CONTENTS

List of Contributors xiii

1 Materials for Polymer Nanocomposites 1
 Jiji Abraham, Soney C. George, Rene Muller, Nandakumar Kalarikkal, and Sabu Thomas
 1.1 Introduction, 1
 1.2 Nanocomposite Framework, 3
 1.2.1 Nanoscale Fillers, 3
 1.2.2 Choice of Polymeric Matrices, 13
 1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites, 16
 1.4 Challenges in the Area of Polymer Nanocomposites, 17
 1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables, 18
 1.6 Conclusion, 19
 Acknowledgments, 20
 References, 20

2 Manufacturing Polymer Nanocomposites 29
 Yuvaraj Haldorai and Jae-Jin Shim
 2.1 Introduction, 29
 2.2 Nanofillers, 30
 2.2.1 Structure and Properties of Clay, 31
 2.2.2 Structure and Properties of Organically Modified Clay, 32
 2.2.3 Structure and Properties of CNTs, 33
CONTENTS

2.3 Polymer Matrices, 36
2.4 Preparation of Nanocomposites, 37
 2.4.1 In Situ Polymerization, 37
 2.4.2 Solution Blending, 39
 2.4.3 Melt Compounding, 42
 2.4.4 Other Methods, 54
 2.4.5 Supercritical CO₂ Assisted Compounding, 55
2.5 Characterization, 58
2.6 Conclusions, 60
References, 61

3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges
 Jean-Charles Majesté

3.1 Introduction, 69
3.2 Viscoelasticity of Nanocomposites, 72
 3.2.1 General Trends, 72
 3.2.2 Percolation Treshold, 75
 3.2.3 Equilibrium Shear Modulus, 78
 3.2.4 Validity of TTS Principle, 81
 3.2.5 Quantifying Dispersion via Melt Rheology, 83
 3.2.6 Payne Effect, 87
3.3 Flow Properties of Nanocomposites, 92
 3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference, 93
 3.3.2 Flow-Induced Structure in Nanocomposites, 97
 3.3.3 Elongational Flow, 99
3.4 Theory and Modeling of Nanocomposites Rheology, 103
 3.4.1 Steady-State Viscosity, 104
 3.4.2 Dynamic Rheology, 105
 3.4.3 Elongational Rheology, 109
 3.4.4 Payne Effect, 113
3.5 Processing of Nanocomposites, 119
 3.5.1 Influence of Blending Procedure, 119
 3.5.2 Usual Processing Methods, 121
 3.5.3 New Processing Routes, 124
3.6 Conclusion and Futures Challenges, 125
 Acknowledgments, 127
 References, 127

4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®)
 Rigoberto Ibarra-Gómez and René Muller

4.1 Introduction, 135
4.2 Polymer Blends, 136
4.2.1 Capillary Number, Ca, 138
4.2.2 Rheology and Processing of Polymer Blends, 142
4.3 Polymer Nanocomposites, 147
4.3.1 Dispersion of Solid Additives, 148
4.4 Elongational Flow Mixer (RMX®), 151
4.4.1 RMX® Assembly and Operating Principles, 152
4.4.2 RMX® Flow Analysis by Numeric Simulation, 155
4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry, 156
4.5 RMX® Mixing of Polymer Blends, 158
4.5.1 Influence of the RMX® Parameters on Mixing, 159
4.5.2 Influence of the Viscosity Ratio, \(p \), 165
4.5.3 Energy of Mixing: Performance Comparison, 168
4.5.4 Viscous Heating, 170
4.5.5 Effect of a Compatibilizer, 170
4.5.6 Rheology/Morphology Relationship, 172
4.6 Mixing of Polymer Nanocomposites, 173
4.7 Concluding Remarks, 182
References, 182

5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites

Masami Okamoto

5.1 Introduction, 187
5.2 Nanostructure Development, 189
5.2.1 Melt Intercalation, 189
5.2.2 Interlayer Structure of OMLFs and Intercalation, 190
5.3 Novel Compounding Methods for Delamination of OMLFs, 199
5.3.1 Solid-State Shear Processing, 200
5.4 Nanostructure and Rheological Properties, 202
5.4.1 Flocculation Control and Modulus Enhancement, 202
5.4.2 Linear Viscoelastic Properties, 205
5.4.3 Relaxation Rate and Crystallization, 210
5.4.4 Nonlinear Shear Response, 213
5.4.5 Analogy to Soft Colloids, 214
5.4.6 Reversibility of Network Formation Process, 215
5.4.7 Alignment of Silicate Layers in Networks, 218
5.5 Nanocomposite Foams, 222
5.5.1 Foam Processing Using Supercritical CO₂, 222
5.5.2 PLA-Based Nanocomposite Foams, 224
5.5.3 Polyethylene Ionomer-Based Nanocomposite Foams by MuCell® Injection Molding, 227
5.6 Future Prospects, 230
References, 230
6 Processing and Rheological Behaviors of CNT/Polymer Nanocomposites

