INDEX

acetylene black, 433
2-acrylamido-2-methylpropanesulfonic acid (AMPS), 393
acrylonitrile–butadiene–styrene (ABS), 251
active interfaces, 139
N-acyllactam activated anionic polymerization of \(\varepsilon \)-caprolactam (AAPCL)
complex viscosity, 556–560
crystallization, 558
isothermal kinetics, 556
MWCNT-CL-Na ionic complex, 561, 563
PA6, measured vs. simulated molar masses, 560–562
pristine MWCNT, 560, 561
viscosity behavior, change in, 558
AFM see atomic force microscopy (AFM)
aggregating nucleation and growth (ANG), 280
aging, 90–92, 214
alkylammonium cations, 31–33, 38
\(\text{Al}_2\text{O}_3 \) nanoparticles, 12
alumina silicate clay, 7
ANG see aggregating nucleation and growth (ANG)
Astarita’s parameter, 156
atomic force microscopy (AFM), 59, 137, 159, 244, 455
2,2’-azobisisobutyronitrile (AIBN), 243, 244
Bacillus cereus, 350
bacterial cellulose (BC), 456, 460–462
binodal temperature, 507
boehmite alumina (BA), 366
Boltzmann constant, 440, 507
Bousmina model, 497
Brabender mixer, 47
buckyballs, 405
caging effect, 214
Capillary Breakup Extensional Rheometer (CaBER), 100
carbon black (CB) composites, 11
colloid theory, 434
DC conductivity, 437–440
dispersion, 435
DSC, 436
EBA copolymer
AC conductivity, 443–444
anomalous frequency dispersion, 441
applications, 435
complex permittivity vs. frequency, 440–442
carbon black (CB) composites (Continued)
crossover frequency, 441, 443
glass transition temperature, 435
log–log plot, 441, 443
melting temperature, 435
sample preparation, 435
universal response of Jonscher, 441
electrical and dielectric measurements, 436
epoxy polymer composites, dielectric studies, 434
ethylene–octane copolymer, 433
furnace process, 433
high surface area, 433
lock-in amplifier method, 436–437
PE/PS blends, 515–516
percolation model theory, 433–434
percolation threshold, 433, 434
permittivity behavior, 434
PMMA/PP blends, 517
polypropylene, 433
polystyrene, 435
production, problem in, 432
PTCR effect
DC resistivity vs. temperature, 445, 446
DSC thermograms, 444–445
glass transition temperature, tangents, 445, 446
resistivity vs. temperature, 446–447
tunneling, 445–446
as reinforcing filler, 432
structure, 432
two-phase polymer blend, 433
types of, 433
universal dielectric response, 434
carbon nanotubes (CNTs), 6, 29, 138, 405–406
electrically conducting nanoparticles, 432
“grafting to” technique, 548
vs. graphite, 237
in situ polymerization
AAPCL, MWCNTs (see multi-walled carbon nanotubes (MWCNTs))
Couette-type rheoreactor, 554–556
“grafting from” technique, 548
melt blending, 548
MWCNTs, 237
nanofiller-reinforced polymer matrix, 235
percolation threshold (see percolation threshold)
polymer coating, 548
processing techniques
dry powder, wet and partial solution mixing, 241–242
homogeneous dispersion, 237
in situ polymerization (see in situ polymerization)
melt blending (see melt blending)
polymer matrix, 238
solution processing, 238–241
van der Waals forces, 238
rheological properties of
dilute regime, 254–255
intertube van der Waals (VDW) attraction, 254
semidilute regime (see semidilute regime)
solution blending, 548
SWCNTs, 236
carboxymethyl chitosan (CMCTS), 350
Carreau-type equation, 155
Casson plot, 376
cation-exchange capacity (CEC), 32, 190

