Contents

I Introduction and Essentials

1 Introduction
1.1 CFD: What is it?
1.1.1 CFD as a Scientific and Engineering Analysis Tool
1.1.2 Analogy with a Video-Camera
1.2 CFD: Why to study?
1.3 Novelty, Scope, and Purpose of this Book

2 Introduction to CFD: Development, Application, and Analysis
2.1 CFD Development
2.1.1 Grid Generation: Pre-Processor
2.1.2 Discretization Method: Algebraic Formulation
2.1.3 Solution Methodology: Solver
2.1.4 Computation of Engineering-Parameters: Post-Processor
2.1.5 Testing
2.2 CFD Application
2.3 CFD Analysis
2.4 Closure

xiii
3 Essentials of Fluid-Dynamics and Heat-Transfer for CFD

3.1 Physical Laws ... 42
 3.1.1 Fundamental/Conservation Laws 43
 3.1.2 Subsidiary Laws ... 45

3.2 Momentum and Energy Transport Mechanisms 46

3.3 Physical Law based Differential Formulation 48
 3.3.1 Continuity Equation 49
 3.3.2 Transport Equation 51

3.4 Generalized Volumetric and Flux Terms, and their Differential Formulation .. 57
 3.4.1 Volumetric Term 58
 3.4.2 Flux-Term ... 58
 3.4.3 Discussion ... 62

3.5 Mathematical Formulation 63
 3.5.1 Dimensional Study 63
 3.5.2 Non-Dimensional Study 67

3.6 Closure ... 71

4 Essentials of Numerical-Methods for CFD

4.1 Finite Difference Method: A Differential to Algebraic Formulation for Governing PDE and BCs 75
 4.1.1 Grid Generation 75
 4.1.2 Finite Difference Method 78
 4.1.3 Applications to CFD 92

4.2 Iterative Solution of System of LAEs for a Flow Property .. 93
 4.2.1 Iterative Methods 94
 4.2.2 Applications to CFD 98

4.3 Numerical Differentiation for Local Engineering-Parameters .. 105
 4.3.1 Differentiation Formulas 106
 4.3.2 Applications to CFD 107

4.4 Numerical Integration for the Total value of Engineering-Parameters 110
 4.4.1 Integration Rules 111
 4.4.2 Applications to CFD 114

4.5 Closure ... 116

Problems ... 116
II CFD FOR A CARTESIAN-GEOMETRY

5 Computational Heat Conduction

5.1 Physical Law based Finite Volume Method

5.1.1 Energy Conservation Law for a Control Volume

5.1.2 Algebraic Formulation

5.1.3 Approximations

5.1.4 Approximated Algebraic-Formulation

5.1.5 Discussion

5.2 Finite Difference Method for Boundary Conditions

5.3 Flux based Solution Methodology on a Uniform Grid:

Explicit-Method

5.3.1 One-Dimensional Conduction

5.3.2 Two-Dimensional Conduction

5.4 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method

6 Computational Heat Advection

6.1 Physical Law based Finite Volume Method

6.1.1 Energy Conservation Law for a Control Volume

6.1.2 Algebraic Formulation

6.1.3 Approximations

6.1.4 Approximated Algebraic Formulation

6.1.5 Discussion

6.2 Flux based Solution Methodology on a Uniform Grid:

Explicit-Method

6.2.1 Explicit-Method

6.2.2 Implementation Details

6.2.3 Solution Algorithm

6.3 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method

6.3.1 Advection Scheme on a Non-Uniform Grid

6.3.2 Explicit and Implicit Method

6.3.3 Implementation Details

6.3.4 Solution Algorithm

Problems
7 Computational Heat Convection 229
 7.1 Physical Law based Finite Volume Method 229
 7.1.1 Energy Conservation Law for a Control Volume 229
 7.1.2 Algebraic Formulation 231
 7.1.3 Approximated Algebraic Formulation 232
 7.2 Flux based Solution Methodology on a Uniform Grid:
 Explicit-Method 235
 7.2.1 Explicit-Method 236
 7.2.2 Implementation Details 237
 7.2.3 Solution Algorithm 238
 7.3 Coefficients of LAEs based Solution Methodology on a
 Non-Uniform Grid: Explicit and Implicit Method 242
 Problems 248

8 Computational Fluid Dynamics: Physical Law based
 Finite Volume Method 251
 8.1 Generalized Variables for the Combined Heat and
 Fluid Flow 252
 8.2 Conservation Laws for a Control Volume 255
 8.3 Algebraic Formulation 259
 8.4 Approximations 260
 8.5 Approximated Algebraic Formulation 263
 8.5.1 Mass Conservation 263
 8.5.2 Momentum/Energy Conservation 264
 8.6 Closure 269

9 Computational Fluid Dynamics on a Staggered Grid 271
 9.1 Challenges in the CFD Development 273
 9.1.1 Non-Linearity 273
 9.1.2 Equation for Pressure 273
 9.1.3 Pressure-Velocity Decoupling 273
 9.2 A Staggered Grid to avoid Pressure-Velocity Decoupling 275
 9.3 Physical Law based FVM for a Staggered Grid 277
 9.4 Flux based Solution Methodology on a Uniform Grid:
 Semi-Explicit Method 281
 9.4.1 Philosophy of Pressure-Correction Method 283
 9.4.2 Semi-Explicit Method 286
 9.4.3 Implementation Details 292
 9.4.4 Solution Algorithm 298
 9.5 Initial and Boundary Conditions 300
 9.5.1 Initial Condition 300
 9.5.2 Boundary Condition 301
 Problems 306
10 Computational Fluid Dynamics on a Co-located Grid 309

10.1 Momentum-Interpolation Method: Strategy to avoid the Pressure-Velocity Decoupling on a Co-located Grid 310

10.2 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Semi-Explicit and Semi-Implicit Method 314

10.2.1 Predictor Step 316

10.2.2 Corrector Step 318

10.2.3 Solution Algorithm 323

Problems 329

III CFD for a Complex-Geometry 331

11 Computational Heat Conduction on a Curvilinear Grid 333

11.1 Curvilinear Grid Generation 333

11.1.1 Algebraic Grid Generation 334

11.1.2 Elliptic Grid Generation 336

11.2 Physical Law based Finite Volume Method 343

11.2.1 Unsteady and Source Term 343

11.2.2 Diffusion Term 344

11.2.3 All Terms 349

11.3 Computation of Geometrical Properties 349

11.4 Flux based Solution Methodology 352

11.4.1 Explicit Method 354

11.4.2 Implementation Details 354

Problems 359
12 Computational Fluid Dynamics on a Curvilinear Grid 361

12.1 Physical Law based Finite Volume Method 361

12.1.1 Mass Conservation 363

12.1.2 Momentum Conservation 363

12.2 Solution Methodology: Semi-Explicit Method 372

12.2.1 Predictor Step 373

12.2.2 Corrector Step 375

Problems 380

References 383

Index 389