CONTENTS

 Preface xxv
 List of Contributors xxvii

 1 INTRODUCTION 1
 Niklas Möller, Sven Ove Hansson, Jan-Erik Holmberg, and Carl Rollenhagen
 1.1 Competition, Overlap, and Conflicts 1
 1.2 A New Level in the Study of Safety Principles 2
 1.3 Metapriniciples of Safety 3
 1.4 Other Ways to Characterize Safety Principles 5
 1.5 Conflicts Between Safety Principles 7
 1.6 When Can Safety Principles Be Broken? 8
 1.7 Safety in Context 9
 References 10

 2 PREVIEW 11
 Niklas Möller, Sven Ove Hansson, Jan-Erik Holmberg, and Carl Rollenhagen
 2.1 Part I: Safety Reserves 12
 2.2 Part II: Information and Control 13
 2.3 Part III: Demonstrability 16
 2.4 Part IV: Optimization 17
 2.5 Part V: Organizational Principles and Practices 20
Part I Safety Reserves

3 RESILIENCE ENGINEERING AND THE FUTURE OF SAFETY MANAGEMENT

Erik Hollnagel

- **3.1 On the Origins of Resilience** 25
- **3.2 The Resilience Engineering Understanding of “Resilience”** 27
- **3.3 The Four Potentials for Resilience Performance** 29
- **3.4 Safety Management Systems** 31
- **3.5 Developing Definitions of Resilience** 33
- **3.6 Managing the Potentials for Resilient Performance** 34
 - 3.6.1 Organizations of the First Kind 35
 - 3.6.2 Organizations of the Second Kind 36
 - 3.6.3 Organizations of the Third Kind 36
 - 3.6.4 Organizations of the Fourth Kind 37
- **3.7 Resilience Management: LP-HI OR HP-LI?** 37

References 39

4 DEFENSE-IN-DEPTH

Jan-Erik Holmberg

- **4.1 Introduction** 42
- **4.2 Underlying Theory and Theoretical Assumptions** 43
 - 4.2.1 Definitions and Terminology 43
- **4.3 Redundancy, Diversity, and Separation Principles** 44
 - 4.3.1 Principle of Successive Barriers and Reducing Consequences 46
 - 4.3.2 Principle of Accident Prevention and Mitigation 47
 - 4.3.3 Classification of Barriers 49
 - 4.3.4 Safety Classification 50
 - 4.3.5 Overall Safety Goals and Risk Acceptance Criteria vs. Defense-in-Depth 51
- **4.4 Use and Implementation** 53
 - 4.4.1 Nuclear Power Plant Safety 53
 - 4.4.2 Chemical Industry 54
 - 4.4.3 Information Technology Security 55
 - 4.4.4 Railway Safety 56
 - 4.4.5 Automobile Safety 57
CONTENTS

4.5 Empirical Research on use and Efficiency 57
4.6 Weaknesses, Limitations, and Criticism 57
4.7 Relations to Other Safety Principles 59
References 60
Further Reading 61

5 SAFETY BARRIERS 63
Lars Harms-Ringdahl and Carl Rollenhagen
5.1 Introduction 63
5.1.1 Classical and Radical Definitions of Barriers 64
5.1.2 Examples 64
5.2 Origin and Theoretical Background 65
5.2.1 Energy and Sequence Models 65
5.2.2 Extended Models 66
5.3 Definitions and Terminology 67
5.3.1 Examples of Barrier Definitions 67
5.3.2 Barriers and Barrier Systems 68
5.3.3 Alternatives to the Barrier Concept 69
5.3.4 Safety Functions 70
5.3.5 Conclusion 71
5.4 Classification of Barriers 71
5.4.1 General Considerations 71
5.4.2 System Level Classification 72
5.4.3 Classification Related to Accident Sequence 72
5.4.4 Physical and Non-physical Barriers 72
5.4.5 Administrative and Human Barriers 73
5.4.6 Passive and Active Barriers 73
5.4.7 Combined Models 74
5.4.8 Purpose of Barriers 75
5.5 Methods for Analysis of Safety Barriers 75
5.5.1 Energy Analysis 76
5.5.2 Event Tree Analysis 76
5.5.3 Fault Tree Analysis 77
5.5.4 Safety Barrier Diagrams 77
5.5.5 Management Oversight and Risk Tree 78
CONTENTS