cellulose
all-cellulose composites, 454
biomass resources, 455
chemical structure, 455
nanocellulose (see nanocellulose)
polymer matrix interface, 454
properties, 454
as reinforcement, 454
cellulose nanocrystals (CNCs), 341, 457–459, 464–465
cellulose nanofibrils (CNFs), 341, 456, 457, 459, 466–470
cetyltrimethylammonium bromide (CTAB), 385
chain-growth polymerization, 15
channel black, 433
chemically modified graphene (CMG), 151
chemical vapor deposition (CVD), 10, 251, 253
chitin, 453, 482
chemical structure, 459, 472
nanochitin
applications, 481
aqueous counter-collision method, 455
nanowhiskers, 459, 472, 476
natural sources, 455
phthaloylation, 472
structure–property correlations, 454
whiskers, 455, 472–476
chitosan, 408
clay
alumina silicate, 7
MMT, 7
montmorillonite clay, 405
Smectite, 32
synthetic clay, 405
cluster-cluster aggregation (CCA) model, 80
CNCs see cellulose nanocrystals (CNCs)
CNTs see carbon nanotubes (CNTs)
coagulation technique, 240
coupled with viscoelastic phase separation (C-VPS), 280
coarse-grained polymer model, 104
Cogswell approach, 157
concentration fluctuation, 507–509
Cox–Merz rule, 94, 265
CTAB see cetyltrimethylammonium bromide (CTAB)
Custom Scientific Instruments, 52
Debye–Bueche equation, 217
deKee–Turcotte model, 106
density functional theory (DFT), 126
dibenzylidene sorbitol (DBS), 531, 532
differential scanning calorimetry (DSC) carbon black composites, 436, 444–445 PP/GNs nanocomposites, 416–418 \(N,N\)-dimethylformamide (DMF), 40, 411, 412
dodecyl sulfate (DDS), 8
double reptation model, 493
double-walled carbon nanotubes (DWCNTs), 33, 247
DSC see differential scanning calorimetry (DSC)
dynamic heterogeneity, 493, 494
dynamic rheology
BSW model, 107
deKee–Turcotte model, 106
elastic dumbbell model, 108
filler-polymer interactions, 109
hard spherical inclusions, 105
Herschel–Bulkley model, 106
internal chain-scale structure, 108
modified Cole model, 107
non-Newtonian models, 106
self-similar relaxation pattern, 107
Einstein’s equation, 367
electrical percolation thresholds
MWCNT/polystyrene composite, 572, 573
vs. rheological percolation threshold, 574–577
electronic energy band theory, 35
electrospinning
electrospun nanofibers, 333
fiber formation, 333
nanofiber morphology, 332
process parameters operating conditions, 335–336
process conditions, 336–337
solution properties, 333–335
rheology
antibacterial assays, 350
carbon black nanoparticles, 342
carbon nanocapsule, 349
cellulose nanofibers, 341
chitosan and alginate-based nanofibers, 337
clay/nanofiber hybrid sheets, 350
CNFs, 348
CNT-anchored polymer nanofiber mats, 348
cyclodextrins, 346
defect-free fiber formations, 341
dimethyl acetamide, 347
electrical conductivity and surface tension, 338
FESEM images, 345
gelatin, 343
Newtonian behavior, 340
oxidative polymerization methods, 348
PEDOT nanofiber, 343
PEEK/MWNT composites, 349
PEO, 351
PFSA/PVP ratios, 342
polyimide morphology, 347
PTACM resin, 346
PVA solutions, 340
spider-net-like structures, 345
taylor cone, 331
elongational flow mixer (RMX®)
assembly and operating principles, 152–155
capillary rheometer geometry, 156–158
dispersive mixing, 136
distributive mixing, 136
flow analysis, numeric simulation, 155–156
high shear rates, 135
morphology, 136
multipass rheometer, 151
polymer blends
capillary number, Ca, 138–142
compatibilization, 137
compatibilizer filler/polymer effect, 170–172
defformation-breakup process, 162
EPDM, 161
EVA, 138
FCM, 145
“folding” process, 142
immiscibility, 137
interfacial instability, 163
intermeshing-type devices, 144
liquid-liquid (viscoelastic) systems, 136
melt processing of, 138
mixing/processing equipment, 142
Palierne model, 145, 146
performance comparison, 168–170
“pushing/squeezed” mechanism, 161
Rayleigh’s instabilities, 162
rheology/morphology relationships, 172–173
SSE, 143
elongational flow mixer (RMX®) (Continued)
steady-state morphology, 162
transitional phenomenon, 160
TSE, 143, 144
van der Waals forces/interfacial tension, 143
viscosity ratio, 165–168
viscous heating, 170
polymer nanocomposites
chemical/solvent approaches, 147
complex viscosity, 177
different dispersion patterns, 180
elastic modulus, 178
filler networking, 175
graphene-based fillers, 173
graphite/polymer nanocomposites, 176
manufacturing methods, 175
microdispersibility, 175
montmorillonites, 147
optical microscopy images, 174
PLA, 177
PLA/EG nanocomposites, 181
polymer-polymer multiphase systems, 173
pressure trajectory, 178
reinforcement mechanisms, 179
solid additives, dispersion of (see solid additives, dispersion of)
TEM characterization, 180
XRD diffractograms, 181
theoretical advantages, 136
elongational rheology
Cauchy strain tensors, 110
conformation tensor level, 113
Finger strain tensor, 110
flow-induced stress, 111
Giesekus model, 111
K-BKZ constitutive equation, 109
mesoscopic rheological model, 112
modified FENE-P model, 113
PSM–LT model, 110
WD–FO model, 110
"emulsion" processing method, 120
EPDM see ethylene–propylene–diene terpolymer (EPDM)
Escherichia coli, 350
ethylene acrylic ester copolymers, 435
ethylene butyl acrylate (EBA) copolymer applications, 435
carbon black composites
AC conductivity, 443–444
anomalous frequency dispersion, 441
complex permittivity vs. frequency, 440–442
crossover frequency, 441, 443
log–log plot, 441, 443
sample preparation, 435
universal response of Jonscher, 441
glass transition temperature, 435
melting temperature, 435
ethylene methyl acrylate (EMA) copolymer, 435
ethylene–methyl acrylate–glycidyl methacrylate (E–MA–GMA) terpolymer, 48
ethylene–octene copolymer (EOC), 369
ethylene–propylene–diene terpolymer (EPDM), 161, 372
ethylene-vinyl acetate (EVA), 101, 138, 509, 510
2-ethyl hexyl acrylate (2HEA), 435
exfoliated graphene oxide, 410
expanded graphite (EG), 10, 151
Farrel Continuous Mixer (FCM), 145
fast Fourier transform (FFT), 201
filament-stretching experiments (FiSER), 100
filler networking mechanism, 358, 369
Flory Huggins theory, 286
flow properties, nanocomposites
elongational flow CaBER, 100
EVA, 101
filament stretching, 99
Hencky strains, 100
homogeneous stretching, 99
"house-of-cards" network structure, 102
LDPE composite systems, 101
Meissner's rheometer, 100
polypropylene/layered silicate nanocomposites, 103
rotary clamp technique, 100
rubber processing operations, 99
strain-hardening effect, 102
"stretching" techniques, 100
tactoids, 102
flow-induced structure, 97–99
nonlinear behavior, 92
steady-state flow curves
anisotropic particles, 97
Cox–Merz relation, 94
equilibrium shear modulus, 95
"filler network," 96
Herschel-Bulkley's equation, 95
hydrodynamic models, 93
Krieger's semi-empirical equation, 94
nanoparticle-polymer interaction, 96
Newtonian behavior, 94
shear-thinning behavior, 93
foam injection molding (FIM) process, 227
Fourier transform infrared (FTIR) technique degradation residues, 313
PVDF/GOs nanocomposites, 413–414
free radical graft polymerization (FRGP), 243
fullerenes, 10
functionalized carbon nanotube (FCNT), 250
functionalized graphene sheets (FGS), 151
furnace black, 433

