Index

Note: Figures and Tables are indicated by italic page numbers, notes by suffix ‘n’

acetyl-CoA, 13C-enriched, entry into TCA cycle 162–165
actin 106, 109
adenosine diphosphate (ADP)
 determination by 31P NMR 110
 in muscle contraction 107, 118
adenosine 5’-monophosphate (AMP) 94
adenosine triphosphate (ATP)
 2-deoxyglucose phosphorylation by 153–155
 as energy source in muscle contraction 106–107, 108, 112, 182
 binding to myosin 107
 factors affecting production during muscle contraction 109, 111, 127–129
 free energy of hydrolysis 108, 109
 in yeast spore dormancy 150, 153, 156
 maintenance of constant levels 156, 181
 mobilization by trehalose, in yeast spores 150, 153, 181
31P MRS 12, 19, 74, 114, 115, 153–154
production during muscle contraction 107, 110, 118
adiabatic half-passage pulses 18
allosteric control
 of metabolite homeostasis 61, 68, 156, 179
 of phosphofructokinase 146
allosteric enzymes
 glycogen synthase 61, 179
 trehalase 156
amplitude distortions, frequency-dependent 17
anaplerotic pathways, flux through 165–167, 168
anaplerotic substrates, entry into TCA cycle 164, 165–167
disadvantage of using 167
[U-13C]propionate 167–168
athletes, MRI of leg muscles 82–83
ATP see adenosine triphosphate

biochemistry, link with physiology 2, 176, 177–178
bioenergetics, muscle contraction 109–110
biopsy method, muscle glycogen assayed using 25, 75–76, 129
brain
 ATP levels in 156
 glycogen in 24
 imaging methods 126, 130
 lactate levels during neuronal activity 126, 132
[1-13C]glucose NMR 176
heart glycogen metabolism studies 88, 89, 95, 96, 99
muscle glycogen metabolism studies 130, 132
yeast, aerobic compared with anaerobic glycolysis 139–140, 142
[3, 4-13C]glucose tracer 170
13C MRS
 basic principles 14–15, 161, 183
 compared with 1H MRS 14, 161
 compared with 31P MRS 14, 161
heart glycogen metabolism 87–100
liver metabolism 165–168
yeast metabolism 139–144
14C tracer studies
 liver metabolism 160
 yeast metabolism 139, 140, 142
carbon-13
 natural abundance 2, 14, 161
 see also 13C MRS
cardiac glycogen metabolism, 13C NMR studies 87–100
carnosine
 1H MRS 10–11, 10
 pH-dependence of chemical shifts 10
catabolite repression of yeast cells 138
cellular energy pathways 109
chemical shift(s), effects first observed 8
cigarette smoking, post-exercise recovery of muscle glycogen affected by 80
citrate, 13C-enriched 164
citric acid cycle see tricarboxylic acid cycle
concentration connectivity relationship (in MCA) 37, 38
cellular MRS
 relationship to elasticities 37, 38
 summation theorem 35, 38
co-response coefficients (in MCA) 40, 63–64
glycogen synthase and glucose transport 65
creatine, 1H MRS 9, 10, 19
creatine kinase (CK)
 in muscle contraction 107, 109, 116
 31P NMR measurement 13–14
creatine phosphate see phosphocreatine
cytosolic malate dehydrogenase 138
db/db leptin receptor-deficient mouse, as model of type 2 diabetes 100
2-deoxyglucose, phosphorylation by ATP 153–155
2-deoxyglucose 6-phosphate (2DG-6-P), in yeast spores 153
deoxymyoglobin, 1H MRS 11, 117
derepressed yeast cells 138
 aerobic compared with anaerobic glycolysis 142
deuterium (2H) NMR 161
 compared with mass spectrometry 169
 liver metabolism studies 169, 171
deuterium oxide (2HO), as tracer in gluconeogenesis studies 168
diabetes mellitus
 heart glycogen metabolism affected by 97
 see also insulin-dependent diabetes mellitus; non-insulin-dependent diabetes mellitus
diffusion effects 16
dipolar coupling 17, 161
dipolar relaxation theory 25
elasticities (in MCA) 35–37, 62
 definition 36
 GSase with respect to G6P 64–65
 GT/HK with respect to G6P 64–65
 relationship to control coefficients 36–37, 38, 62–63
 Embden–Meyerhoff–Parnas (EMP) pathway 139
epinephrine, heart glycogen metabolism affected by 94, 95
exercise
 assessing workload 76–77
 insulin-stimulated muscle glycogen synthesis affected by 54–55
 intense, NMR studies of muscle glycogen recovery 77–83
 localized protocol, advantages 76
 muscle glycogen changes during 76–83, 129–130
 exercise-induced temperature changes, NMR affected by 75
 exercised muscles, MRI used to locate 80–83
 external concentration reference, in quantitative MRS 19–20, 20
 external simulated phantom concentration reference, in quantitative MRS 20, 21
extramyocellular lipids (EMCL), 1H MRS 9, 10, 11
fatigue in muscles
 and depletion of glycogen 129, 132–133
 and lactate accumulation 125, 133–134
feedback-inhibited enzymes 32
Fenn effect 104, 112
fitness, MRI of leg muscles affected by 82–83
flux connectivity relationship (in MCA) 36–37, 38, 62–63
flux control coefficients (in MCA) 32–35, 60, 62, 179
 definition 33
 glucose transport/hexokinase, in heart glycogen metabolism 98
 glycolysis, in heart glycogen metabolism 98–99
 relationship to elasticities 36–37, 38, 62–63
 summation theorem 34–35, 38, 42
 flux, reasons for large changes 41
fMRI see functional magnetic resonance imaging
Fourier transform NMR 8
free fatty acids, insulin resistance affected by 52–53
freeze-clamp method (in muscle contraction studies)
112–113, 119
limitations 119, 127
fructose 6-phosphate (Fru-6-P), comparison of aerobic and anaerobic glycolysis in yeast 142, 145, 146
Fru-1,6-P2-ase 138
inactivation in anaerobic glycolysis of acetate-grown yeast cells 141, 144
functional magnetic resonance imaging (fMRI), lactate levels during increased neural activity 126

