INDEX

Accidental ingestion 54
Adulterated alcohol 56
 methanol instead of ethanol 57
Animal toxicity 73
Animal toxicity (Acute) 74
 dermal irritation 86
 dermal toxicity 78
 eye irritation 87
 inhalation toxicity (one exposure) 79
 kormone effects 81
 intraperitoneal toxicity 1 82
 intravenous toxicity 82
 neurobehavioral toxicity 1 77
 oral toxicity 75, 193
 RD 50 in mice 81

Carcinogenic potential and oxidative stress 176, 207, 223, 233
 hydroxynonenal-histidine protein adducts 222, 234, 266
 oxidatively damaged DNA 208, 233, 272
 rodent studies 209

Environmental 11
 adsorption to soil materials 31
 air/water partitioning 16
 partitioning in the environment 14
 soil/water partitioning 18
 availability of electron acceptors 25
 availability of nutrients for methanol breakdown 27
 biodegradation of methanol in environment 34
 biodegradation under various redox conditions 28
 commingling/cosolvency effects 21, 32
 environmental fate of methanol 11, 14
 indigenous methanol-degrading microbes 24
 manufacture of industrial chemicals 49
 methanol dissolution 19
 methanol environmental release scenarios 11
 rail car or tank truck release 12
 ship or barge release 13
 methanol vs gasoline and benzene 18
 pH and temperature levels for microbial growth 27

Dietary exposure to methanol 48
 alcoholic beverage 48
 aspartame 48
 dimethyl dicarbonate 49
 fruits and vegetable 48

© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
partitioning in the environment (Continued)
storage/fueling facility release 13
surface water release of methanol 33
abiotic degradation in surface water 35
bioaccumulation 35
biodegradation in surface water 34
losses from surface water 33
sources of methanol in surface water 33
volatilization 36
transport of methanol in the environment 23
losses from soil and groundwater 23
soil and/or groundwater release 23
sources in soil and groundwater 23
vaporization from soil 32
volatilization from groundwater 32
Enzymes in methanol metabolism 179
ADH activity throughout development 182
alcohol dehydrogenase (ADH) 179
catalase (CAT) 182
antioxidative role (scavenging H₂O₂) 183
peroxidative role (alcohol to aldehydes) 183
cytochrome P450 (CYP) 2E1 184
enzyme kinetic parameter for ADH 181
folate dependent dehydrogenase 187
formaldehyde dehydrogenase 186
Folate deficiency and methanol developmental toxicity 129
developmental neurotoxicity study in rats 131
dietary folic acid in mice 130
liver and plasma folate level 130
hepatic terahydrofolate in rats 133
Folate deficient rats 92, 109
History of methanol production 1
Hormones levels in male rats 108
Human (controlled exposure) 60
blood and urine methanol levels 61
chronic inhalation workplace exposure 63
elimination half-life-62
neurobehavioral effects 60
urinary and serum formate 61
Human (dermal exposure) 59
absorption through skin 59
skin effects 59
Human (environmental exposure) 49
11, 12, 13
Human Cancer Data 209, 276
Human exposure (occupational exposure) 1 50, 54
In utero methanol exposure in humans 62
Management, methanol poisoning 64
American Academy of Clinical Toxicology Practice guidelines 64
fomepizole 64, 193
hemodialysis 64
sodium bicarbonate 64
Methanol additives 37
bitrex (bitterant) 38
luminosity 38
Methanol, commercial uses
 chemical building block 5
 energy/fuel 6
 California methanol fuel program 7
 China M-15, M-30, M85, M-100 fuel use 8
Methanol vs. ethanol 172, 228
 embryo culture 228
 free radical spin trapping 232
 genetic modulation of catalase 228
Methanol induced oxidative
 stress 82, 171, 273
 acute rodent m studies 82, 273
 effects of antioxidants 85, 274
 free radical and electron spin resonance
 spectroscopy 86, 274
 lipid peroxidation 83, 221, 227, 273
 malonaldehyde (MDA) 84, 221, 227
 oxidative stress 82
 radical oxygen species (ROS) 83, 177, 273
 species differences 77, 194
 thiobarbituric acid reactive substance (TBA) 83, 221
 tissue effected (liver, erythrocyte, serum, brain, lymphoid organs) 85
Metabolic pathways in mice and humans 155, 171
Metabolism of methanol in humans 50
Methanol, physical and chemical properties 18
Neurodevelopmental effects of methanol 204