Generalized Rouse Model, 105
generic rheology, polymer nanocomposites
alternative energetic (enthalpic) model, 70
CNTs, 71
flowproperties (see flowproperties, nanocomposites)
fumed silica, 69, 70
molten nanofilled polymers, 71
nanocomposites process
blending procedure, 119–121
new processing routes, 124
usual processing methods, 121–123
nanocomposites rheology
constitutive equations, 103
dynamic rheology (see dynamic rheology)
elongational rheology (see elongational rheology)
Payne effect (see Payne effect)
steady-state viscosity, 104–105
network elasticity, 70
organoclay-based nanocomposites, 70
Payne effect, 69
platelet nanocomposites, 71
thixotropic phenomenon, 69
viscoelasticity (see viscoelasticity, nanocomposites)
Girifalco–Good equation, 511, 512
Gluconacetobacter xylinus, 456
“grafting from” approach, 39
graphene
building blocks, 406, 407
carbon atoms, 407
chemical reduction, 406
cost-effective production, 406
dimensionality, 407, 408
electrical conductivity, 407, 408
gas permeability, 407, 408
graphite oxide (see graphene oxide nanosheets (GOn))
high specific surface, 407
incorporation into polymer matrix, 406–407
melt mixing, 407, 409, 410
PA6/ABS, electrical properties, 423–425
PEN and polycarbonate, 409
percolation threshold
elastic modulus, 410
small-amplitude oscillatory flow tests, 406
as reinforcement, advantages, 410
SEM and TEM, 409
in situ polymerization, 407, 408
solution blending techniques, 408–409, 411–412
solvent mixing, 407
tensile strength, 407, 408
thermal conductivity, 407, 408
thermal reduction, 406, 409, 410
twin-screw microextruder, 407, 409–411
viscoelastic behavior, 406, 410, 421
X-ray diffraction, 410
Young’s modulus, 407, 408
graphene oxide nanosheets (GOn)
cost-effective production, 406
exfoliation/chemical reduction, 410
HDPE
tensile strength, 419, 420
thermal decomposition, 415–416
Young’s modulus, 418–420
in situ chemical reduction, 408
polypropylene
complex viscosity, 422, 423
crystallization and melting properties, 416–418
tensile strength, 419, 420
thermal degradation, 416
Young’s modulus, 418–420
dependent viscosity, 408
PVA and chitosan, 408
PVDF
crystalline structure, 412
FTIR analysis, 413–414
piezoelectric and pyroelectric behavior, 412
tensile strength, 419, 420
thermal stability, 415–416
XRD patterns, 412–413
Young’s modulus, 418–420
graphite intercalation compound (GIC), 10, 151
graphite nanoplatelets (GNPs), 10, 151
graphite oxide (GO), 151
Guth–Smallwood equation, 80
Halloysite nanotubes (HNTs), 7
Halpin–Tsai model, 261
HDPE see high-density polyethylene (HDPE)
head-to-head polypropylene (hhPP) blend, 494
Herschel–Bulkley’s equation, 95, 96, 106
heteropolyacids (HPAs), 349
“hierarchical filler structures,” 265
high-density polyethylene (HDPE), 41, 122, 162
tensile strength, 419, 420
thermal decomposition, 415–416
Young’s modulus, 418–420
immiscible polymer blends
co-continuous morphology
 image analysis, 498
 PEO/PVED-HFP blend, 499
 PMMA/SMA blend, 499
 POE/PS blend, storage modulus of, 497, 498
 selective extraction, 498
 Veenstra model, 497
droplet-matrix morphology
 Bousmina model, 497
 collide and coalescence, 501
 critical droplet size vs. shear rate, 502, 503
direct-fitting method, 497
 Maxwell-type expression, 496
 Palierne model, 497
 PDMS/PIB blend, 496–497
 PP/POE blend, 496, 497
 relaxation spectrum method, 497
 shear flow, 499–500
 thread break process, 500
transient behaviors, 501–502
nanoparticles, selective localization
 compatibilization mechanism, 522–523
 contact angle measurement, 512
 Girifalco—Good equation, 511, 512
 HDPE/PEO blend, 520
 low and high aspect ratio, 518, 519
 Owens—Wendt equation, 511, 512
 PA6/ABS/nanosilica system, 520, 522
 PC/SAN/CNT system, 516
 PC/SAN/graphene system, 516
 PC/SAN/MWCNT system, migration mechanism, 518
 PE/PA/clay ternary composites, 517
 PET/P/P/TiO$_2$, 514
 PLA/PCL/MWCNT, 517
 PMMA/PP/CB ternary nanocomposites, 517
 polymer–nanoparticle interaction, 510–511
 polymer–polymer interaction, 510, 511
 PP/EOC blends, 520, 522
 PP/EVA/silica blends, 509, 510
 PP/PS/CB blends, 515–516
 PP/PS/MWCNT, 519–521
 PS/PLA/silica ternary nanocomposites, 522
 SAN/PPE/MWCNT, 512–514
 wetting coefficient, 511–513
 Young’s equation, 512
impedance spectroscopy, 436
inorganic nanomaterials
 amorphous polymers, 356
 dispersed nanoparticles and polymer chains, 357
 dispersion quality, 358
molecular structure and polymers dynamics, 359
multifunctional materials, 357
polymer metal oxide nanocomposites
 alumina nanoparticles, 366–368
 calcium carbonate, 377–378
 ferrite nanoparticles, 376–377
 silica, 368–372
 TiO$_2$ nanoparticles, 372–376
 zinc oxide, 376
processability, 358
and quantum dots (see quantum dots)
semicrystalline polymers, 356
in situ polymerization
AAPCL, MWCNTs
 complex viscosity, 556–560
 crystallization, 558
 isothermal kinetics, 556
 MWCNT-CL-Na ionic complex, 561, 563
 PA6, measured vs. simulated molar masses, 560–562
 pristine MWCNT, 560, 561
 viscosity behavior, change in, 558
CNTs
 AFM characterization, 244
 AIBN initiator, 243
 anionic polymerization, 244
 crystalline polymers, 247
 epoxy nanocomposites, 248
 ethylene monomer, 247
 “grafting to” and “grafting from” approach, 242
 hairy nano-objects, 246
 MWCNTs, 243, 246
 NMP, 246–247
 PMMA, 243
 polymer macromolecules, 242
 PTT matrix, 248
 SI-ATRP, 245, 246
 SWNT—polyimide nanocomposite films, 248
 TMAFM, 246
 Couette-type rheoreactor, 554–556
 “grafting from” technique, 548
 graphene, 407, 408
Laponite
 heterogeneous polymerization, 394–399
 homogeneous polymerization, 392–394
 nanocomposites preparation, 37–39
intermittent flow reversal (IFR), 91
intermittent forward flows (IFF), 91
interpenetrating polymer network (IPN), 15
inverse gas chromatography (IGC), 512
Ionic polyelectrolytes, 392