glucagon, heart glycogen synthesis affected by 93–94

gluconeogenesis
in liver, 2H NMR data 168–169
in yeast, enzymes required 138
gluconeogenic network, flux values in liver 170–171
gluconeogenic tissues, isotopomer analysis 165–168
glucose catabolism, in yeast, factors affecting 138, 139
glucose metabolism, factors affecting 47, 67, 96
glucose-6-phosphate (G6P)
as signal for glucose abundance 94
changes in type 2 diabetes 50
glycogen synthesis activated by 94, 96, 109
insulin effects 64
31P NMR 50, 53, 74

glucose phosphorylation, measurement of 50, 53, 74, 100

glucose, sources in liver 169

glucose storage 47

glucose transport (GT)
in insulin-stimulated muscle glycogen synthesis 49
relative importance 50, 61
whether defect is acquired or genetic 50–51
whether rate-controlling 51–52
glucose transport/hexokinase (GT/HK)
in heart glycogen metabolism 98
in muscle glycogen metabolism 63
MCA elasticities with respect to G6P 64–65

glucose transporter-4 (GLUT-4), in heart glycogen metabolism 98, 100

glutamate
13C isotopomers 163

glycogen
13C MRS 14, 15, 24–26, 88, 89, 129, 130
in vivo studies 25–26, 47–55
NMR visibility 24–26, 74, 90
postprandial storage of 48–49
relaxation characteristics 25, 90

