 1100, 584–591
finite extensible nonlinear elastic (FENE) potential 397
Fischer hardness tester 87
fitting for time dependent mechanical behavior 515
flat-ended indentation 450f, 451, 455
floating configuration 162
flow stress 5, 11
flow cell 250
focused ion beams (FIB) 150, 189
force-displacement curves 233, 235
force-penetration curves 189f
Fourier transform infrared (FTIR) analysis 208–209
fractional calculus 658
fracture toughness 46, 73, 115, 125–126, 289, 459, 462–463, 466
frame compliance and calibration 298
free-volume evolution 304
FTIR. See Fourier transform infrared (FTIR) analysis
FX curve 402f, 407f, 408–416, 408f, 410f, 412f, 415f, 417f, 418, 420f, 422–423
FZ curves 187, 192–193, 195, 402f, 411, 412f, 418

g
fast newt nuclear reactors (GFR) 77
GB. See Generalized Born (GB) model
Gear predictor–corrector (GPC) algorithm 608
Generalized Born (GB) model 399
generalized-gradient approximation (GGA) 605
generalized stacking fault energies (GSFE) 322–324
generalized twinning fault energy (GTFE) 323–324
geometrically necessary dislocations
(GNDS) 293, 331, 333, 335, 384, 561–564, 566
density 336
and intrinsic length-scales identification, from hardness simulations 334–336
geometrical swelling 263–264
GFR. See gas fast nuclear reactors (GFR)
GGA. See generalized-gradient approximation (GGA)
3-Glycidoxypropylmethoxysilane (GPS) 206, 207f, 209, 210f
GNDS. See geometrically necessary dislocations (GNDs)
GNP. See graphene (GNP)
GNPC. See graphene-epoxy nanocomposites (GNPC)
GPC. See Gear predictor–corrector (GPC) algorithm
GPS. See 3-Glycidoxypropylmethoxysilane (GPS)
GPUs. See Graphics Processing Units (GPUs)
gradiant-plasticity theories 563
gand canonical ensemble 608
graphene (GNP) 647
graphene-epoxy nanocomposites (GNPC) 647
Graphics Processing Units (GPUs) 396, 409
as performance accelerators 399–400
ground-state charge density 605
GTFE. See generalized twinning fault energy (GTFE)
Gwyddion software 52

h
Hall-Petch relationship 224, 237
hard coatings 501
hardening model 382
cartography 471, 472f
coating 463–464
and contact area 327–328
data analysis 295f
defining of 567–568
determination of 120–123
depth dependence of 562
depth dependence on 293
and elastic modulus 276–278, 466–467
with indentation depth 567–571
measured 304
by nanoindentation 215
profile 215
scaled 373
and tribological effects 534–535
and Young’s modulus 433–437
hardness testing 3
hardness to modulus (H/E)
and plastic/elastic work, relationship between 30–31
variation in DLC films 31–32, 32t
Heaviside distributions 532
Helmholtz free energy density 350
Herpes Simplex Virus type 1 (HSV1) 395
Hertz contact theory 226, 452–453
Hertz equation 299, 468
Hertzian approach, extended 521–522,
Hertzian contact 381, 524
Hertzian laws 325
Hertzian load dots 526, 529
extended 532
Hertz model 461
Hertz’s theory 28
H/E. See hardness to modulus (H/E)
heterogeneous catalysis 183
heterogeneous dislocation nucleation 188–190
High Power Impulse Magnetron Sputtering (HIPIMS) 504, 506
HIPIMS. See High Power Impulse Magnetron Sputtering (HIPIMS)
homogeneous dislocation nucleation 186–188
HSV1. See Herpes Simplex Virus type 1 (HSV1)
hybrid foams
metal and metal foam nanoindentation
state of the art 226–230
motivation 223–226
nanoindentation experiments
experimental setup 232
results and discussion 232–239
sample material and preparation
Al material and coating process 230–231
sample preparation for nanoindentation 231–232
hydrothermal ageing and degradation 469–471
Hysitron digital instrument 86
Hysitron TI 750 TriboIndenter 79
indentation size effects (ISE) 141, 196, 292–294, 296, 384, 561–562, 567, 568f, 569, 570f, 571, 572f, 573
indentation stress-strain curve 462
indenter area function 298–300
indenter geometry 28
INDICOAT European Project 115, 120
INDICOAT project 24–25
interatomic potentials 321
elastic constants 321–322
generalized stacking fault energies (GSFE) 322–324
interchain slip 439
International Centre for Diffraction Data (ICDD) 271
International Standard for Depth-Sensing Indentation (ISO 14577) 24–26
intrinsic stress 43–44, 521–522, 532
biaxial 537–540
influence of 516
inverse method 227
ISE. See indentation size effects (ISE)
ISF. See indentation Schmid factors (ISF)
ISO 14577 standard 584
ISO 14577–1 standard 115
ISO TC 164/SC3 116
ISO Technical Report 29381, 124
isothermal-isobaric ensemble 608
ISO/TR 29381:2008 115
iterative simulation and flow curve determination 503