IPN see interpenetrating polymer network (IPN)
isomorphous substitution, 31
isotactic polymer, 15
isotactic polypropylene (iPP), 359
Kirkwood–Keating model, 576
laminar convective mixing, 136
lamp black, 433
LAOS see large-amplitude oscillatory shear (LAOS)
Laponite
exfoliated nanocomposites, 388
flow birefringence, 388
in situ polymerization
 heterogeneous polymerization, 394–399
 homogeneous polymerization, 392–394
melt blending, 389–390
rheology
 linear viscoelastic properties, 384–387
 nonlinear viscoelastic properties, 387–388
 small-angle neutron scattering, 388
 solution blending method, 390–392
 synthetic trioctahedral hectorite clay, 383
 large-amplitude oscillatory shear (LAOS), 210
 layered double hydroxides (LDHs), 7
 layered silicate clays, 31
 Leonov model, 115
linear low density polyethylene (LLDPE), 72, 536–537
linear viscoelastic properties
 Laponite/polymer nanocomposites
 oscillatory shear rheology, 387
 polymeric matrix, 384
 reactive clay modifier/polymer modifier, 385
 TEM, 386
 viscoelastic behaviors, 385
nanostructure and rheological properties
 Brownian motion, 209, 210
 clay platelets, 206
 intercalated nanocomposites, 210
 organoclay network, 209
 “organoclay network” structure, 206
 PCNs, 205
 PLACNs, 208
 rheological measurements, 205
 in situ polymerization technique, 205
liquid paraffin (LP), 505–506, 531, 532
Lissajous phase plots, 388
lower critical solution temperature (LCST), 502, 506
mechanical spectroscopy, percolation threshold
 Couette and parallel plate geometries, 570–571
 graphic/visual, 564, 565
MWCNT/polystyrene composite, 572–574
 oscillating and relaxation measurements, 564
 power-law model, 564, 565
 rheological percolation threshold
 complex viscosity, 565, 566
 elastic modulus, 566–568, 570, 571
 loss modulus, 567, 569, 570
 relaxation modulus, evolution of, 569, 570
 tan δ, 567, 568, 572
melt blending, polymer/CNT nanocomposites
 ABS nanocomposites, 253
 bulk samples, 250
 CVD, 253
 fiber production techniques, 251
 industrial applications, 249
 injection molding technique, 251
 shear mixing, 250
 thermoplastic polymer, 249
melt compounding
 alkyl-quinolinium, 49
 Buss Kneader, 51
 clay platelets, 44
 Cloisite 25A, 48
 CNT thermoplastics, 51
 commercial organoclay, 47
 counter-rotating pattern, 42
 dispersion process, 50
 E–MA–GMA, 48
 extrusion and injection molding, 52
 extrusion process, 42
 fiber-aligning techniques, 52
 functionalized polymer, 49
 HDPE/MWNT composite films, 53
 hydrogenated tallows, 49
 intercalated clay, 46
 MiniMAX molder, 52
 nonpolar polymer matrices, 42
 nylon-6 with octadecylammonium-MMT nanocomposites, 44
 OMLS-based nanocomposites, 43
 OMMT, 50
 organoclay/maleic anhydride-modified PP, 49
 PA6/CNT Composites, 53
 PET nanocomposites, 47
 PLSNs, 42
 polyamide-6, 44
 pristine and modified clay, 46
 PVDF, 52
 SWNT alignment, 53
 TEM, 47
 tetrahydrofuran, 54
 thermoplastic polymer nanocomposites, 42
 vinylbenzyl-ammonium surfactants, 49
 WAXD pattern, 43
melt intercalation technique, 43, 44
metallocene high-density polyethylene (mHDPE) blend, 491–492
metallocene linear low-density polyethylene (mLLDPE), 491–492
methacrylic acid (MA), 399
methyl methacrylate (MMA), 38
microfibrillated cellulose (MFC), 456, 457, 471
micromechanical cleavage, 10
miscible blends
thermorheological complexity, 493–495
zero shear viscosity
double reptation model, 493
dynamic asymmetry, 493
mLLDPE/LDPE blend, 492
mLLDPE/mHDPE blend, 491–492
positive and negative deviation, 492–493
self-concentration, 493
SMI/SAN blend, 492
molecular mechanics simulations, 35
montmorillonite (MMT), 7, 31, 188, 307, 405
Mooney equation, 367
Mott temperature, 439
MuCell® injection molding, 227–230
Mullins effect, 19
multi-walled carbon nanotubes (MWCNTs), 33, 237
AAPCL
complex viscosity, 556–560
crystallization, 558
isothermal kinetics, 556
MWCNT-CL-Na ionic complex, 561, 563
PA6, measured vs. simulated molar masses, 560–562
pristine MWCNT, 560, 561
viscosity behavior, change in, 558
PLA/PCL blends, 517
polystyrene composite, electrical conductivity of, 572, 573
PP/PS blends, 519–521
rheological percolation threshold
complex viscosity, 565, 566
elastic modulus, 566–568, 570, 571
vs. electrical percolation thresholds, 574–577
loss modulus, 567, 569, 570
relaxation modulus, evolution of, 569, 570
tan δ, 567, 568, 572
SAN/PPE blends, 512–514
nanocarbon fibers, 5
nanocellulose
acid hydrolysis methods, 454
applications, 457, 478, 481–482
aqueous solution casting, 456–457
bacterial cellulose, 456, 460–462
biological sources, 456
cellulose nanocrystals, 457–459, 464–465
cellulose nanofibrils, 456, 457, 459, 466–470
chemical modification processes, 456
classification, 456
composites preparation processes, 454–455
definition, 455
microfibrillated cellulose, 456, 457, 471
nanowhiskers, 456, 463
nematic liquid-crystalline phase, 454
noncovalent surface modification of, 454
properties, 455–456
nanochitin
applications, 481
aqueous counter-collision method, 455
nanowhiskers, 459, 472, 476
natural sources, 455
phthaloylation, 472
structure–property correlations, 454
whiskers, 455, 472–476
nanoscale fillers, 453
nanostarch, 482
acid hydrolysis/precipitation, 477
applications, 481
eulsion cross-linking, 477
gelatinization, 477
microfluidization, 477
polymer nanocomposites, 479–480
spray drying and vacuum freeze-drying, 477
steady shear viscosity, 478
storage/loss modulus, 478
thermal processing properties, 477
thermoplastic, 454, 477
water-in-ionic liquid microemulsion system, 477
natural flake graphite (NFG), 10
natural polymers, 13
Navier–Stokes equations, 155
negative temperature coefficient in resistivity (NTCR), 445
nitroxide-mediated polymerization (NMP), 246–247
nylon-6-based nanocomposites (N6CNs), 210, 218
organically modified layered nanofillers (OMLFs), 189
