Index

Ablation, 308
Acceptable solution, 3
Acoustic performance, 302, 331
Active control, 12
Active systems, 9, 17
ADAPTIC, 370
Additive method, 316
Adhesives, 258, 296
Adiabatic flame temperature, 38
Advanced calculation methods, 340
Advanced finite element modelling, 356
Advanced hand calculation methods, 348
After-fire stability, 149
Allowable stress design, 117
Alternative design, 3
Anchorage failure, 200
Applied loads, 101
Approved fire resistance ratings, 103
ASTM E119 standard fire, 61, 96, 149
Auto-ignition, 39
Automatic sprinkler systems, 12, 30, 38
Axial restraint, 143, 220, 248

Bailey-BRE method, 350, 353
Batts, 309
Blast, 101
Bolted connections in steel, 188
Bond failures, 200
Boundary walls, 20
Bricks, 33
B-RISK, 48

Broadgate, 349
Buckling, 186, 245, 283
of timber studs, 322
Building codes, 13, 37
Burning period, 10, 50, 64
Burning rates, 42
Burnout, 20, 280

Calorific values, 36, 42
Cardington, 249, 310, 349
Car parking buildings, 69, 251
Cast-iron, 188
Catenary action, 356
Cavity insulation, 308
Ceiling vents, 66
Ceramic fibre, 309
C-FAST, 48, 60
Characteristic strength, 120, 265
Charring rate, 262, 273
corner rounding, 275
protected timber, 276
realistic fires, 279
Chemistry of gypsum, 306
CIB formula, 92
Cladding, 26
Coefficient of convective heat transfer, 346
Cold-rolled steel, 301
Column buckling, 132, 359
Combustible lining materials, 43
Combustion, 37
Component additive method, 295, 316
Composite columns, 243
Composite flooring, 235
Composite slab design methods
 Bailey-BRE method, 350
 membrane action method, 350
 slab panel method (SPM), 353
 tensile membrane action, 349
Composite steel-concrete structures, 234, 349
Computational fluid dynamic (CFD), 48, 341, 343
Computer fire models, 341
 CFD models, 343
 plume models, 342
 post-flashover models, 343
 zone models, 342
Concealed spaces, 23
Concepts tree, 14
Concrete encasement, 167, 236
Concrete filled tubes (CFT), 236, 247
Concrete masonry, 199
Concrete-steel composite structures, 234, 349
Concrete tilt-panels, 252
Concrete walls, 223
Conduction, 69
Cone calorimeter, 23, 39
Confinement of concrete, 210
Containment of fire, 17
Continuity, 102
Continuous steel beams, 185
Convection, 69, 72
Cooling phase, 356
Corner rounding, 275
Cover concrete, 201
Cracking of concrete, 366
Creep, 126, 273, 360
 strain, 128, 173, 209
Critical temperature method, 240
Cross laminated timber (CLT), 257, 288
Crushing of wood, 265
Curtailment of reinforcing, 219

Decay period, 10, 64
Density, 69
 concrete, 204
 steel, 159
 wood, 263
Design equation, 84, 123
Design fires, 60
Disproportionate collapse, 136
Doors, 9, 23, 110
Dowel-type fasteners, 292
Drywall, 301
Ductility, 120, 248
Duration-of-load factor, 266