Part II Information and Control 115

7 EXPERIENCE FEEDBACK 117

Urban Kjellén

7.1 Introduction 117
 7.1.1 Example 117
7.2 Origin and History 118
7.3 Definitions 121
7.4 Underlying Theories and Assumptions 122
 7.4.1 Feedback Cycle for the Control of Anything 122
 7.4.2 Safety Information Systems 124
 7.4.3 The Diagnostic Process 125
 7.4.4 Knowledge Management 126
7.5 Use and Implementation 127
 7.5.1 Safety Practice in an Operational Setting 127
 7.5.2 Risk Assessment 131
 7.5.3 Transfer of Experience to New Construction Projects 132
 7.5.4 Transfer of Experience from the Users to Design 133
7.6 Empirical Research on Use and Efficiency 135
7.7 Relations to Other Safety Principles 137
 7.7.1 Safety Management 137
 7.7.2 Resilience Engineering 138
 7.7.3 Safety Indicators 138
 7.7.4 Safety Culture 138
References 138
 Further Reading 141

8 RISK AND SAFETY INDICATORS 142

Drew Rae

8.1 Introduction 142
8.2 Origin and History 143
8.3 Definitions and Terminology 145
8.4 Underlying Theory and Theoretical Assumptions 146
 8.4.1 Past, Present, and Future Safety 146
 8.4.2 Outcome Indicators 147
 8.4.3 Risk Models and Precursor Events 148
8.4.4 Status of Physical and Procedural Controls
8.4.5 Safe Behaviors
8.4.6 Amount and Quality of Safety Activity
8.4.7 Organizational Drivers and Attributes
8.4.8 Variability
8.5 Use and Implementation
 8.5.1 Metrics Collection
 8.5.2 Incentives and Accountability
 8.5.3 Benchmarking and Comparison
 8.5.4 Safety Management System Performance Monitoring
8.6 Empirical Research on Use and Efficacy
 8.6.1 Usage of Indicators
 8.6.2 Efficacy of Indicators
8.7 Weaknesses, Limitations, and Criticism
 8.7.1 Underreporting and Distortion
 8.7.2 The Regulator Paradox and Estimation of Rare Events
 8.7.3 Confusion Between Process Safety and Personal Safety Indicators
 8.7.4 Unintended Consequences of Indirect Measurement
8.8 Relations to Other Safety Principles
 8.8.1 Ensurance Principles
 8.8.2 Assessment and Assurance Principles
References

9 PRINCIPLES OF HUMAN FACTORS ENGINEERING
Leena Norros and Paula Savioja
9.1 Introduction
9.2 Principle 1: HFE is Design Thinking
 9.2.1 Description
 9.2.2 Theoretical Foundation
 9.2.3 Use and Implementation
 9.2.4 Empirical Research on Use and Efficiency
9.3 Principle 2: HFE Studies Human as a Manifold Entity
 9.3.1 Description
 9.3.2 Theoretical Foundations
 9.3.3 Use and Implementation
 9.3.4 Empirical Research on Use and Efficiency
CONTENTS

9.4 Principle 3: HFE Focuses on Technology in Use 177
 9.4.1 Description 177
 9.4.2 Theoretical Foundations 177
 9.4.3 Use and Implementation 180
 9.4.4 Empirical Research on Use and Efficiency 181

9.5 Principle 4: Safety is Achieved Through Continuous HFE 182
 9.5.1 Description 182
 9.5.2 Theoretical Foundation 182
 9.5.3 Use and Implementation 183
 9.5.4 Empirical Research on Use and Efficiency 185

9.6 Relation to Other Safety Principles 187

9.7 Limitations 188

9.8 Conclusions 189

References 190

Further Reading 195

10 SAFETY AUTOMATION 196

Björn Wahlström

10.1 Introduction 196
 10.1.1 Purpose of Safety Automation 197
 10.1.2 Functions of I&C Systems 199
 10.1.3 Allocation of Functions between Humans and Automation 200