j
JCPDS. See Joint Committee on Powder Diffraction Standards (JCPDS)
Johnson-Cook equation 502
Joint Committee on Powder Diffraction Standards (JCPDS) 271
Juliano method 503
jump-to-contact phenomenon 602

k
Kick’s law 483, 484f, 489
Knoop hardness test 87, 158
Kohn-Sham equations 605
kraft pulp fibers 257, 259
Lagrange functional 610
LAMMPS. See Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
Langevin equation of motion 396, 399, 401–403
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 611
lasso mechanism 330, 331f
lateral modulation friction force microscope (LM-FFM) 98
LDA. See local density approximation (LDA)
leapfrog algorithm 608
Lennard-Jones interaction (LJ-tip) 616–618, 618f, 620f, 621, 629–634, 629f, 630f
plowing effect on frictional coefficient 635
Lennard-Jones potential 398, 402, 617
linear elasticity stress components 526
LM-FFM. See lateral modulation friction force microscope (LM-FFM)
load-displacement curves 228, 276, 305f, 307f, 319, 328f, 329, 461, 595f
load-displacement responses 431–433, 444–446
load dots 525, 529, 531–532
load-indentation depth curves for b.c.c. titanium Ti-15–3–3 single crystal 572f
for b.c.c. titanium Ti-64 single crystal 570f
of copper single crystal 568f
local density approximation (LDA) 605
long polyprotein and microtubule protofilament 409–411
Lorentz–Berteloth rules 592
low energy ion bombardment 198
low hardening materials, equi-biaxial stress in 12–13
Ludwik power law 483, 489