Mohan Raja, Modigunta Jeevan Kumar Reddy, Kwang Ho Won, Jae Ik Kim, Sang Hun Cha, Han Na Bae, Dae Hyeon Song, Sung Hun Ryu, and Andikkadu Masilamani Shanmugharaj

6.1 Introduction, 235
6.2 Processing Techniques of Polymer/CNT Nanocomposites, 237
 6.2.1 Solution Processing, 238
 6.2.2 Dry Powder, Wet, and Partial Solution Mixing, 241
 6.2.3 In Situ Polymerization, 242
 6.2.4 Melt Blending, 249
6.3 Rheological Properties of Polymer/Carbon Nanotube Composites, 254
 6.3.1 Dilute Regime, 254
 6.3.2 Semidilute Regime, 255
6.4 Summary, 274
Acknowledgment, 274
References, 274

7 Unusual Phase Separation in PS Rich Blends with PVME in Presence of MWNTs

Priti Xavier and Suryasarathi Bose

7.1 Introduction, 279
7.2 Experimental Methods, 280
 7.2.1 Materials and Sample Preparation, 280
 7.2.2 Characterization, 281
7.3 Theory Background, 281
7.4 Results and Discussion, 284
 7.4.1 Rheologically Determined Demixing Temperature, 284
 7.4.2 Evolution of Morphology in the Blends in Presence of MWNTs, 286
7.5 Conclusions, 291
Acknowledgements, 291
References, 291

8 Rheology and Processing of Polymer/POSS Nanocomposites

Krzysztof Pielichowski, Tomasz M. Majka, and Konstantinos N. Rafiopoulos

8.1 Introduction, 293
8.2 Polyhedral Oligomeric Silsesquioxanes, 296
 8.2.1 General Interactions between Polymer Matrices and POSS Particles, 297
8.3 Processing of Polymer/POSS Nanocomposites, 299
 8.3.1 Polyolefin/POSS Nanocomposites, 299
8.3.2 Polyamide/POSS Nanocomposites, 306
8.3.3 Polyurethane/POSS Nanocomposites, 309
8.3.4 Other Polymer/POSS Nanocomposites, 310
8.4 Rheological Behavior of POSS-Based Polymer Nanocomposites, 314
8.5 Conclusions, 318
Acknowledgments, 320
References, 320

9 Polymer and Composite Nanofiber: Electrospinning Parameters and Rheology Properties

Palaniswamy Suresh Kumar, Sundaramurthy Jayaraman, and Gurdev Singh

9.1 Introduction, 329
9.2 Electrospinning, 331
9.3 Electrospinning Process Parameters, 333
9.3.1 Solution Properties, 333
9.3.2 Operating Conditions, 335
9.3.3 Process Conditions, 336
9.4 Polymer-Based Nanofiber and its Rheology, 337
9.5 Nanofiber and its Polymer Composites, 348
9.6 Conclusion, 351
References, 351

10 Rheology and Processing of Inorganic Nanomaterials and Quantum Dots/Polymer Nanocomposites

Sneha Mohan, Jiji Abraham, Oluwatobi S. Oluwafemi, Nandakumar Kalarikkal, and Sabu Thomas

10.1 Inorganic Nanoparticle Filled Polymer Nanocomposites, 356
10.2 Fabrication of Inorganic Nanoparticle Filled Polymer Nanocomposites, 356
10.3 Why Rheological Study is Important for Polymer Nanocomposites, 357
10.3.1 Assessment of the Dispersion Quality, 358
10.3.2 Assessment of Processability, 358
10.3.3 Assessment of Correlation between Molecular Structure and Dynamics of Polymers (Structure–Property Relationship), 359
10.4 Rheology of Quantum Dot Based Polymer Nanocomposites, 359
10.5 Metal Oxide Nanoparticle-Based Polymer Nanocomposites, 366
10.5.1 Alumina, 366
10.5.2 Silica, 368
10.5.3 Titania, 372
10.5.4 Zinc Oxide, 376
10.5.5 Ferrite Nanoparticles, 376
10.5.6 Calcium Carbonate, 377
10.6 Conclusion, 379
References, 379

11 Rheology and Processing of Laponite/Polymer Nanocomposites 383
Huili Li, Wenchen Ren, Jinlong Zhu, Shimei Xu, and Jide Wang