10.2 Origin and History 201
 10.2.1 Roots of Safety Automation 201
 10.2.2 Systems Design 202
 10.2.3 Typical Design Projects 203
 10.2.4 Analog and Digital I&C 204

10.3 Definitions and Terminology 205
 10.3.1 System Life Cycles 205
 10.3.2 Process and Product 206
 10.3.3 Phases of Design 206
 10.3.4 Operations 210

10.4 Underlying Theories and Assumptions 211
 10.4.1 Systems of Systems 212
 10.4.2 Building Reliability with Unreliable Parts 213
CONTENTS

10.4.3 Reusability of Designs 213
10.4.4 Vendor Capability 213
10.4.5 Project Management 214
10.4.6 Regulatory Oversight 215

10.5 Use and Implementation 215
10.5.1 From Systems Design to I&C Design 215
10.5.2 Physical Realizations of I&C 216
10.5.3 Initial Considerations 216
10.5.4 I&C Design 217
10.5.5 Practices in Different Domains 220

10.6 Research on Use and Efficiency 220
10.6.1 Estimates of Project Cost and Duration 220
10.6.2 Support Systems for Design and Construction 221
10.6.3 Benefits of Using Safety Principles 221

10.7 Weaknesses, Limitations, and Criticism 222
10.7.1 What is Safe Enough? 222
10.7.2 Quality of Design 224
10.7.3 Field Programmable Gate Arrays 224
10.7.4 Cyber Security 224
10.7.5 Regulatory Acceptance 225

10.8 Relations to Other Safety Principles 225
10.8.1 Safety Reserves 226
10.8.2 Information and Control 226
10.8.3 Demonstrability 227
10.8.4 Optimization 227
10.8.5 Organizational Principles and Practices 228

10.9 Summary and Conclusions 228
References 229

11 RISK COMMUNICATION 235

Jan M. Gutteling

11.1 Introduction 235
11.1.1 Example 1 236
11.1.2 Risk Perception, Awareness, and Communication 236
11.1.3 This Chapter 238
CONTENTS

11.2 The Origin and History of Risk Communication as Academic Field 238
 11.2.1 Example 2 239
 11.2.2 Changing Notions about Communication 239
 11.2.3 Example 3 241
 11.2.4 Conclusion 241
11.3 Underlying Assumptions, Concepts and Empirical Data on Risk Communication Models 241
 11.3.1 Information versus Communication 241
 11.3.2 Risk Communication Aims 243
 11.3.3 Diagnostic Risk Communication Studies 244
 11.3.4 Social Amplification of Risk 245
 11.3.5 Trust in Risk Communication 246
 11.3.6 Socio-Cognitive Models 247
 11.3.7 Risk Information Seeking Models 247
 11.3.8 Risk Communication and Social Media 249
 11.3.9 Conclusion 250
11.4 Weaknesses, Limitations, and Criticism 250
11.5 Final Word 252
References 252
Further Reading 257

12 THE PRECAUTIONARY PRINCIPLE 258
Sven Ove Hansson
12.1 Introduction 258
12.2 History and Current Use 259
12.3 Definitions 263
12.4 Underlying Theory 267
12.5 Research on Use and Efficiency 271
12.6 Weaknesses, Limitations, and Criticism 271
 12.6.1 Is the Principle Asymmetric? 271
 12.6.2 Strawman Criticism 273
12.7 Relation to Expected Utility and Probabilistic Risk Assessment 273
12.8 Relations to Other Safety Principles 276
 12.8.1 Maximin 276
 12.8.2 A Reversed Burden of Proof 278
 12.8.3 Sound Science 278
CONTENTS

14.7 Demands on the Environment 322
 14.7.1 Organization 322
 14.7.2 Communication 324
14.8 Handling Complexity 327
 References 329