intercalant structure and interlayer opening, correlation of, 193–195
molecular dimensions and interlayer structure, 190–193
nanocomposite structure
atomic scale structure, 198
intercalated MMT layers, 195
molecular modeling, 197
PLA-based nanocomposites, 196
Scherrer equation, 195
solid-state shear processing, 198
TEM, 195
three-component model, 199
nanofillers, 190
organic/inorganic nanocomposites
characterization techniques, 58–60
co-vulcanization, 54
electrospinning, 54
ex situ and in situ process, 30
interfacial polymer, 29
latex fabrication method, 54
melt blending polymers (see melt compounding)
nanofillers
clay, 31–32
CNTs, 33–36
organically modified clay, 32–33
polymer matrices, 36–37
in situ polymerization technique, 37–39
sol–gel method, 54
solid-state intercalation, 54
solution blending, 39–42
supercritical CO$_2$ assisted compounding
batch processing, 58
CNT/polymer composites, 58
exfoliated clays, 57
generic temperature–pressure phase diagram, 55
melt intercalation, 56
phase-separated morphology, 57
SCFs, 55
semicontinuous process, 57
sequential mixing, 57
synthetic strategies, 30
organic montmorillonite clay (OMMT), 41, 359
organoclays, 7
Owens–Wendt equation, 511, 512
Palerine model, 497
partially miscible polymer blends
phase separation temperature
binodal temperature, 507
free energy based model, 525
liquid–liquid phase separation, 503
nanoparticles, agglomeration and self-assembly, 529–531
optical/light scattering methods, 526
PMMA/SAN blends, 503–505, 524–527
PMMA/SAN/SiO$_2$–OH blends, 526, 527, 529
PMMA/SAN/SiO$_2$–PS blends, 526, 527, 529
PMMA/SMA blends, 506
PS/PVME blends, 506, 524–529
spinodal temperature, concentration fluctuation, 507–509
UHMWPE/LP blend, 505–506, 531, 532
viscoelasticity, 531–535
partially mobile interface (PMI) model, 501
Partial solution mixing (PSM), 241–242
passive interfaces, 139
Payne effect, 19
filler network breakage
Huber–Vilgis model, 114–115
Kraus model, 114
Majeste–Carrot model, 115–116
filler polymer interaction
Long–Sotta model, 117–119
Maier–Goritz model, 116–117
viscoelasticity, nanocomposites
dissipated energy, 87
filled elastomers, 87
filler-filler interactions, 88
glassy layers, 88
limit of linearity, 89–90
thixotropic behavior, 89
thixotropy and aging, 90–92
Peng–Robinson equation, 311
percolation threshold
carbon black composites, 433, 434
Couette/parallel plate rheological measurements, 563–564
differential scanning calorimetry, 563
electrical percolation threshold, 572, 573
graphene
elastic modulus, 410
small-amplitude oscillatory flow tests, 406
mechanical spectroscopy
Couette and parallel plate geometries, 570–571
graphic/visual, 564, 565
MWCNT/polystyrene composite, 572–574
oscillating and relaxation measurements, 564
power-law model, 564, 565
rheological percolation threshold, 564–572
viscoelasticity
carbon black-filled SBR, 76
chemical gelation, 75
lamellar organoclays, 77
laponite particles, 76
nanofiller factors, 77
polybutadiene/clay nanocomposite systems, 78
sol–gel transition, 75
perfluorosulfonic acid (PFSA), 342
phase separation
critical fluctuation phenomenon, 284
demixing temperature, 284–286
phase separation (Continued)
experimental methods
characterization, 281
materials and sample preparation, 280
interacting polymer blend, 283
isochronal temperature ramp measurements, 283
mean-field approximation method, 281
morphology evolution, MWNTs
diffusion and viscoelastic effects, 290
intermediate network, 290
off-critical compositions, 287
POM images, 289
PVME molecules, 286
selective localization, 290, 291
slower component-rich phase, 289
thermodynamic demixing temperature, 289
Ornstein–Zernike forms, 284
POM, 280
random-phase approach, 281
terminal regime, 282
viscoelastic response, 280
Pickering emulsion stabilization, 481
PNCs see polymer nanocomposites (PNCs)
polarized optical microscopy (POM), 201, 280
Poly(2,6-dimethyl-1,4-phenylene oxide) (PDPO), 307
poly(ethylene naphthalate) (PEN), 409
copolymer (PVE) blend, 494, 495
copoly(vinylidene fluorite-hexafluropropylene) (PVDF-HFP) blend, 499
copolycaprolactone (PCL), 336, 517
copolyester (PC) matrix, 40, 409
copolydimethylsiloxane (PDMS), 76, 113, 255, 313, 496–497
copolymer blends, 492, 494
partially miscible blends, 503–505, 524–527
SMA blend, 499, 506
poly(p-phenylene sulfide) (PPS), 200
poly(trimethyleneterephthalate) (PTT), 248
poly(vinyl alcohol) (PVA), 33, 239, 337, 408, 409
poly(vinyl methyl ether) (PVME), 280
copoly(vinylidene fluoride) (PVDF), 52
copolyacrylonitrile (PAN), 246, 334, 337
copolyacrylonitrile-clay nanocomposites, 431
copoly(cyclohexyl methacrylate) (PCHMA) blend, 494
copoly(ethylene-α-octene) (POE) blend, 496, 497
copoly(phenylene oxide) (PPO) blend, 495
poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) blend, 499
copolyester (PC) matrix, 40, 409
copolydimethylsiloxane (PDMS), 76, 113, 255, 313, 496–497
polydispersity (PDI), 159
copolyester (PE), 39, 337
copolyester (PET), 38
polymeric oligomeric silsesquioxane (POSS), 3
crystalline domains, 294
epoxy-based nanocomposites, 310–311
hydrolytic condensation, 296
methacrylate-based nanocomposites, 311
molecular architecture of, 296
organic–inorganic (O–I) nanohybrid materials, 293
polyamide
anionic suspension polymerization,
quasi-isothermal conditions, 308–309
hydrolytic polymerization, 308
isothermal anionic polymerization, 308
physical melt blending, 306–308
quasi-adiabatic anionic polymerization, 308
solution mixing, 308
polymer chains, 295
polymer matrices and POSS particles, 297–298
polyolefins, 295
barrier properties, 301
dicumyl peroxide, 303
HDPE/octamethyl POSS, 302
injection and compression molding, 300, 301
internal mixer, 299
large-volume and high-pressure processing method, 301
LLDPE, 302
melt crystallization behavior, 304
physical melt blending, 303