m
macroindentation 460
motivation 287–288
nanoindentation studies 288–291
indentation size effect 293–296
pile-up and sink-in 291–293
metals plasticity, in f.c.c 322
Meyer contact area 327
Meyer’s hardness 462, 465
MGs. See metallic glasses (MGs)
microcanonical ensemble 608
microcracks 469–471
micro electromechanical systems (MEMS) 380
microindentation 115,f, 143, 196, 460
micropillars 189–190
microtubule (MT) 395
microtubule polymers 403–404
cylindrical particle 411–416, 417t
SOP model parameterization 398–399
spherical particles 404–405
minimum solid area (MSA) 139
modeling 369–386
advanced materials finite element
simulations 374–375
ID structures 378–380
nanocrystalline porous materials and
pressure-sensitive models 375–378
thin solid films nanoindentation 380–383
atomistic simulations 383
dislocation dynamics simulations 383–385
molecular dynamics simulations 385–386
scaling and dimensional analysis, applied
to indentation modeling 370
dimensional analysis 371–372
dimensional analysis applied to
mechanical properties extraction 372–374
indenter tips geometrical similarity 370–371
modeling and simulations 429–456
crystals and nanoindentation simulations 441–442
dislocation nucleation 446–455
load-displacement responses 444–446
models and simulation methods 442–444
nanoindentation simulations on
polymers 430
hardness and Young’s modulus 433–437
load-displacement responses 431–433
mechanical behavior mechanisms and
properties 437–441
methods 430–431
MoDTC. See molybdenum dithiocarbamate (MoDTC)
Mohr–Coulomb (MC) model 375
molecular dynamics (MD) 394, 398, 579–580, 607–611
ab initio molecular dynamics 609–611
algorithms 608
equations of motion 607
interatomic potentials 608–609
modeling, for nanoindentation 591–592
simulation procedure 592–595
model simulation results 595–597
nanoindentation simulations 616
ab initio modeling 622–628
empirical modeling 616–622
simulation logic diagram 594f
simulation models 593f
statistical ensembles 608
molecular dynamics modeling 315–337
elastic regime 324–325
interatomic potentials 321
elastic constants 321–322
generalized stacking fault energies (GSFE) 322–324
methods 316–318
control methods in experiment and in
MD simulations 319–320
indentation tip 318–319
penetration rate 320–321
outlook 336–337
plasticity onset
contact area and hardness 327–328
dislocation network evolution 325–327
indentation rate effect 328–329
tip diameter effect 329
molecular dynamics modeling (contd.)
plastic zone
 body-centered cubic metals 330–331
dislocation length and density
 quantification 331–333
face-centered cubic metals 329–330
GNDs and intrinsic length-scales
 identification from hardness
 simulations 334–336
pile-up 333–334
molecular dynamics simulations 385–386
molecular modeling 395–396
molybdenum dithiocarbamate (MoDTC) 92
Morse interatomic potential 592
Morse potential 513, 518
MSGCP. See mechanism-based strain-gradient crystal-plasticity (MSGCP) model
MT. See microtubule (MT)
MTS Systems Nanoindenter XP device
 172, 174–175
MT 400 98 tribometer 271
multilayer PVD coating system 23
multiscale model, for nanoindentation in polymer and polymer nanocomposites 647–659
complex heterogeneous materials
 multiscale 651–652
EPON 862, 655–658
macro-and nano-scales linking 654–655
peridynamics introduction 652–653
modeling scheme 648–649
molecular dynamics simulation details 649–650
nanoindentation test 650–651
theoretically and experimentally determined result 651
unified theory 658
multiscale modeling primer 398–399

n
nanocoating, mechanical evaluation of indentation techniques 69–70
nuclear power generation applications
 stopping and range ions in matter (SRIM) 77
 W-based materials evaluation 77–80
 thermal barrier coatings (TBC) components of 70–72
 Hafnium-based mechanical properties 74–76
 nanoindentation characterization of 72–74
 nanocrystalline porous materials and pressure-sensitive models 375–378
 nano electromechanical systems (NEMS) 380
 nano-hardness testers (NHT) 114
 Nano Indenter G200 214
 Nanoindenter Ubi-Hysitron 271
 nanoscratch 507–509
 failure criterion determination with 503–504
 nano-scratch testing 34–46
 contact pressure 36–37, 38f
 probe radius, influence of 36
 scan speed and loading rate 35–36
 silicon substrate, role of 38–40, 38f, 39f, 39t
 ta-C on Si, failure behavior of 40–42, 41f, 42f, 42t
 Nanotest Platform III indentation system 296–297
 NanoTest systems 34–35
 nanotribology
 evaluation methods for thin films different lubricants, frictional properties with 91–95
 force modulation 98–102
 friction 83
 mechanical and other physical properties 102–107
 nanoindentation evaluation 84–87
 nanowear and friction 88–89, 95–98
 nanowear properties 89–91
 scanning probe microscope (SPM) 84
 nanowear
 and friction 88–89
 and frictional properties, evaluated with and without vibrations 95–98
 properties 89–91
nanowires 378–380
ND-DTIRS probe 249
ND-DYIRS probe 249, 253–254
NEMS. See nano electromechanical systems (NEMS)
Newton's equations 607
NHT. See nano-hardness testers (NHT)
nickel 224, 230–231, 239–240
Nicolet Avatar 320 Fourier transform infrared spectrometer 206
nitrogen-containing carbon (CN) films 88
Nix–Gao model 293–294, 295f
nominal contact area 6
non-crystalline flow defects 294
normal lateral stress 547f, 550f, 553f
norm-conserving condition 607
Nosé-Hoover method 608
nuclear power generation applications stopping and range ions in matter (SRIM) 77
W-based materials evaluation 77–80