Part III Demonstrability 331

15 QUALITY PRINCIPLES AND THEIR APPLICATIONS TO SAFETY 333
 Bo Bergman
 15.1 Introduction 333
 15.2 Improvement Knowledge and its Application to Safety 338
 15.2.1 Understanding Variation 338
 15.2.2 Knowledge Theory 345
 15.2.3 Psychology 348
 15.2.4 System Thinking 348
 15.3 Health-Care Improvement and Patient Safety 349
 15.4 Weaknesses, Limitations, and Criticism 351
 15.5 Some Personal Experiences 352
 15.6 Relations to Other Safety Principles 353
 References 355
 Further Reading 360

16 SAFETY CASES 361
 Tim Kelly
 16.1 Introduction 361
 16.2 Origins and History 361
 16.2.1 Windscale 362
 16.2.2 Flixborough 362
 16.2.3 Piper Alpha 363
 16.2.4 Clapham 363
 16.2.5 The Introduction of Safety Cases—A Shift in Emphasis 364
 16.3 Definitions and Terminology 364
 16.3.1 Safety Cases vs. Safety Case Reports 366
 16.3.2 Other Terminology 367
CONTENTS

16.4 Underlying Theory
 16.4.1 Safety Case Argumentation 367
 16.4.2 Types of Safety Case Argument 369
 16.4.3 Safety Case Lifecycle 372
 16.4.4 Incremental Safety Case Development 373
 16.4.5 Safety Case Maintenance 374
 16.4.6 Safety Case Evaluation 375
 16.4.7 Safety Case Confidence 376
16.5 Empirical Research on Use and Efficiency 377
16.6 Weaknesses, Limitations, and Criticisms
 16.6.1 Other Criticisms 381
16.7 Relationship to Other Principles

References 383
Further Reading 385

17 INHERENTLY SAFE DESIGN
 Rajagopalan Srinivasan and Mohd Umair Iqbal
 17.1 Introduction 386
 17.2 Origin and History of the Principle 387
 17.3 Definitions and Terminology 388
 17.4 Use and Implementation
 17.4.1 Examples of Minimization 390
 17.4.2 Examples of Substitution 391
 17.4.3 Examples of Simplification 391
 17.4.4 Example of Moderation 391
 17.5 Empirical Research on Use and Efficiency 392
 17.6 Weaknesses, Limitation, and Criticism 393
 17.7 Relation to Other Principles

References 394

18 MAINTENANCE, MAINTAINABILITY, AND INSPECTABILITY
 Torbjörn Ylipää, Anders Skoogh, and Jon Bokrantz
 18.1 Introduction 397
 18.1.1 The Piper Alpha Disaster 398
 18.2 Origin and History 399
CONTENTS

18.3 Underlying Theory, Theoretical Assumptions, Definition, and Terminology 400
18.4 Use and Implementation 405
18.5 Empirical Research on Use and Efficiency 408
18.6 Weaknesses, Limitations, and Criticism 409
18.7 Relations to Other Safety Principles 410
References 410
Further Reading 413

Part IV Optimization 415

19 ON THE RISK-INFORMED REGULATION FOR THE SAFETY AGAINST EXTERNAL HAZARDS 417
Pieter van Gelder
19.1 Introduction 417
19.2 Risk-Regulation in Safety Against Environmental Risks 421
19.3 Dealing with Uncertainties in Risk-Informed Regulation 422
19.4 Limitations of the Current Risk Measures 424
19.5 Spatial Risk 426
19.6 Temporal Risk 429
19.7 Conclusions and Recommendations 431
Acknowledgment 432
References 432

20 QUANTITATIVE RISK ANALYSIS 434
Jan-Erik Holmberg
20.1 Introduction 434
20.2 Origin and History 435
20.3 Underlying Theory and Theoretical Assumptions 438
20.3.1 Risk 438
20.3.2 Probability 438
20.3.3 Uncertainty 439
20.3.4 Expected Value and Utility Principle 441
20.3.5 Risk Criteria 442
20.3.6 ALARP 442
20.3.7 Subsidiary Risk Criteria 443
20.3.8	Event Tree–Fault Tree Modeling	445
20.3.9	Bayesian Belief Network	448
20.3.10	Bow-Tie Method	449
20.3.11	Monte Carlo Simulation	449
20.4	Use and Implementation	449
20.4.1	National Risk Criteria	449
20.4.2	IEC 61508 and Safety Integrity Levels	450
20.4.3	Nuclear Power Plants	452
20.4.4	Oil and Gas Industry in Europe	453
20.4.5	Railway Safety in Europe	455
20.4.6	Other Industries	455
20.5	Empirical Research on Use and Efficiency	456
20.6	Weaknesses, Limitations, and Criticism	456
20.7	Relations to Other Safety Principles	458
References	458	
Further Reading	460	

