Contents

About the Editors xi
Notes on Contributors xiii
Preface xvii

Part 1 Modernisation of Precast Concrete Structures 1

1 **Historical and Chronological Development of Precast Concrete Structures**

Kim S. Elliott

1.1 The five periods of development and optimisation 3
1.2 Developing years and the standardisation period 26
1.3 Optimisation and the lightweight period 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule 38
1.3.3 Composite and continuous floor slabs 38
1.3.4 Composite and continuous internal beams 43
1.4 The thermal mass period 46
1.4.1 Background to fabric energy storage in precast framed and wall structures 46
1.4.2 Admittance and cooling capacity 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References 59

2 **Industrial Building Systems (IBS) Project Implementation**

Kim S. Elliott

2.1 Introduction 61
2.1.1 Definition of IBS 63
2.1.2 Advantages of IBS 64
2.1.3 Sustainability of IBS 67
2.1.4 Drawbacks of IBS 68
2.2 Routes to IBS procurement 69
2.2.1 Definitions 69
2.2.2 Preliminaries 70
2.2.3 Project design stages 71
Contents

2.2.4 Design and detailing practice .. 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer’s instructions to factory and site .. 87

2.3 Precast concrete IBS solution to seven-storey skeletal frame 89

2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs .. 102
2.4.4 Hydraulic extruder .. 102
2.4.5 Reinforced hollow core slabs .. 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs .. 106
2.4.7 Optimised automation .. 109
2.4.8 Table top wall panels .. 110
2.4.9 Production of precast concrete wall panels using vertical circulation system .. 115
2.4.10 Control of compaction of concrete .. 118
2.4.11 Automation of rebar bending and wire-welded cages 118

2.5 Minimum project sizes and component efficiency for IBS .. 120

2.6 Design implications in construction matters .. 120

2.7 Conclusions .. 122

References .. 124

3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction .. 125

Kim S. Elliott

3.1 Increasing off-site fabrication .. 125
3.2 Standardisation .. 133
3.3 Self-compacting concrete for precast components .. 137
3.4 Recycled precast concrete .. 142
3.5 Building services .. 144
3.6 Conclusions .. 147

References .. 147

4 Research and Development Towards the Optimisation of Precast Concrete Structures .. 149

Kim S. Elliott and Zuhairi Abd. Hamid

4.1 The research effort on precast concrete framed structures .. 149
4.1.1 Main themes of innovation, optimisation and implementation .. 149
4.1.2 Structural frame action and the role of connections .. 151
4.1.3 Advancement and optimisation of precast elements .. 156
4.1.4 Shear reduction of hcu on flexible supports .. 157
4.1.5 Continuity of bending moments at interior supports .. 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings .. 160

References .. 161
4.2 Precast frame connections
 4.2.1 Background to the recent improvements in frame behaviour 162
 4.2.2 Moment-rotation of beam to column connections 162
 4.2.3 Research and development of precast beam-to-column connections 167
 4.2.4 Column effective length factors in semi-rigid frames 170

4.3 Studies on structural integrity of precast frames and connections 170
 4.3.1 Derivation of catenary tie forces 170

References 173

Part 2 Mechanisation and Automation of the Production of Concrete Elements 177

5 Building Information Modelling (BIM) and Software for the Design and Detailing of Precast Structures 179
 Thomas Leopoldseder and Susanne Schachinger
 5.1 Building information modelling (BIM) 179
 5.1.1 Introduction 179
 5.1.2 History and ideas 180
 5.1.3 Types of BIM 183
 5.1.4 BIM around the world 185
 5.1.5 BIM and precast structures 187
 5.2 Technologies 188
 5.2.1 Industry foundation classes (IFC) 188
 5.2.2 IFC data file formats and data exchange technologies 192
 5.2.3 BIM model software 195
 5.3 BIM in precast construction 198
 5.3.1 Project pricing for precast structures based on 3D models 198
 5.3.2 Technical engineering 198
 5.3.3 Production data and status management 202
 5.3.4 Logistics, mounting, and quality management 206
 5.4 Summary 207
 References 207

6 Mechanisation and Automation in Concrete Production 210
 Robert Neubauer
 6.1 Development of industrialization and automation in the concrete prefabrication industry 210
 6.1.1 Stationary flexible forms, tables and formwork in a prefabrication plant 211
 6.1.2 Long-bed production 213
 6.1.3 Pallet circulation plant 217
 6.1.4 CAD-CAM: the path to automation 221
 6.2 CAD-CAM BIM from Industry 2.0 to 4.0 224
 6.2.1 Production of non-variable parts versus production in lot size one 224
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2 IBS – suitable prefabricated products for mechanization and automation</td>
<td>227</td>
</tr>
<tr>
<td>6.2.3 Just-in-time planning and production using ERP systems</td>
<td>234</td>
</tr>
<tr>
<td>6.2.4 MES systems for mechanization and automation</td>
<td>238</td>
</tr>
<tr>
<td>6.3 Automation methods</td>
<td>242</td>
</tr>
<tr>
<td>6.3.1 From simple to the highly sophisticated</td>
<td>243</td>
</tr>
<tr>
<td>6.3.2 Automation methods</td>
<td>243</td>
</tr>
<tr>
<td>6.4 Integrated and automated prefabricated production process</td>
<td>286</td>
</tr>
<tr>
<td>6.4.1 Structures</td>
<td>287</td>
</tr>
<tr>
<td>6.4.2 ERP, CAD, MES, PROD machines, HMI</td>
<td>289</td>
</tr>
<tr>
<td>6.4.3 HMI – integrating staff into the process</td>
<td>289</td>
</tr>
<tr>
<td>6.4.4 Smart factory, industry 4.0 – integration into BIM</td>
<td>291</td>
</tr>
<tr>
<td>6.4.5 QM included</td>
<td>293</td>
</tr>
<tr>
<td>6.5 Limits of automation</td>
<td>298</td>
</tr>
<tr>
<td>6.5.1 Labour cost versus automation</td>
<td>298</td>
</tr>
<tr>
<td>6.5.2 Costs, necessary skills and ROI</td>
<td>298</td>
</tr>
<tr>
<td>6.6 Summary and outlook</td>
<td>300</td>
</tr>
</tbody>
</table>