polypropylene, 299
PP-g-MA, 305
reactive blending, 303
SEM, 304
single-screw extruder, 299
spherulites, 304
zone temperatures, extruder, 300
polyoxymethylene nanocomposites, 312
polyurethanes, 309–310
rheological behavior
ethylene–propylene copolymer, 315
filled copolymer blend, 317
open silsesquioxane cage, 318
polyphenylsulfone, 316
relaxation tests, 314
rotational tests, 314
rubber nanocomposites, 313
single-phase polymer networks, 294
styrene-based nanocomposites, 312
thermo-oxidative stability, 295
thermoplastic polymer nanocomposites, 293
thermoset nanocomposites, 293
“vertex group,” 296
polyisobutylene (PIB), 496–497
polyisoprene (PI), 495
polyactic acid (PLA), 177
polymer and composite nanofibers
biomimetic nanostructures, 330
electrospinning (see electrospinning)
microfluidics, 330
micro rheology, 330
solution viscosity, 329
polymer blends
compatibilization, 509
elongational flow mixer
capillary number, Ca, 138–142
compatibilization, 137
compatibilizer filler/polymer effect, 170–172
defragmentation process, 162
EPDM, 161
EVA, 138
FCM, 145
“folding” process, 142
immiscibility, 137
interfacial instability, 163
intermeshing-type devices, 144
liquid-liquid (viscoelastic) systems, 136
melt processing of, 138
mixing/processing equipment, 142
Palierne model, 145, 146
performance comparison, 168–170
“pushing/squeezed” mechanism, 161
Rayleigh’s instabilities, 162
rheology/morphology relationships, 172–173
SSE, 143
steady-state morphology, 162
transitional phenomenon, 160
TSE, 143, 144
van der Waals forces/interfacial tension, 143
viscosity ratio, 165–168
viscous heating, 170
immiscible blends (see immiscible polymer blends)
miscible blends
thermomechanical complexity, 493–495
zero shear viscosity, 491–493
partially miscible blends (see partially miscible polymer blends)
thermodynamically immiscible, 509
viscoelasticity
coalescence suppression, 537–539
LLDPE/EMA/CB blends, storage modulus of, 536–537
particle bridging, 539–540
polymer/layered silicate nanocomposites (PLSNCs)
“clay network” structure, 189
exfoliation, 188
micro-/macrocomposites, 187
nanocomposite foams
MuCell® injection molding, 227–230
PLA-based nanocomposite foams, 224–227
scorched CO$_2$, 222–224
nanostructure and rheological properties
flocculation control and modulus enhancement, 202–204
linear viscoelastic properties (see linear viscoelastic properties)
network formation process, 215–218
non-linear shear response, 213–214
relaxation rate and crystallization, 210–213
silicate layers alignment, networks, 212–218
soft colloids, 214–215
nanostructure development
intercalation and OMLFs (see organically modified layered nanofillers (OMLFs))
melt intercalation, 189–190
OMLFs, 199–202
stacked layered nanofillers, delamination of, 188
polymer nanocomposites (PNCs)
applications, 431
beneficial features, 2
challenges, 17–18
CNTs, 16
Couette analogy/mixer-type rheology, 548–555
electrical conductivity, 431, 432
graphene (see graphene)
HNTs, 16
interfacial matrix material, 2
macroscopic rheological properties, 18–19
nanoscale fillers
metal oxides, 11–12
one-dimensional nanofiller, 5–7
three-dimensional nanofiller, 10–11
two-dimensional nanofiller, 7–10
zero-dimensional nanofiller, 3–4
organic and inorganic nanofiller, 16
polymeric matrices
industrial applications, 13
molecular forces, 14–15
natural and synthetic polymers, 13–14
polymer nanocomposites (PNCs) (Continued)
 polymerization reaction, 15
 steric structure, 15–16
 structure, 14
polymer matrices, dispersion in, 547
POSS nanocomposites (see polyhedral oligomeric silsesquioxane (POSS))
Polymer Reference Interaction Site Model (PRISM), 126
poly(methyl methacrylate) (PMMA), 14, 311
poly(3,4-ethylenedioxythiophene) (PEDOT) nanofiber, 343
Polyoxymethylene (POM), 312
poly(hydroxy amino ether) (PHAE) polymer, 239
polypropylene (PP)
 crystallinity, 433
 EVA blend, 509, 510
 graphene oxide nanosheets
 complex viscosity, 422, 423
 crystallization and melting properties, 416–418
 tensile strength, 419, 420
 thermal degradation, 416
 Young’s modulus, 418–420
 percolation concentration, 433
 POE blend, 496, 497
polystyrene (PS)
 applications, 435
 glass transition temperature, 435
 graphene oxide, 408
 melting point, 435
 PCHMA blend, 494
 POE blend, storage modulus of, 497, 498
 PPO blend, 495
 PVME blend, 494, 495
 sample preparation, 435
polytetrafluoroethylene (PTFE), 14
polyvinyl chloride (PVC), 14
polyvinylidene fluoride (PVDF), 337
 graphene oxide nanosheets
 crystalline structure, 412
 FTIR analysis, 413–414
 piezoelectric and pyroelectric behavior, 412
 tensile strength, 419, 420
 thermal stability, 415–416
 XRD patterns, 412–413
 Young’s modulus, 418–419
MWNT dispersion, 52
polyvinylpyrrolidone (PVP), 337
positive temperature coefficient in resistivity (PTCR), 431
DC resistivity vs. temperature, 445, 446
DSC thermograms, 444–445
 glass transition temperature, tangents, 445, 446
 resistivity vs. temperature, 446–447
 tunneling, 445–446
power-law model, 564, 565
PRISM see Polymer Reference Interaction Site Model (PRISM)
PTCR see positive temperature coefficient in resistivity (PTCR)
PVA see poly(vinyl alcohol) (PVA)
quartz crystal microbalance with dissipation (QCM-D), 455
Rabinowitsch equation, 157
Raman spectroscopy, 35, 59, 60
reconstruction method, 8
reduced GO (R-GO), 151
Reynold’s number, 138
Rittinger’s law, 202
Rodlike nanoparticles, 5
Roscope equation, 367, 377
scanning electron microscopy (SEM), 58, 83, 159, 223, 239, 240, 242, 253, 409, 498
scanning probe microscopy (SPM), 35, 58
scanning tunneling microscopy (STM), 58
self-concentration model, 493
self-consistent field theory (SCFT), 126
semiconductor nanocrystals, 4
semidilute regime
 elastic nanotube network, 257
epoxy/MWCNT suspension, 257
frequency sweep method, 257
linear viscoelasticity, 260–262