QUALITATIVE RISK ANALYSIS

Risto Tiisanen

21.1	Introduction	463
21.2	Origin and History of the Principle	464
21.3	Definitions	465
21.4	Underlying Theory and Theoretical Assumptions	466
21.4.1	Brainstorming	467
21.4.2	Preliminary Hazard Analysis	468
21.4.3	Scenario Analysis	468
21.4.4	Operating Hazard Analysis	468
21.4.5	HAZOP Studies	469
21.4.6	Risk Matrixes	470
21.5	Use and Implementation	471
21.5.1	Systems Engineering Approach to Risk Assessment	472
21.5.2	System-Safety Engineering	473
21.5.3	Industrial Safety Engineering	476
21.5.4	Machinery-Safety Engineering	477
21.5.5	Functional Safety Engineering	478
21.6	Strengths, Weaknesses, Limitations and Criticism	480
CONTENTS

21.7 Experiences of Preliminary Hazard Identification Methods 482
21.8 Experiences of Hazop Studies 482
21.9 Experiences of Risk Estimation Methods 483
21.10 Summary of Strengths and Limitations 484
21.11 Experiences from Complex Machinery Applications 484
21.11.1 Change from Machines to Automated Machine Systems 484
21.11.2 Case Studies on Qualitative Methods 489
21.11.3 Case Study Results 490
21.12 Relations to Other Safety Principles 491
References 491

22 PRINCIPLES AND LIMITATIONS OF COST–BENEFIT ANALYSIS FOR SAFETY INVESTMENTS 493
Genserik Reniers and Luca Talarico
22.1 Introduction 493
22.2 Principles of Cost–Benefit Analysis 495
22.3 CBA Methodologies 497
22.3.1 CBA for Type I Accidents 499
22.3.2 CBA for Type II Safety Investments 504
22.3.3 Disproportion Factor 505
22.4 Conclusions 511
References 512