glycogen phosphorylase, in muscle contraction 110, 119, 129

glycogen shunt mechanism, in muscle contraction 128–129, 133

glycogen synthase (GSase)
elasticity with respect to G6P 65–66

glycolysis
aerobic compared with anaerobic, in yeast 139–146

1H NMR see proton NMR
2H NMR see deuterium NMR
3H see tritium

heart glycogen metabolism
13C NMR studies 87–100, 182
advantages 89
early experiments 88–89
effects of diabetes 97
effects of epinephrine 94
effects of epinephrine and insulin combined 95–96
effects of insulin 94, 98

effects of nutrients 96–97

elevation by plasma lactate 98–99
heart glycogen metabolism (continued)
glucose transport and phosphorylation as control steps 100, 182
transgenic mice studies 100, 182
see also myocardial glycogen synthesis
heart muscle, functions 88
heat-shock protectant (in yeast spores), trehalose as 155–156, 157, 181
heat shock, trehalose content of yeast cells affected by 149–150
Henderson–Hasselbach relationship 13
hepatic glucose production, measurement of 170
hepatic metabolism see liver metabolism
hexokinase
in insulin-stimulated muscle glycogen synthesis 49
whether defect is acquired or genetic 50–51
whether rate-controlling 51–52
homeostasis see metabolite homeostasis
hormones see epinephrine; insulin
hypoxia, lactate uptake by heart affected by 95

in vivo MRS
development of 1–2, 176
heart glycogen metabolism 91–97
integration of spectra 22, 24
liver metabolism 163–172
muscle contraction studies 110–119
muscle glycogen synthesis 47–55, 60–69
31P MRS 12–14, 50, 53, 74, 100, 110
proton NMR 9–11
yeast metabolism 139–147
inorganic phosphate, 31P MRS 12, 74, 114
insulin-dependent diabetes mellitus, postprandial changes in plasma glucose levels 67
insulin resistance
factors affecting 46, 52
free fatty acid induced 52–53
insulin resistant subjects, post-exercise recovery of muscle glycogen in 79–80
insulin-stimulated glycogen synthesis
in heart
effect of insulin 98
effect of plasma lactate 98–99
in muscle
identification of impaired enzymatic steps 49–52
in type 2 diabetes 47–49, 66–67
insulin-stimulated heart glycogen metabolism 94, 95

internal concentration reference, in quantitative MRS 18–19, 20
intracellular pH, determination of 10–11, 12–13
intramyocellular lipids (IMCL)
1H MRS 9, 10, 11, 52, 55
insulin resistance affected by 52
isocitrate lyase 138
isotopic steady state 163
isotopomer analysis 5, 162, 183
carbohydrates vs fatty acids in energy production 164–165
dilution problem 166
gluconeogenic tissues 165–168
multiple-substrate metabolism 163–164
isotopomers
maximum number per molecule 161–162
meaning of term 161
numbering system 162

J coupling constant 17

α-ketoglutarate, 13C-enriched 164
kidney cells, ATP levels in 156
Krebs cycle see tricarboxylic acid cycle

lactate, uptake by heart, effect on glycogen synthesis 95, 98–99, 182
lactate accumulation, during muscle contraction 106, 125–126, 182
lactate shuttle mechanism 125, 126, 133, 182
driving force for 127
lactic acid, 1H NMR resonance 9
lactic acid theory of muscle contraction 106, 125
rejection of theory 106, 126
LCmodel signal quantification algorithm 24
lipids
13C MRS 14
see also extramyocellular lipids; intramyocellular lipids
liver cells, ATP levels in 156
liver glucose sources
13C NMR studies 165–168
2H NMR studies 169
2H tracer studies 168–169
liver glycogen 24, 25, 74, 90
liver metabolism studies 160–173
high-throughput analysis methods 172–173
localization 17
longitudinal T1 relaxation 15
Index