O
extensions 514
fitting for time dependent mechanical behavior 515
for time dependent layered materials 522–532
’1/10 rule,’ 24
open-cell metal foams 223–224
open-loop finite-stiffness 320
OPS. See Oxide Polishing Suspension (OPS)
Oxide Polishing Suspension (OPS) 232

P
paraboloid 335–336
ParaDyn 617
PD. See peridynamics (PD)
PECVD. See under chemical vapor deposition
Peierls-Navarro (PN) dislocation model 449–450
inequality 454
Peierls-Navarro model 356
Peierls-Navarro dislocation model 194
perfluoropolyether (PFPE) lubricant films 102, 105
peridynamics (PD) 648, 652–653
nonlocal multiscale modeling using 654–655
peridynamics based hierarchical multiscale modeling scheme (PFHMM) 648, 655, 657–659
PFHMM. See peridynamics based hierarchical multiscale modeling scheme (PFHMM)
Phani-Niyogi power-law relation 139
phase field 348, 351, 359, 362, 363f, 364
phase transformation 33–34, 40, 43, 59, 315, 385, 467–471
P-h curve 304, 306f, 446, 448–449, 455, 464, 482, 487–490, 491f, 493f
physical scratch and tribological test and analysis 515
theory 533–534
Physical Vapor Deposition (PVD) 20–21, 22t
pile-up 4, 30, 117, 141, 230, 259, 291–293, 296, 333–334, 434, 436, 486f, 494
pin-on-disk analysis 279
plane waves and supercell 606
plastic deformation mechanisms 468
plastic displacement 300
plastic flow behavior and failure analysis investigations 501–510
CrAlN coating system investigations 504
failure criterion determination on nanolamination 507–509, 510f
flow curve dependency on chemical composition and microstructure 504–506
strain rate dependency 506, 507f
method description 501–502
failure criterion determination with nano-scratch analysis 503–504
flow curve determination 502–503
plasticity index 31–32, 32, 85
plasticity kinetics 350
plasticity onset contact area and hardness 327–328
plasticity onset (contd.)
 dislocation network evolution 325–327
 indentation rate effect 328–329
 tip diameter effect 329
plastic strain distribution
 of compound system 493f
 of film-substrate system 490f
plastic zone
 body-centered cubic metals 330–331
 dislocation length and density quantification 331–333
 face-centered cubic metals 329–330
 GNDs and intrinsic length-scales identification, from hardness simulations 334–336
 pile-up 333–334
PLD. See pulsed laser deposition (PLD)
PN. See Peierls-Nabarro (PN) dislocation model
PNC. See polymer nanocomposites (PNC)
Poisson’s ratio 5, 125, 137, 322, 325
polyhedral oligomeric silsesquioxane (POSS) composites (POSS-PE) 430–431, 436–440, 438f, 440f, 441f, 455
polymer foams 223
polymer nanocomposites (PNC) 647
polymers, nanoindentation simulations on 430
 hardness and Young’s modulus 433–437
 load-displacement responses 431–433
 mechanical behavior mechanisms and properties 437–441
 methods 430–431
poly(vinylidene fluoride) PVDF 437
positive rolling effect 219
POSS-PE. See polyhedral oligomeric silsesquioxane (POSS) composites (POSS-PE)
POSS-PVDF 437
power law function 522, 524
prismatic loops 199, 330–331, 332f, 384
probe radius, influence on nano-scratch testing 36
progressive load multi-pass scratch technique 37
projected hardness 433, 434f, 436
pseudopotential approximation 606–607
pulp fibers 256–259
pulsed laser deposition (PLD) 21, 27
PVDF. See poly(vinylidene fluoride) PVDF
PVD. See Physical Vapor Deposition (PVD)
q
QC. See quasi-continuum (QC) method
QCDFT. See quasi-continuum density functional theory (QCDFT)
quasi-continuum density functional theory (QCDFT) 637–638
quasi-continuum method 602
quasi-continuum (QC) method 192, 441, 443
quasi-plastic stage 193
r
RDX. See Research Development Explosive (RDX) single crystals indentation application
real surfaces 183–184
recovery phenomenon 304
reduced modulus 257, 258f, 260, 261–264f
relative contact area 6–7, 10
relative indentation depth (RID) 25–26
representative atom (repatom) 443
Research Development Explosive (RDX) single crystals indentation application 352
 new results and analysis 354–356
 prior work review 353–354
residual strain 3
residual stress
 in carbon films 21–22, 22t
 compressive 4, 7–8
 in DLC coatings 22t
 equi-biaxial 4, 7, 10, 12, 15
 field, magnitude of 5
 tensile 4, 7
residual stress determination, by nanoindentation 3–16
equi-biaxial stress in low hardening materials 12–13
general residual stresses 13–15, 14f
strain-hardening effects 15
theoretical background of 5–12
reversible changes probing, in near-equilibrium regime 406–407
near-equilibrium dynamics studying 407–409
reversible plasticity 193
RID. See relative indentation depth (RID)
rough surfaces 197–200