Earthquakes, 30
Effective cross section method, 282

Elastomeric adhesives, 302
Electrical outlets, 332
Emissivity, 73, 346
Enthalpy approach, 347
Environmental protection, 9
Epoxied connections, 297
Equal area concept, 90
Equivalent fire severity, 90
 equal area concept, 90
 maximum load capacity concept, 92
 maximum temperature concept, 91
 time equivalent formula, 92
Eurocode
 formula, 93
 parametric fires, 62
European yield model, 293
External fire, 62
External steelwork, 165
Fall-off time for gypsum board, 277
Fibrous plaster, 305
Field models, 48
Finger joints in wood, 296
Finish rating, 319
Finite difference methods, 344
Finite element methods, 344, 355
Fire compartments, 20
Fire design time, 20
Fire detection, 12
Fire development, 9
Fire doors, 110
Fire during construction, 29
Fire Dynamics Simulator (FDS), 48, 343
Fire endurance rating, 95
Fire exposure models, 88
Firefighters, 12
Fire loads, 65
Fire models, 341
Fire resistance, 3, 17
 rating, 95, 260, 311
 tests, 61
 applied loads, 101
 failure criteria, 97
 furnace pressure, 101
 restraint and continuity, 102
 small scale furnaces, 103
 test equipment, 96
Fire retardant chemicals, 261
Fire spread, 22
Fire stopping, 24, 334
Fire suppression, 9
Fire testing of floors, 100
Flame spread, 22, 39, 43
Flaming brands, 28
Flashover, 9, 35, 48
Foam plastic sandwich panels, 339
Fuel, 35
 controlled burning, 53, 59
 fraction, 54
load, 22
 energy density, 37
Full room involvement, 10, 48
Fully developed fire, 10, 48
Furnace pressure, 101
Furniture calorimeter, 40

Gap width, 287
Generic ratings, 95, 103, 157
Glass, 112
Glass fibre
 batts, 309
 reinforcing, 307
Glazed doors, 110
Glued timber connections, 296
Glue laminated timber (glulam), 257
Grillage models, 200
Growth period, 10, 11
Gypsum board, 34, 294, 301
Gypsum chemistry, 306

Harmathy’s ten rules, 105
Heat balance, 58
Heated wood layer, 277
Heat release rate, 22, 37, 40, 51
Heat transfer
 conduction, 69
 convection, 72
 radiation, 72
Heat transfer model, 105
Heavy timber, 257
High strength concrete, 196
Historical buildings, 112
Hollow core
 concrete slabs, 200
 timber floors, 288
Human behaviour, 11
Hydrocarbon fire, 62

Ignition, 10, 29, 39
Impregnation of wood, 261
Incipient period, 10
In-grade tests, 266
Insulation criterion, 99
Integrity criterion, 99
Intumescent paint, 9, 169
ISO 834 standard fire, 61, 96

Joule (J), 6
Junctions and gaps, 110

Kawagoe’s equation, 51, 56
Knots in wood, 265

Laminated veneer lumber (LVL), 257
Lateral torsional buckling, 134, 184, 283
Law formula, 93
Life safety, 8, 20
Light steel
 frame, 302
 joists, 243
Light timber frame, 257, 301
Lightweight concrete, 198
Lightweight sandwich panels, 335
Light wood frame, 257, 301
Limit states design, 117
Load and resistance factor design (LRFD), 117
Load combinations, 116, 124
Load ratio, 125
Loads for fire design, 124
Local buckling, 249, 356
Localized fires, 69

Masonry, 33, 199
Material properties in fire, 126
Maximum load capacity concept, 92
Maximum temperature concept, 91
Mechanical properties
 concrete, 207
 steel, 171
 wood, 264
Megawatt (MW), 6
Melting temperature, 32
Membrane action method, 350
Mesh sensitivity, 347
Mill construction, 258
Mineral wool insulation, 309
Modulus of elasticity
 concrete, 207
 steel, 178
 wood, 266
Moisture content, 266, 347
Moment redistribution, 140
Multi-storey steel frame buildings, 248

Nailed gusset connections, 295
Nails, 293
Numerical analysis, 355
Numerical simulation, 348

One-zone model, 343
Onset of char method, 318
Oxygen consumption calorimetry, 39
OZONE model, 60, 344