23 RAMS OPTIMIZATION PRINCIPLES 514
Yan-Fu Li and Enrico Zio
List of Acronyms 514
23.1 Introduction to Reliability, Availability, Maintainability, and Safety (RAMS) Optimization 515
23.2 Multi-Objective Optimization 516
23.2.1 Problem Formulation 517
23.2.2 Pareto Optimality 518
23.3 Solution Methods 519
23.3.1 Weighted-Sum Approach 519
23.3.2 ε-Constraint Approach 520
23.3.3 Goal Programming 521
23.3.4 Evolutionary Algorithms 521
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4 Performance Measures</td>
<td>523</td>
</tr>
<tr>
<td>23.5 Selection of Preferred Solutions</td>
<td>524</td>
</tr>
<tr>
<td>23.5.1 “Min–Max” Method</td>
<td>524</td>
</tr>
<tr>
<td>23.6 Guidelines for Implementation and Use</td>
<td>525</td>
</tr>
<tr>
<td>23.7 Numerical Case Study</td>
<td>527</td>
</tr>
<tr>
<td>23.8 Discussion</td>
<td>536</td>
</tr>
<tr>
<td>23.9 Relations to Other Principles</td>
<td>536</td>
</tr>
<tr>
<td>References</td>
<td>537</td>
</tr>
<tr>
<td>Further Reading</td>
<td>539</td>
</tr>
<tr>
<td>24 MAINTENANCE OPTIMIZATION AND ITS RELATION TO SAFETY</td>
<td>540</td>
</tr>
<tr>
<td>Roger Flage</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>540</td>
</tr>
<tr>
<td>24.2 Related Principles and Terms</td>
<td>541</td>
</tr>
<tr>
<td>24.2.1 Key Terms</td>
<td>541</td>
</tr>
<tr>
<td>24.2.2 Maintenance Optimization Models as Special Types of Cost–Benefit Analysis</td>
<td>542</td>
</tr>
<tr>
<td>24.2.3 Risk Assessment and Risk Management</td>
<td>543</td>
</tr>
<tr>
<td>24.2.4 The ALARP Principle and Risk Acceptance Criteria</td>
<td>545</td>
</tr>
<tr>
<td>24.3 Maintenance Optimization</td>
<td>547</td>
</tr>
<tr>
<td>24.3.1 Theory</td>
<td>547</td>
</tr>
<tr>
<td>24.3.2 Use and Implementation</td>
<td>550</td>
</tr>
<tr>
<td>24.4 Discussion and Conclusions</td>
<td>556</td>
</tr>
<tr>
<td>References</td>
<td>559</td>
</tr>
<tr>
<td>Further Reading</td>
<td>561</td>
</tr>
<tr>
<td>25 HUMAN RELIABILITY ANALYSIS</td>
<td>565</td>
</tr>
<tr>
<td>Luca Podofillini</td>
<td></td>
</tr>
<tr>
<td>25.1 Introduction With Examples</td>
<td>565</td>
</tr>
<tr>
<td>25.2 Origin and History of the Principle</td>
<td>569</td>
</tr>
<tr>
<td>25.3 Underlying Theory and Theoretical Assumptions</td>
<td>572</td>
</tr>
<tr>
<td>25.4 Use and Implementation</td>
<td>576</td>
</tr>
<tr>
<td>25.5 Empirical Research on Use and Efficiency</td>
<td>578</td>
</tr>
<tr>
<td>25.6 Weaknesses, Limitations, and Criticism</td>
<td>583</td>
</tr>
<tr>
<td>25.7 Relationship with Other Principles</td>
<td>585</td>
</tr>
<tr>
<td>References</td>
<td>586</td>
</tr>
</tbody>
</table>
CONTENTS

26 ALARA, BAT, AND THE SUBSTITUTION PRINCIPLE 593
Sven Ove Hansson

26.1 Introduction 593
26.2 Alara
 26.2.1 History and Current Use 594
 26.2.2 Definitions and Terminology 596
 26.2.3 Theory and Interpretation 596
 26.2.4 Effects of Applying the Principle 600
 26.2.5 Weaknesses and Criticism 601
26.3 Best Available Technology 601
 26.3.1 History and Current Use 601
 26.3.2 Definitions and Terminology 603
 26.3.3 Theory and Interpretation 603
 26.3.4 Effects of Applying the Principle 605
 26.3.5 Weaknesses and Criticism 605
26.4 The Substitution Principle 606
 26.4.1 History and Current Use 606
 26.4.2 Definitions and Terminology 609
 26.4.3 Theory and Interpretation 612
 26.4.4 Effects of Applying the Principle 613
 26.4.5 Weaknesses and Criticism 614
26.5 Comparative Discussion 615
 26.5.1 Comparisons Between the Three Principles 615
 26.5.2 Comparisons with Other Principles 616
Acknowledgment 618
References 618
Further Reading 624

Part V Organizational Principles and Practices 625

27 SAFETY MANAGEMENT PRINCIPLES 627
Gudela Grote

27.1 Introduction 627
27.2 Origin and History of the Principle 629
27.3 Definitions 629
27.4 Underlying Theory and Theoretical Assumptions 630
27.5 Use and Implementation 633
CONTENTS

27.6 Empirical Research on Use and Efficiency 634
 27.6.1 Contextual factors 635
 27.6.2 Examples for the effects of context on safety management 638
27.7 Weaknesses, Limitations, and Criticism 640
27.8 Relations to Other Safety Principles 642
 References 642
 Further Reading 646