S
sandblasting 471
SASA. See Solvent Accessible Surface Area (SASA) model
SBMV. See Southern Bean Mosaic virus (SBMV)
scale invariant mechanical surface optimization 513–555
effective indenter concept and extension to layered materials 514
examples 544–555
illustrative hypothetical example for optimization against dust impact 515–516
intrinsic stress influences 516
mechanical material behavior interatomic potential description 513–514
Oliver and Pharr method extensions 514
physical scratch and tribological test and analysis 515
procedure 540, 544–555, 545f
theory 534–537
quasi-static experiments and parameters to dynamic wear, fretting, and tribological tests
scaling and dimensional analysis, applied to indentation modeling 370
dimensional analysis 371–372
applied to mechanical properties extraction 372–374
indenter tips geometrical similarity 370–371
scanning electron image 472f
scanning electron microscopy (SEM) 73, 126–127, 209, 211f, 218, 228, 271–272, 274f, 276, 280f, 282–283, 337, 503, 508f, 509, 510f
Scanning Probe Image Processor (SPIP®) 271, 276
scanning probe microscope (SPM) 84
scanning tunneling microscope (STM) 601, 616
scan speed, influence on nano-scratch testing 35–36
Schmid factor 188
Schmid’s law 382
Schrödinger equations 604
SCP. See single-crystal plasticity (SCP) model
scratch-test technique 281
‘secondary electrons,’ 161
SED. See slipping energy density (SED)
Self Organized Polymer (SOP) model 395–400, 409, 411, 413
parameterization, for microtubule polymers 398–399
SEM. See scanning electron microscopy (SEM)
Sensirion SHT21 humidity sensors (Staefa, Switzerland) 250
serration flow behavior 296, 306, 308
SFE. See stacking fault energy (SFE)
SHAKE algorithm 610
sharp indentation test 3, 373–374
in elastic-ideally plastic materials 5, 6f
shear loops 326, 330–331
shear stress 187, 303–304, 364f, 452f, 509, 510f, 516, 518, 520, 538, 540, 546f, 549f, 552f
shear transformation zones (STZs) 287, 294, 296, 305
Index

t

Tabor’s solution 373

Ta-C on Si, failure behavior of 40–42, 41t, 42f, 42t

Taylor hardening 196

TBC. See thermal barrier coatings (TBC)

β-TCP. See β-tricalcium phosphate (β-TCP)

TEM. See transmission electron microscopy (TEM)

tensile process 626–628

tensile residual stress 4, 7

tetrahedral amorphous carbon coatings 23

TF. See twinning fault (TF) energy

TGO. See thermally grown oxide (TGO)

TGT01 calibration grid 252, 255f

Π-theorem 371–372

thermal barrier coatings (TBC)