mass fractal network, 259
Newtonian behavior, 255
nonlinear viscoelasticity
 elongational flow properties, 269
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>steady shear properties</td>
<td>264-268</td>
</tr>
<tr>
<td>strain-dependent nonlinear behavior</td>
<td>262-264</td>
</tr>
<tr>
<td>shear-induced orientation</td>
<td></td>
</tr>
<tr>
<td>MWCNT core–shell nanostructures</td>
<td>270</td>
</tr>
<tr>
<td>polymer/CNT composites</td>
<td>269</td>
</tr>
<tr>
<td>rheo-optical measurements</td>
<td>272</td>
</tr>
<tr>
<td>shape-distortion instability</td>
<td>273</td>
</tr>
<tr>
<td>vorticity alignment</td>
<td>273</td>
</tr>
<tr>
<td>ultrasmall and small-angle neutron scattering techniques</td>
<td>259</td>
</tr>
<tr>
<td>semisynthetic polymers</td>
<td>13</td>
</tr>
<tr>
<td>sepiolite-based epoxy networks</td>
<td>120</td>
</tr>
<tr>
<td>silicomolybdic acid (SiMoA)</td>
<td>349</td>
</tr>
<tr>
<td>silicotungstic acid (SiWA)</td>
<td>349</td>
</tr>
<tr>
<td>single-screw extruder (SSE)</td>
<td>135</td>
</tr>
<tr>
<td>single-walled carbon nanotubes (SWCNTs)</td>
<td>33, 236</td>
</tr>
<tr>
<td>slim-fast mechanism (SFM)</td>
<td>518</td>
</tr>
<tr>
<td>small-amplitude oscillatory shear (SAOS)</td>
<td>210, 369</td>
</tr>
<tr>
<td>small-angle neutron scattering (SANS)</td>
<td>83, 215</td>
</tr>
<tr>
<td>small-angle X-ray scattering (SAXS)</td>
<td>58, 83, 218</td>
</tr>
<tr>
<td>Smectite clays</td>
<td>32</td>
</tr>
<tr>
<td>sodium dodecyl sulfate (SDS)</td>
<td>40, 240</td>
</tr>
<tr>
<td>sol–gel process</td>
<td>12</td>
</tr>
<tr>
<td>solid additives, dispersion of agglomerate rupture</td>
<td>149</td>
</tr>
<tr>
<td>casting/solution methods</td>
<td>151</td>
</tr>
<tr>
<td>clay exfoliation</td>
<td>150</td>
</tr>
<tr>
<td>delamination process</td>
<td>150</td>
</tr>
<tr>
<td>dumbbell approach</td>
<td>148</td>
</tr>
<tr>
<td>flow geometry</td>
<td>149</td>
</tr>
<tr>
<td>GNP, 151</td>
<td></td>
</tr>
<tr>
<td>polymer matrix</td>
<td>148</td>
</tr>
<tr>
<td>van der Waals’ forces</td>
<td>150</td>
</tr>
<tr>
<td>solid-state shear pulverization (SSSP)</td>
<td>200</td>
</tr>
<tr>
<td>sonication</td>
<td>239</td>
</tr>
<tr>
<td>specific surface area (SSA)</td>
<td>432</td>
</tr>
<tr>
<td>spinodal decomposition (SD)</td>
<td>528</td>
</tr>
<tr>
<td>spinodal temperature</td>
<td>507–509</td>
</tr>
<tr>
<td>starch</td>
<td>453</td>
</tr>
<tr>
<td>amylose and amylopectin, chemical structure</td>
<td>476</td>
</tr>
<tr>
<td>nanostarch</td>
<td></td>
</tr>
<tr>
<td>acid hydrolysis/precipitation</td>
<td>477</td>
</tr>
<tr>
<td>applications</td>
<td>481</td>
</tr>
<tr>
<td>emulsion cross-linking</td>
<td>477</td>
</tr>
<tr>
<td>gelatinization</td>
<td>477</td>
</tr>
<tr>
<td>microfluidization</td>
<td>477</td>
</tr>
<tr>
<td>polymer nanocomposites</td>
<td>479–480</td>
</tr>
<tr>
<td>spray drying and vacuum freeze-drying</td>
<td>477</td>
</tr>
<tr>
<td>steady shear viscosity</td>
<td>478</td>
</tr>
<tr>
<td>storage/loss modulus</td>
<td>478</td>
</tr>
<tr>
<td>thermal processing properties</td>
<td>477</td>
</tr>
<tr>
<td>thermoplastic</td>
<td>454, 477</td>
</tr>
<tr>
<td>water-in-ionic liquid microemulsion system</td>
<td>477</td>
</tr>
<tr>
<td>step-reaction (condensation) polymerization</td>
<td>15</td>
</tr>
<tr>
<td>stick-slip process</td>
<td>105</td>
</tr>
<tr>
<td>striation/affine deformation</td>
<td>139</td>
</tr>
<tr>
<td>styrene–butadiene–styrene (SBS)</td>
<td>367</td>
</tr>
<tr>
<td>styrene-co-acrylonitrile (SAN)</td>
<td>246</td>
</tr>
<tr>
<td>styrene–maleic anhydride (SMA) blend</td>
<td>499, 506</td>
</tr>
<tr>
<td>supercritical carbon dioxide (scCO₂)</td>
<td>311</td>
</tr>
<tr>
<td>supercritical fluids (SCFs)</td>
<td>55</td>
</tr>
<tr>
<td>surface initiated atom transfer radical polymerization (SI-ATRP)</td>
<td>244</td>
</tr>
<tr>
<td>synthetic clay</td>
<td>405</td>
</tr>
<tr>
<td>synthetic polymers</td>
<td>13</td>
</tr>
<tr>
<td>Tapping-mode atomic force microscopy (TMAFM)</td>
<td>246, 252</td>
</tr>
<tr>
<td>tetraethoxysilane (TEOS)</td>
<td>313</td>
</tr>
<tr>
<td>tetrahydrofuran (THF)</td>
<td>251</td>
</tr>
<tr>
<td>tetraysodium pyrophosphate</td>
<td>390</td>
</tr>
<tr>
<td>thermal black</td>
<td>433</td>
</tr>
<tr>
<td>thermally reduced GO (TrGO)</td>
<td>151</td>
</tr>
<tr>
<td>thermogravimetry analysis (TGA)</td>
<td>193</td>
</tr>
<tr>
<td>thermoplastic polyurethane (TPU)</td>
<td>309, 385, 392</td>
</tr>
<tr>
<td>thermoplastic starch</td>
<td>454, 477</td>
</tr>
<tr>
<td>Thermo Scientific Haake Minilab II</td>
<td>411</td>
</tr>
<tr>
<td>thixotropy</td>
<td>90–92</td>
</tr>
<tr>
<td>three-point bending method</td>
<td>35</td>
</tr>
<tr>
<td>time-temperature superposition (TTS)</td>
<td>80</td>
</tr>
<tr>
<td>miscible blends</td>
<td>493–495</td>
</tr>
<tr>
<td>partially miscible blends</td>
<td>503–505</td>
</tr>
<tr>
<td>Titania (TiO₂)</td>
<td>372–376</td>
</tr>
<tr>
<td>Toyota Central Research & Development Co. Inc. (TCRD)</td>
<td>188</td>
</tr>
<tr>
<td>trans–gauche–trans–gauche (TGTG) chain conformation</td>
<td>412</td>
</tr>
<tr>
<td>transmission electronic microscopy (TEM)</td>
<td>35, 76, 83, 159, 195, 239, 244</td>
</tr>
<tr>
<td>immiscible blends, co-continuous morphology</td>
<td>498</td>
</tr>
<tr>
<td>polyyurethane/graphene nanosheets</td>
<td>409</td>
</tr>
<tr>
<td>pristine MWCNT</td>
<td>560, 561</td>
</tr>
<tr>
<td>trans–trans (TT) conformation</td>
<td>412</td>
</tr>
<tr>
<td>trifluoroethanol (TFE)</td>
<td>308</td>
</tr>
<tr>
<td>twin-screw extruder (TSE)</td>
<td>135</td>
</tr>
<tr>
<td>ultrahigh molecular weight polyethylene (UHMWPE)</td>
<td>239, 505–506, 531, 532</td>
</tr>
<tr>
<td>ultrasmall-angle X-ray scattering (USAXS)</td>
<td>84</td>
</tr>
</tbody>
</table>
upper critical solution temperature (UCST), 502, 506