28 SAFETY CULTURE 647
 Teemu Reiman and Carl Rollenhagen
 28.1 Introduction 647
 28.2 Origin and History 652
 28.2.1 The Chernobyl Accident 652
 28.2.2 Organizational Culture and Organizational Climate: The Broader Context 653
 28.2.3 Safety Climate 654
 28.2.4 Organizational Culture and Safety Culture 655
 28.3 Definitions and Terminology 656
 28.4 Underlying Theory and Theoretical Assumptions 658
 28.4.1 Some Common Features of Safety Culture Models 658
 28.4.2 Theoretical Frameworks 659
 28.5 Empirical Research 662
 28.6 Use and Implementation 663
 28.6.1 When and Where to Use the Concept? 663
 28.6.2 Safety Culture as an Evaluation Framework 664
 28.6.3 Developing Safety Culture 666
 28.7 Weaknesses and Critique 667
 28.8 Main Messages and What the Concept Tells About Safety 670
 References 671

29 PRINCIPLES OF BEHAVIOR-BASED SAFETY 677
 Steve Roberts and E. Scott Geller
 29.1 Introduction 677
 29.2 Origin and History of BBS 678
 29.3 Leadership 680
 29.4 Physical Environment/Conditions 683
 29.5 Systems 683
CONTENTS

29.6 Behaviors 689
29.7 Employee Involvement and Ownership 695
29.8 Person States 699
29.9 The Benefits of Behavior-Based Safety 701
29.10 Weaknesses, Limitations, and Criticisms 703
29.11 Relationship with Other Principles 705
References 707
Further Reading 710

30 PRINCIPLES OF EMERGENCY PLANS AND CRISIS MANAGEMENT 711
Ann Enander
30.1 Introduction 711
 30.1.1 Components in an Emergency Plan 712
 30.1.2 Emergency Planning as a Process 713
 30.1.3 Crisis Management in Theory and Practice 714
 30.1.4 Crisis Leadership 715
30.2 Origin and History 716
30.3 Definitions and Terminology 717
 30.3.1 Classifications and Typologies 719
30.4 Underlying Theory and Theoretical Assumptions 720
 30.4.1 The Emergency Response Cycle 720
30.5 Use and Implementation 721
30.6 Empirical Research on Use and Efficiency 722
30.7 Weaknesses, Limitations, and Criticism 723
 30.7.1 Myths and Misconceptions 724
 30.7.2 Success or Failure 725
30.8 Relations to Other Safety Principles 726
References 726
Further Reading 731

31 SAFETY STANDARDS: CHRONIC CHALLENGES AND EMERGING PRINCIPLES 732
Ibrahim Habli
31.1 Introduction 732
31.2 Definitions and Terminology 734
31.3 Organization of Safety Standards 734
 31.3.1 Safety Lifecycle Models 735

CONTENTS

31.4 Domain Specific Principles 736
 31.4.1 Software Safety Assurance Principles 737
 31.4.2 Automotive Functional Safety Principles 741
31.5 Development of Standards 742
31.6 Rationale in Standards 743
31.7 Chapter Summary 744
 References 744
 Further Reading 746

32 MANAGING THE UNEXPECTED 747
Jean-Christophe Le Coze
32.1 Introduction 747
32.2 Defining the Unexpected 750
 32.2.1 The Unexpected, What Are We Dealing With? 750
 Three Examples 750
 32.2.2 Were These Disasters Unexpected, Surprising? 751
 32.2.3 The Unexpected, a Highly Relative Category 752
32.3 Thirty Years of Research on the Unexpected 754
 32.3.1 Conceptualizing the Unexpected: Four Different Threads 754
 32.3.2 Charles Perrow and Normal Accident 756
 32.3.3 Barry Turner and Man-Made Disaster: A “Kuhnian” Thread 758
 32.3.4 Jens Rasmussen and Complexity: An Ashbyan Thread 760
 32.3.5 Four Threads, Four Sensitivities, But Not Exclusive: A Synthesis 764
32.4 Managing the Unexpected 766
 32.4.1 Building Favorable Power Configurations (vs. Marxian Thread) 767
 32.4.2 Confronting Our Fallible (Cultural) Constructs (vs. Kuhnian Thread) 769
 32.4.3 Keeping Sight of the Relation Between Parts and Whole (vs. Ashbyan Thread) 770
 32.4.4 Limitations and Opening 771
32.5 Relation to Other Principles: Further Reading 771
32.6 Conclusion 772
 References 772

Index 777