components of 70–72

Hafnium-based mechanical properties 74–76

nanoindentation characterization of 72–74

thermal drift 232

thermally grown oxide (TGO) 71

thin film technologies 19

thin solid films nanoindentation 380–383

three-body abrasion 219

three-parameter model 529–530

3-scan procedure 36

tilted flat-ended indentation 450f, 451–452, 452f, 455

time dependent material model 524

tip characterizer 252

tip cleaning 255

tip diameter effect 329

tip-sample dilation 252

TI 900 TribolIndenter® (Hysitron Inc., MN, USA) 232

TM. See twin migration (TM) energy

transmission electron microscopy (TEM) 206, 207f, 209, 211f, 335, 337

tribological coatings, nanoindentation, on hardness 113

ISO 14577–1 standard 115–116

materials metallurgical affinity 111

multilayered coatings 111–113

nano-hardness testers 114

relevant properties on coating 116

for researchers 116–118

coatings adhesion analysis 126–127

fracture toughness in thin films 125–126

hardness determination 120–123

simulation and models applied to nanoindentation 128–129

stiffness and mechanical properties 127–128

tensile properties determination 124–125

thin coatings nanoindentation procedures 118–120

Young’s modulus determination 123–124

Versailles project on advanced materials and standards 116

tribological contact 527

tribo-process 535–536

triboscope system (Hysitron Inc., USA) 584

β-tricalcium phosphate (β-TCP) 269–270, 278

and chitosan coatings crystal lattice arrangement 271–272

and chitosan coatings morphological analysis 274–276

twin migration (TM) energy 323

twinning fault (TF) energy 323

twinning, phase field theory for 348, 351, 359

twin propensity 323–324

two-body abrasion 219

two interface contact model 379

u

UBER. See Universal Binding Energy Relation (UBER)

ultrasoft-pseudopotential (US-PP) 607

ultra-thin films

challenges in 27–28, 27f

uniaxial stress–strain relationship 11

uniform electron gas 605
Universal Binding Energy Relation (UBER) 612, 613
unstable twinning fault energy 323
US-PP. See ultrasoft-pseudopotential (US-PP)

V
VAMAS. See Versailles Project on Advanced Materials and Standards (VAMAS)
VASP. See Vienna Ab initio Simulation Package (VASP)
VEECO/SLOAN ‘Dektak3’ profile meter 174
Verlet algorithm 608
Versailles Project on Advanced Materials and Standards (VAMAS) 116
Vickers (pyramidal with square base) 118, 128
Vickers hardness 87, 158, 167
Vickers indentation 12, 15, 463
Vienna Ab initio Simulation Package (VASP) 611–612
viscoelastic and tribological behavior, of Al2O3 reinforced toughened epoxy hybrid nanocomposites 205–220
experimental FTIR analysis 208–209
materials 206–208
results and discussion 209–219
viscoelastic properties
glass transition temperature 213–214
storage modulus 210, 212–213
viscose fibers 256
swollen 259–265
von Mises stress 124, 485f, 502, 517–520f, 533f, 536, 542f, 545f, 548f, 551f, 554
von Mises yield criterion 10

W
wavelength dispersive spectrometer technique (WDS) 177
WDS. See wavelength dispersive spectrometer technique (WDS)
wear-tensor 537
wear track and wear performance profiles 216–217
wear track evaluation 545–553f
wedged indentation 450f, 452–453, 454f
\(W_{sep} \) 614

X
x-direction 592, 617, 622–623, 629–630
X-ray diffraction (XRD) 230, 270–272, 273f, 276–277, 301
X-ray microtomography 228
XRD. See X-ray diffraction (XRD)

Y
y-direction 592, 617, 622–623, 629
yield strength 502–503, 515–516, 517–520f, 554, 555
yield stress 4, 7, 10, 32, 37, 41, 57, 125, 192, 226–227, 483, 502, 636
Young’s modulus 5, 72, 75, 85, 95, 115, 117, 119, 121, 137, 177, 322, 325, 436–437, 455, 485f, 486–487, 490, 493–495, 519, 524–525, 544, 555
field dependent 527
YSH. See Yttria-stabilized Hafnia (YSH)
YSHZ. See yttrium oxide (YSHZ)
yttrium oxide (YSHZ) 74–76, 80
yttrium stabilized Hafnia (YSH) 74–76

Z
z-direction 540, 592, 617–618, 623–624, 629
Zener anisotropy 322
zirconia, nanoindentation applications to 465–466
damaged surface mechanical properties 468–471
hardness and elastic modulus 466–467
microstructure and local mechanical properties relation 471–472
plastic deformation mechanisms 468
stress–strain curve and phase transformation 467–468