MAG see monoacetone glucose
magnetic resonance imaging (MRI)
 exercised muscles 80–83
 effects of fitness 82–83
 first reports 8
 first reports 8
magnetization transfer
 creatine kinase enzyme 14
 glycogen 26
 phosphate metabolites 110
 see also saturation transfer
[2-13C]mannitol NMR 51
mass spectrometry, compared with 2H NMR in liver metabolism studies 169
MCA see metabolic control analysis
McArdle’s disease 128, 129
metabolic control analysis (MCA) 31–44, 60, 61–63, 177
 applications
 heart glycogen metabolism 98
 muscle glycogen synthesis 64–66
 concentration connectivity relationship 37, 38
 concentration control coefficients 35
 concentration summation theorem 35, 38
 co-response coefficients 40, 63–64
 elasticities 35–37, 62
 first developed 3, 32
 flux connectivity relationship 36–37, 38, 62–63
 flux control coefficients 32–35, 60, 62, 179
 flux summation theorem 34–35, 38
 limitations 41
 proportionality analysis 42, 63–64
 relationship of control coefficients and elasticities 36–37, 38, 62–63
 response coefficient 36
 response to change in K_m 37
 supply–demand analysis 40–41, 63
 top-down analysis 39–40, 63
metabolism
 as bridge between biochemistry and physiology 176, 177–178
 and metabolomics 183–184
metabolite homeostasis 60
 ATP levels 156
 factors affecting 60–61, 67, 68
 in glucose oxidation 60
metabolomics, meaning of term 2, 183–184
Michaelis–Menten kinetics 36
mitochondrial redox state, effects 99
monoacetone glucose (MAG)
 2H NMR spectrum 169
 in hepatic glucose production measurement 170, 171
 for liver-specific PEPCK knockout mice 171–172
 structure 169
MRI see magnetic resonance imaging
 multi-site modulation 42, 61, 179, 180
muscle
 ATP levels in 156
 13C MRS 14–15
 fast-twitch (FT) fibers, glycogen depletion in 77
 1H MRS 9–11
 31P MRS 12–14, 74
 calibration strategies 20
 slow-twitch (ST) fibers, glycogen depletion in 77
muscle contraction 103–119
 biochemical evidence for 129
 bioenergetics paradigm 109–110, 116–117
 cellular energy pathways 109
 creatine kinase in 116
 energy balance in 108–109
 energy consumption during 112–113, 127
 energy source for 105–108
 heat–work relationships 104–105, 111
 Hill’s model 104, 105, 111
 intracellular oxygen concentration 117–118
 lactate production during 106, 126–127
 lactic acid theory 106, 125
 NMR measurement of metabolic transients 113–115
 oxygen consumption during 117
 phosphocreatine kinetics 116
 physiological models 112
 role of glycogen in ATP synthesis 128–129
 sliding filament model 105
 techniques to trap metabolites during 108
 thermodynamic approach 104, 111–112
 viscoelastic model 104, 112
muscle glycogen
 determination of
 agreement between biopsy and NMR 25, 26, 75
 by biochemical analysis 75–76
 by 13C MRS 25, 74–75
 exercise-induced changes, factors affecting 13C NMR studies 75
 need for in exercise 129
 muscle glycogen recovery (after exercise)
 in healthy subjects 77–79
 in insulin-resistant subjects 79–80
 insulin dependence in healthy subjects 79
muscle glycogen synthesis
\[^{13}C\] MRS 47–55, 74–75, 76–83, 129–130, 182
impaired, during hyperglycemia hyperinsulinemia 47
insulin-stimulated
effect of exercise 54–55
effect of obesity 52–54
role in type 2 diabetes 47–52
pathways 61, 62
muscle metabolism, NMR studies 76–77
myocardial glycogen synthesis, quantitation of
in vivo studies 91–92
in perfused heart 91
myoglobin 11
desaturation during muscle contraction 117–118, 126
see also deoxymyoglobin
myosin 106
ATP reaction in 107