Part 3 Industrialisation of Concrete Structures

7 Lean Construction – Industrialisation of On-site Production Processes

Gerhard Girmscheid

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Work process planning (WPP)</td>
<td>304</td>
</tr>
<tr>
<td>7.1.1 Construction production planning process – introduction</td>
<td>304</td>
</tr>
<tr>
<td>7.1.2 Construction production process – principles and sequence</td>
<td>310</td>
</tr>
<tr>
<td>7.1.3 Systematic basic production process planning – steps</td>
<td>311</td>
</tr>
<tr>
<td>7.1.4 Continuous construction process management</td>
<td>313</td>
</tr>
<tr>
<td>7.2 Construction production process planning procedure</td>
<td>314</td>
</tr>
<tr>
<td>7.3 Work process planning (WPP) – work execution estimation</td>
<td>322</td>
</tr>
<tr>
<td>7.4 Work process planning (WPP) – planning the processes and construction methods</td>
<td>329</td>
</tr>
<tr>
<td>7.5 Planning the execution process</td>
<td>332</td>
</tr>
<tr>
<td>7.6 Procedure for selecting construction methods and processes</td>
<td>336</td>
</tr>
<tr>
<td>7.6.1 Objectives when comparing construction methods</td>
<td>336</td>
</tr>
<tr>
<td>7.6.2 Methodological approach to comparing construction methods</td>
<td>338</td>
</tr>
<tr>
<td>7.7 Conclusions to Chapter 7</td>
<td>343</td>
</tr>
<tr>
<td>References</td>
<td>344</td>
</tr>
</tbody>
</table>

8 Lean Construction – Industrialisation of On-site Production Processes

Gerhard Girmscheid

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction – top-down / bottom-up work planning</td>
<td>347</td>
</tr>
</tbody>
</table>
8.2 Scheduling and resource planning

- Site Logistics 352
 - Logistics planning 352
 - Transport logistics 354
 - Delivery, storage and turnaround logistics 355
 - Planning storage areas – storage space management 356
 - Disposal logistics 357

8.3 Site Logistics

- Logistics planning 352
- Transport logistics 354
- Delivery, storage and turnaround logistics 355
- Planning storage areas – storage space management 356
- Disposal logistics 357

8.4 Weekly work plans

- Lean construction – weekly work program 357
- Equipment and material call-up 384
- Organizing the construction workflow, construction methods, and health and safety 390

8.5 Construction site controlling process

- Performance specifications 391
- Controlling weekly work performance 393

8.6 CIP – the continuous improvement process

8.7 Conclusions

References 403

9 New Cooperative Business Model – Industrialization of Off-Site Production

Julia Selberherr

- Introduction 405
- Objectives of the new business model 406
- Modelling 408
 - Formal structuring 408
 - Contextual configuration of the outside view: development of the new service offer 409
 - Contextual configuration of the inside view: Realization of the value creation process 409
 - Overview 420
- Conclusion 420
- References 421

10 Retrospective View and Future Initiatives in Industrialised Building Systems (IBS) and Modernisation, Mechanisation and Industrialisation (MMI)

Zuhairi Abd. Hamid, Foo Chee Hung, and Ahmad Hazim Abdul Rahim

- Industrialisation of the construction industry 424
- Overview on global housing prefabrication 426
- Housing prefabrication in Malaysia – the industrialisation building system (IBS) 427
 - Chronology of IBS development in Malaysia 429
 - IBS roadmap 433
 - IBS adoption level in Malaysia 435
- Social acceptability of IBS in relation to housing 439
10.5 IBS in future – opportunity for wider IBS adoption 443
10.5.1 Greater Kuala Lumpur 444
10.5.2 Affordable housing 446
10.6 Conclusion 450
References 450

11 Affordable and Quality Housing Through Mechanization, Modernization and Mass Customisation 453

Zuhairi Abd. Hamid, Foo Chee Hung, and Gan Hock Beng

11.1 Introduction 453
11.2 Design for flexibility – insight from the vernacular architecture 457
11.3 Scope of flexibility in residential housing 459
11.4 Divergent Dwelling Design (D3) – proposed mass housing system for today and tomorrow 461
11.5 Design principles of D3 464
11.5.1 The design of the unit plan 465
11.5.2 Unit configurations design 466
11.5.3 Sustainable strategies design 467
11.5.4 Structure and construction design 468
11.6 Conclusion 472
References 473

Index 475