Normal metabolism in humans 50
 alcohol dehydrogenase (ADH) 50
 formaldehyde 50
 formate - carbon dioxide and water 50
 formic acid 50
 low level in blood salvia and expired breath 50
Odor threshold 50
Over exposure to methanol in humans 51
 built up of formate and hydrogen ion 51
 saturation of formic acid dehydrogenase 51
Oxidative stress mechanisms 213
 DNA oxidation 219
 embryonic drug exposure and reactive oxygen species (ROS) formation 213
 lipid peroxidation 220
 macromolecular damage 217
 protein oxidation 218
 signal transduction 214
Pathogenesis, birth defects 127
 comparison of mouse strains 129
 in vitro studies 128
 in vivo studies 127
 mouse embryo 128
 mouse inhalation 127
 mouse oral 127
PBPK models in mice and humans 145
 background 145
 Battelle’s Pacific Northwest National laboratory
 PBPK model 147
 blood methanol levels in pregnant mice 146
PBPK models in mice and humans
Continued
Boucher’s PBPK model 151
metabolic pathways in mice and
humans 155
mouse and human blood
metabolism 151
PBPK model parameters 150
visual optimization
weakness 161
metabolic difference in mice and
humans 146
Pharmacokinetics, methanol and
formic acid 188
mice stains (CD1, C57BL/6J and
C#H) 189
mice, rabbits and primate 179. 188
routes of exposure 190
Possible cancer mechanisms 270
genotoxicity 270
in vitro 270
in vivo 270
oxidative damage 176, 177, 208,
223, 272
rodent special studies 273
short term studies in mice, rabbits,
primates 274
Production methods, current 1
other production sources 3
biomass production 4
coal gasification 3
primary method steam reformation
of natural gas 2
Production methods, new 8
captured atmospheric CO₂ 8
renewable generated hydrogen 8
Rodent cancer bioassay 256
dermal cancer bioassay 268
mice 268 thirty-week study - 268
cancer incidence 268
life time (3 times/week)
(eppley) 269
cancer incidence 270
inhalation cancer bioassays 266
mice 268 eighteen month
(NEDO study) 268
cancer incidence 268
rats 266 Two years (NEDO
study) 266
cancer incidence 267
oral cancer bioassays
mice 263 life time MDA (Eppeley
study) 263
cancer incidence 265
rats 256 (lifetime study drinking
water (Ramazzini
Institute) 256
cancer incidence 257
possible problems
histopathological
diagnosis 259
infection 261
Role of methanol and metabolites in
the developmental
toxicity 133
embryo culture studies 133,
135
formate levels following inhalation
in mice 135
formaldehyde possible role 136
Sensitization studies 87
Short term special studies in mice,
rabbits, primates 273
evidence for MeOH-initiated ROS
formation 223
mechanism of MeOH-initiated
ROS formation 227
Species differences in Methanol
metabolism 171, 178,
179
dose and route of exposure 179
Strain differences in methanol toxicity 189, 194
acute metabolic acidosis, ocular toxicity and death 191
Subcutaneous studies 82
Symptoms over exposure to methanol 51, 192
level of methanol in blood and urine 52, 193
methanol levels in breath 53
mortality 52, 192
pathological changes 57
urinary formic acid 53
visual disturbances 51, 192
Toxicity, aquatic
acute fish toxicity 96
acute toxicity to invertebrates 98
chronic toxicity 98
Toxicity, chronic dermal 96
mice 96
Toxicity, developmental 110, 172
mice 115
early pregnancy studies 117
intraperitoneal 119
oral 117
teratology inhalation studies 115, 116
mice stains (CD1, C57BL/6J and C3H) 195
mouse embryo 198, 228
non-human primates 120, 194
inhalation developmental and reproductive 120, 194
inhalation neurobehavioral infants 123
rabbits 194
rats 111
earl pregnancy studies 115
2 generation studies 112
postnatal 112
prenatal 112
teratology inhalation studies 111
Toxicity, inhalation (chronic)
mice 93
rats 91
Toxicity, inhalation (non human primates) 87
pilot studies 87
subacute 90
subchronic 88
Toxicity, inhalation (subacute) 87
rats 90, 92
Toxicity, inhalation (subchronic)
dogs 94
folate deficient rats 92, 109
rats 92
Toxicity, oral - 94
mice 95
non human primates 95
rats 94
Toxicology, reproductive (animals) 110
Toxicology, reproductive (humans) 108