N-acetyl aspartate (NAA), as internal \(^1H\) NMR reference 19
nitrogen sources, activity of yeast cells in absence of 138, 153
NMR see \[^{13}C\] NMR; nuclear magnetic resonance; \[^{31}P\] NMR
Nobel Prize winners 8
non-insulin-dependent diabetes mellitus (NIDDM)
gene vs environment debate 178–179
pathophysiology 46, 178
MRS studies 3, 47–55, 178
see also type 2 diabetes
nuclear magnetic resonance (NMR)
basic principles 7–8
first discovered 8
NMR visibility, glycogen 24–26, 74, 90
principal components of spectrum 23
nuclear Overhauser effect/enhancement (NOE) 16, 90, 161
nutrients
heart glycogen metabolism affected by 96–97
see also fatty acids; ketone bodies; lactate; pyruvate
obesity
factors affecting 52
insulin resistance affected by 52–53
insulin-stimulated muscle glycogen synthesis affected by 53–54
oxaloacetate, \[^{13}C\]-enriched 163
oxidative phosphorylation, in muscle contraction 110, 118, 119

Index

oxygen uptake
maximal, as measure of exercise workload 76
in muscle contraction 117–118, 118–119
yeast glycolysis affected by 140

\[^{31}P\] MRS
glucose phosphorylation measurement 50, 53, 74, 100
in vivo studies 12–14, 50, 53, 74, 100, 110
first used 8
heart phosphate metabolism 88
identification of resonances 12, 12
limitations 14
internal concentration references 12, 19
total phosphate pool as reference 19