vacuum-assisted self-assembly (VASA) method, 458

van der Waals (VDW), 6, 10, 14, 31, 71, 72, 125, 254

vapor grown carbon fibers (VGCF), 251

variable range-hopping (VRH) theory, 439–441

Veenstra model, 497

vinylbenzyldodecyldimethylammonium chloride (VBDAC), 398

viscoelasticity, nanocomposites

dispersion via melt rheology

breakup/rebuilt mechanism, 86
Brønsted equation, 85
clays and graphene sheets, 83
Krieger–Dougherty equation, 85
linear rheology, 84
“morphological” approach, 83
PS-clay nanocomposites, 84
silanized silica nanoparticles, 86

equilibrium shear modulus

EVA/silica composite systems, 80
hydrophilic silica, 79
macroscopic deformation, 78
particle-particle and particle-polymer interactions, 81
power law dependency, 78
scaling concept, fractal dimension, 79
silica-silicone physical gel, 80
thermoplastic nanocomposites, 81

general trends

Brownian motion, 75
colloidal dispersion and traditional composites, 75
filler-matrix interactions, 74
liquid/solid transition, 74
LLDPE, 72

performance enhancement, 72
polymer-particle interactions, 72
Payne effect (see Payne effect)
percolation threshold

carbon black-filled SBR, 76
chemical gelation, 75
lamellar organoclays, 77
laponite particles, 76
nanofiller factors, 77
polybutadiene/clay nanocomposite systems, 78
sol-gel transition, 75
TTS principle, validity of, 81–83
viscoelastic phase separation (VPS), 526–528

Web of Science™, 187, 188
Weissenberg’s rod-climbing effect, 273
wide-angle X-ray diffraction (WAXD), 38, 190
Williams–Landel–Ferry (WLF) equation, 118, 206, 371

X-ray diffraction (XRD), 76, 83

graphene
dispersion, 410
PVDF/GOs nanocomposites, 412–413
PA-6/clay nanocomposites, 46

Young’s modulus, 6, 14, 34, 35, 46, 54, 305, 342, 407, 408, 512

zero shear viscosity

double reptation model, 493
dynamic asymmetry, 493
mLLDPE/LDPE blend, 492
mLLDPE/mHDPE blend, 491–492
positive and negative deviation, 492–493
self-concentration, 493
SMI/SAN blend, 492