11.1 Introduction, 383
11.2 Rheology, 384
11.2.1 Linear Viscoelastic Properties, 384
11.2.2 Nonlinear Viscoelastic Properties, 387
11.3 Processing, 388
11.3.1 Melt Blending, 389
11.3.2 Solution Blending, 390
11.3.3 In Situ Polymerization, 392
11.4 Conclusions and Outlook, 399
Acknowledgement, 400
References, 400

12 Graphene-Based Nanocomposites: Mechanical, Thermal, Electrical, and Rheological Properties 405
Rachid Bouhfid, Hamid Essabir, and Abou el kacem Qaiss

12.1 Introduction, 405
12.2 Graphene, 407
12.3 The Use of Graphene in Nanocomposite Materials, 408
12.3.1 Problematic, 410
12.3.2 Manufacturing Technique of Graphene-Based Nanocomposites, 411
12.4 Nanocomposite Characterization, 412
12.4.1 Structural Properties of Graphene Nanocomposites, 412
12.4.2 Thermal Stability, 414
12.4.3 Crystallization and Melting Properties, 416
12.4.4 Mechanical Properties, 418
12.4.5 Rheological Properties, 421
12.4.6 Electrical Properties, 423
12.5 Conclusion, 425
12.6 Future Perspective, 425
References, 426

13 Processing, Rheology, and Electrical Properties of Polymer/Nanocarbon Black Composites 431
Luís C. Costa and Manuel P. Graça

13.1 Introduction, 431
13.2 Experimental, 435
 13.2.1 Sample Preparation, 435
 13.2.2 Characterization Techniques, 436
13.3 Electrical Properties of Carbon Black Composites and Applications, 437
 13.3.1 DC Conductivity, 437
 13.3.2 AC Conductivity, 440
 13.3.3 Positive Temperature Coefficient in Resistivity, 444
13.4 Conclusion, 447
References, 447

14 Rheology and Processing of Nanocellulose, Nanochitin, and Nanostarch/Polymer Bionanocomposites 453
Carmen-Alice Teacă and Ruxanda Bodîrlău

14.1 Introduction, 453
14.2 Biopolymers as Nanofillers for Polymer/Nanocomposites, 455
 14.2.1 Nanocellulose, 455
 14.2.2 Processing of Nanocellulose/Polymer Nanocomposites, 456
 14.2.3 Nanochitin, 459
 14.2.4 Processing of Nanochitin/Polymer Nanocomposites, 459
 14.2.5 Nanostarch, 476
 14.2.6 Processing of Nanostarch/Polymer Nanocomposites, 477
14.3 Potential Applications of Polysaccharide Nanofillers/Polymer Nanocomposites, 478
14.4 Conclusions and Future Perspectives, 481
References, 482

15 Rheology and Processing of Nanoparticle Filled Polymer Blend Nanocomposites 491
Chongwen Huang and Wei Yu

15.1 Rheology of Polymer Blends, 491
 15.1.1 Miscible Blends, 491
 15.1.2 Immiscible Blends, 495
 15.1.3 Partially Miscible Blends, 502
15.2 Effect of Nanoparticles on the Morphology of Polymer Blend, 509
 15.2.1 Selective Distribution, 510
 15.2.2 Phase Separation, 523
15.3 Rheology of Nanoparticles Filled Polymer Blend, 531
 15.3.1 Viscoelasticity of Partially Miscible Systems, 531
 15.3.2 Viscoelasticity of Polymer Blend Nanocomposites, 535
15.4 Summary, 540
References, 541
16 Rheology as a Tool for Studying In Situ Polymerized Carbon Nanotube Nanocomposites 551

Guo-Hua Hu, Philippe Marchal, Sandrine Hoppe, and Christian Penu

16.1 Introduction, 551
16.2 Basic Principles of Rheokinetics, 552
 16.2.1 Systemic Rheology: Couette Analogy/Mixer-Type Rheology, 552
 16.2.2 A Couette-Type Rheoreactor for the Kinetics of In Situ Polymerization, 558
16.3 Rheokinetics of In Situ Polymerization of Carbon Nanotube/Monomer Systems, 560
 16.3.1 Effects of the Presence of MWCNT on the Polymerization Kinetics, 560
 16.3.2 Effect of the State of Dispersion of Carbon Nanotubes on the Polymerization Kinetics, 563
 16.3.3 Inhibiting Effect of the MWCNT on the Polymerization Kinetics, 564
16.4 Rheological Percolation Threshold of Carbon Nanotube-Based Nanocomposites, 567
 16.4.1 Experimental Procedures, 567
 16.4.2 Percolation Threshold Observed by Mechanical Spectroscopy, 568
 16.4.3 Electrical Percolation Threshold, 576
 16.4.4 Determination of the Percolation Threshold by Mechanical Spectroscopy, 576
 16.4.5 Electrical versus Rheological Percolations, 578
16.5 Concluding Remarks, 581

Index 587