\[^{31}P\] NMR
chemical shifts 12, 13
gated technique, phosphate metabolites
identification 4, 114, 115, 127
intracellular pH determination 12–13, 74
Pasteur effect 138–139
pentose shunt, in yeast glycolytic pathways 141
PEP carboxykinase 138
liver-specific knockout of, metabolic consequences 171–172
pH, intracellular, determination by \[^{31}P\] NMR 12–13, 74
phosphocreatine (PCr)
kinetics during muscle contraction 115, 116, 127
\[^{31}P\] MRS 12, 74, 110–116, 114
as internal chemical shift reference 12
recovery after muscle contraction 114, 128
phosphodiesters (PDE), \[^{31}P\] MRS 12, 110
phosphoenolpyruvate carboxykinase 138
phosphofructokinase (PFK)
allosteric control of 146
inhibition in heart glycogen synthesis 99
inhibition in muscle glycogen synthesis 52, 53
role in yeast glycolytic pathways 142, 145–146
phosphomonoesters (PME), \[^{31}P\] MRS 12, 110
phosphorus-31 NMR see \[^{31}P\] NMR
phosphorylation of GSase
as general homeostatic mechanism 68–69
metabolite homeostasis affected by 67–68, 179
physiology, link with biochemistry 2, 176, 177–178
plasma fatty acid levels
factors affecting 46, 52
insulin resistance affected by 52–53
post-exercise recovery of muscle glycogen
effect of cigarette smoking 80
healthy subjects 77–79
insulin dependence in healthy subjects 79
insulin-resistance subjects 79–80
postprandial changes in plasma glucose levels 48, 66
in insulin-dependent diabetes 67
postprandial storage of glycogen 48–49
[U-13C]propionate
as anaplerotic substrate in TCA cycle 167–168, 171
advantages of use 167
proportional activation 42, 63
determination using in vitro and in vivo elasticities 65–66
of glycogen synthase
effects of phosphorylation and allostery 67–68
role in homeostasis 67
proportional activation analysis 63–64
of glycogen synthesis 64–65
proton NMR
compared with 13C NMR 14, 161
in vivo studies
first used 8
identification of resonances 9–11
limitations 14
internal concentration references 10, 19
water suppression techniques 9, 17
'pulse-chase' experiment, heart glycogen turnover measured using 92–94, 93
pulsed NMR 8
quantitative NMR spectroscopy 15–26
experimental considerations 15–18
diffusion effects 16
frequency-dependent amplitude and phase distortions 17–18
localization 17
longitudinal T1 relaxation 15
NMR visibility 2, 18
nuclear Overhauser effects 16
scalar coupling 16–17
transverse T2 relaxation 16
external concentration reference 19–20, 20
external simulated phantom concentration reference 20, 21
internal concentration reference 18–19, 20
signal quantification 21–26
example 24–26
general principles 21–22
integration of resonances 22–24
least-squares fitting 24
Randle (fat-induced insulin resistance) mechanism 52, 53, 55
rate-limiting step concept 32, 43
repressed yeast cells, aerobic compared with anaerobic glycolysis 142
Saccharomyces cerevisiae
metabolism in 137–147, 160
see also yeast
sacromere (in muscle) 105, 106
saturation transfer measurements
phosphate metabolites in muscle contraction 110–111
phosphofructokinase in muscle glycolytic pathways 142
scalar coupling 16–17
seizures, lactate levels during 126, 132
signal quantification, in quantitative MRS 21–26
smoking, post-exercise recovery of muscle glycogen affected by 80
somatostatin, muscle glycogen recovery affected by 79
starvation, trehalose content of yeast cells affected by 149, 150
stroke, diffusion effects 16
supply-and-demand systems 40, 60–61
MCA applied to 40–41, 63, 180
symmorphosis 42
T2 relaxation time, glycogen 25
thermodynamic approach, muscle contraction 104, 111–112
tissue glycogen 90
top-down control analysis 39–40, 63
transgenic mice studies
heart glycogen metabolism 100, 182
liver metabolism studies 171–172
transverse T2 relaxation 16
trehalase (enzyme) 150
factors affecting activation 154, 155
inhibition by ATP in dormant yeast spores 154
trehalose
accumulation in yeast spores in absence of nitrogen sources 138, 153
NMR studies 150–153
as energy source in yeast spores 138, 149, 156, 157, 181
ATP mobilized by, in yeast spores 150, 153, 155
factors affecting concentration in yeast cells 149–150
trehalose (continued)
production from non-glucose-grown yeast 138, 140, 141, 142, 144
role in dormant yeast spores 150, 152–153, 181
as stress protectant in yeast spores 155–156, 157, 181
trehalose-6-phosphate (T6P), as hexokinase inhibitor 139, 144, 145–146
tricarboxylic acid (TCA) cycle 160
anaplerotic pathways 165–168
and effect of liver-specific PEPCK knockout 172
and heart glycogen synthesis 88, 98, 99
entry of 13C-enriched acetyl-CoA into 161–165
2H NMR combined with 13C NMR data 170–171
pyruvate cycling pathways 168
tritium tracer studies, liver metabolism 168
tropomyosin 106, 109
troponin complex 106, 109
tryptophan dioxygenase, metabolic flux dependent on activity 33
type 1 diabetes see insulin-dependent diabetes mellitus
type 2 diabetes
causes 46
insulin-stimulated muscle glycogen synthesis in 47–49, 66–67
pathophysiology 46
MRS studies 3, 47–55
tailored drug therapy 173
see also non-insulin-dependent diabetes mellitus

VARPRO signal quantification algorithm 24
viscoelastic theory of muscle contraction 104

water, as internal concentration reference 19
water suppression techniques, in 1H MRS 9, 17

yeast
aerobic compared with anaerobic glycolysis
13C NMR studies 139–144
Pasteur effect 138–139
anaerobic glycolysis, flow diagram 141
factors affecting transition between three states 138, 181
glucose metabolism 5, 137–147
glucose-derepressed cells 138, 181
effect of oxygen 140
futile cycling by 144–145, 147, 181
intermediates 142
turbo effect in transition period 139, 144, 147, 181
glycolytic cycle, flow diagram 141
glucose-repressed cells 138, 181
effect of oxygen 140
intermediates 142

yeast spores
in dormancy period
ATP concentration 156
role of trehalose in 150, 152–153, 156, 181
factors affecting formation of 138
metabolic changes during germination 151–152, 153
NMR studies on trehalose metabolism 150–153

yeast strain Y55, confusion about identity 150–151n

With kind thanks to Paul Nash for creation of this index.