Parallel chord timber trusses, 310
Parallel to grain wood properties, 267
Parametric fires, 62
Party walls, 333
Passive control, 12
Passive systems, 9, 17
Peak heat release rate, 40
Penetrations, 24, 109, 332
Performance-based
codes, 13, 22
design, 2
Perpendicular to grain wood properties, 269
Pilot ignition, 39
Plaster of Paris, 304
Plastic design, 142
Plastic foam, 335
Plasticity, 121, 267
Plume models, 342
Portal frame buildings, 252
Post-flashover fires, 35, 49, 54, 343
Post-tensioned timber structures, 289
Precast concrete, 254
Pre-flashover fires, 12, 35, 40
Prescriptive building codes, 2
Pres-Lam timber structures, 289
Prestressed concrete, 199
Prestressing steel, 33, 200
Probabilistic design, 13
Probability of failure, 121
Progressive burning, 66, 68
Proof strength of steel, 174
Property protection, 8, 20
Proprietary ratings, 95, 104
Protected timber, 276
Pyrolysis of wood, 38, 51, 261
Quality control, 4
Radiant heat flux, 72
Radiation, 69, 72
Ramberg–Osgood relationship, 361
Realistic fires, 279
Redundancy, 135
Reinforced concrete
columns, 223
walls, 223
Reinforced glulam timber, 289
Relaxation, 126
Repair of fire damage, 22, 31, 260
Resilient channels, 331
Restraint in fire tests, 102
Risk assessment, 4, 13
Rockwool insulation, 309
Roof vents, 67, 252
Safety factors, 13, 21
SAFIR, 71, 237, 347, 370
Sandwich panels, 335
Scenario analysis, 13
Screwed connections, 293
Section factor, 157
Seismic gaps, 110
Separating function, 314
Shear strength of wood, 271
Sheetrock, 301
Shrinkage, 199, 209, 259, 320
gap, 317
Simplified calculation methods, 340
Single-zone models, 60
Size effects, 266
Skylights, 252
Slab panel method (SPM), 353
Slim-floor beams, 243
Small-scale furnaces, 103
Smoke, 11, 17, 38
Smouldering combustion, 38
Software packages, 369
Spalling, 123, 201
Specific heat, 69
Spontaneous combustion, 39
Spray-on fire protection, 169
Sprinklers, 12, 30, 38
Stability criterion, 97
Standard fire, 61, 96, 149
Steam bending of wood, 267, 324
Steel-concrete composite floors,
349, 365
Steel-fibre reinforced concrete, 199
Steel protection systems
board systems, 167
cement encasement, 167
cement filling, 170
flame shields, 171
intumescent paint, 169
protection with timber, 170
spray-on systems, 169
water filling, 171
Steel stud walls, 325
Stone wool insulation, 309
Strength domain, 86
Stress related strain, 128, 209
Stress–strain relationships, 121, 264
Swedish fire curves, 56, 59
Tabulated ratings, 103, 157, 340
TASEF, 72, 240
Temperature domain, 85
Tenability limits, 12
Tensile membrane action, 249, 349
Tensile strength of concrete, 361
Thermal bowing, 365
Thermal conductivity, 58
Thermal diffusivity, 70
Thermal inertia, 39, 58, 70
Thermal modelling, 344
Thermal properties, 58, 70
 concrete, 204
 gypsum, 306
 steel, 159
 wood, 262
Thermal response models, 344
Thermal strain, 128, 172
Thomas’s flashover criterion, 49
Three-dimensional models, 365, 368
Tilt-panels, 252
Timber beam-columns, 285
Timber columns, 283
Timber-concrete composite floors, 288
Timber connections, 290
Timber decking, 286
Timber fire protection for steel, 170
Timber joist floors, 327
Timber stud walls, 320
Timber trusses, 328
Time domain, 85
Time equivalent formula, 92, 279
Time temperature curves, 9, 55, 65, 345
To adjacent rooms, 23
To other buildings, 27
To other storeys, 25
Trade-offs, 21
Transient creep, 126
Transient strain, 129, 209, 362
Truss plates in wood, 296
t-squared fires, 44
Two-way concrete slabs, 350
Two-zone models, 47, 343
Type X gypsum board, 276, 305
Ultimate strength design, 117, 119
Units, 6
Ventilation, 10, 43, 63
 controlled burning, 49, 59
 factor, 52
Virtual work, 142
VULCAN, 370
Water of crystallization, 309
Watt (W), 6
Windows, 12, 26, 29, 49, 59
Within room of origin, 22
Wood frame construction, 301
Working stress design, 117
World Trade Center, 5, 39
Yield-line theory, 354
Yield strength, 174
Zone models, 47, 342