Index

• Symbols and Numerics •

5 Why’s, 195–197
5S Method
 auditing results, 234
 communication boards, 215–219
 cons, 215
 daily inspection sheet, 233–234
 description of, 16, 213
 Lean Materials, 267
 pros, 214–215
 Rapid Improvement Event, 244, 249–250
 Shine phase, 228–230
 Sort phase, 219–222
 Standardize phase, 231–232
 Straighten phase, 223–227
 Sustain phase, 232–234
 Theory of Constraints, 335
80/20 rule, 14, 126, 282
100% Inspection, 54

• A •

absolute importance, 321
acceptable quality level (AQL), 53
acceptance number, 55
acceptance sampling by lots, 54
accreditation agencies, 31
accuracy
 in data-collection process, 114
 definition, 114
 importance of, 103
 in measuring processes, 113
AGI Institute (Web site), 350
Air Academy Associates (Web site), 292
American Engineering Standards Committee (AESC), 25
American National Standards Institute (ANSI), 25
American Society for Quality (ASQ), 292, 348
analysis of variance (ANOVA), 151–154
anecdotal evidence, 107, 108
ANSI (American National Standards Institute), 25
ANSI-ASQ National Accreditation Board, 32
approval for the process, securing, 66
AQL (acceptable quality level), 53
ASQ (American Society for Quality), 292, 348
Attractive Attributes, 85
attribute data
 control chart, 164, 165
 description of, 49
 in gauge R&R test, 115
 turning into variable data, 49
audit, 234
automation, in data collection, 122
average, 133

• B •

bar code, 259
baselining, process performance, 243–245
benchmarking
 industry standards, 96
 Lean processes, 181
 Quality Function Deployment, 317
 Total Quality Management, 280–281
best practices, 231–232
bias, 113, 181
bill of materials, 261
binary (coding scheme), 123
brainstorming, 43, 282
buffer
 minimizing with Lean Materials, 257–258
 in Theory of Constraints, 331–332
buyer, knowing your responsibilities, 38–41

• C •

c chart, 165
capability index, 174–175
card, Kanban, 258–260
cause-and-effect diagrams, 43
change, introducing
communication, 68–71
employee resistance, 63
employee training, 71–75
obstacles, 78–80
pilot project, 76–78
roadmap to quality, 64
sponsor, 64–68
chart
benefits of using, 125
c, 165
control, 128–129, 159, 161–173
fishbone, 277–278, 283, 305–307
flowcharts, 159
np, 165
p, 165
Pareto, 126–127, 137–143, 159
R (Range), 129, 164–165, 168–169
run, 159, 160
in Statistical Process Control, 159, 161–173
u, 165
X-bar, 129, 164–168
Chart Wizard button, Microsoft Excel, 166
check sheets, 118–120, 283
checkup, daily 5S, 233–234
cleaning, in Shine phase of 5S method, 228–230
clutter, managing. See 5S method
CMMs. See coordinate measuring
machines
coding data, 123
common areas, 229
common-cause variation, 161, 171–172
communication
importance of effective, 68
informational, 69
Lean processes, 182
mandatory, 69
marketing, 69
stakeholder reporting matrix, 70–71
types of information to communicate, 68–69
who communicates, 69–70
communication boards
department status board, 216–219
description, 215–216
establishing facility, 216
floor plan, before, 217–219
spaghetti chart, before, 219, 220
compare-and-review checks, 120
competitors
borrowing from, 93
stealing customers, 84
complaints, customer, 94
confidence interval, 135
confidence level, 135
conflict resolution, 44
conforming item, 47, 57
consistency, in the inspection process, 52
constraints. See also Theory of Constraints
bathhtub drain example, 331
buffer stabilization of, 332
checkout line example, 337
cleanup process, 335–336
description of, 18, 325
elevating, 337
identifying, 334–335
internal, 334
location, 334
market, 334
process speed and, 330–3631
subordinate processes, 332
supplier, 334, 335
consultant, 66, 68
Consumer Product Safety Commission
(CPSC), 26
customer risk, 50
container
reusable, 268
selecting, 267–268
continuous data. See variable data
continuous improvement, 286–288
control chart
assumptions made by, 169
attribute data, 164, 165
building, 165–169
capability index calculation, 174–175
control limits, 129, 164, 173
description, 44, 128–129
mean, 162
patterns to look for, 170
population, 162
R (Range) chart, 129, 162, 164–165, 168–169
reading, 169–170
responding to variation detected by, 170–172
sample, 162
standard deviation, 162–163
in Statistical Process Control, 159, 161–173
Total Quality Management, 278, 283
variable data, 164–165
variation detection, 161–162
X-bar chart, 129, 164–168
zones, 170
control limits
capability index, 174
changing, 173
description of, 129
reasons to use, 164
setting, 164
coordinate measuring machines (CMMs)
description of, 105
selecting correct, 106
when to use, 105–106
COPDQ (cost of poor data quality), 121
COPQ (cost of poor quality), 20–21
correlation
calculating, 144–147
description of, 143–144
negative, 143
positive, 143
scatter diagram, 145–146
strength, 144
using results, 148
correlation coefficient
calculating, 146–147
description of, 143
positive and negative, 143
strength, 144
correlation matrix, House of Quality, 320
cost
cutting, 26
of data collection, 121–122
of exceeding customer requirements, 21–22
inspection process, 51
labor, 244
of offering too little, 20–21
or rework, 59–60
of poor data quality, 121
of producing defective products, 48–49
reducing with Total Quality Management, 280
of risks, 79
savings with Rapid Improvement Event, 236–237
supplier involvement in controlling, 271
total cost of ownership, 83–84
unit cost of manufacture, 256
cost of poor data quality (COPDQ), 121
cost of poor quality (COPQ), 20–21
CPSC (Consumer Product Safety Commission), 26
CRM (customer relationship management)
system, 92–93
Curious Cat Management Improvement Library (Web site), 348
current state map
creating, 202, 203–208
families, creating product, 206, 208
flow of materials and information, 204, 206
icons, 204, 205
sample, 207
software, 203
timeline, 206
customer data
CRM (customer relationship management), 92–93
focus groups, 90–91
rules for collecting, 88–89
surveys, 89–90, 92
customer demand, listening to, 192–193
customer expectations
cost of, 83–84
exceeding, 180
perfection, 82–83
speed, 83
customer relationship management (CRM) system, 92–93
customer requirements
converting into design specifications, 317–318
data collection, 315–316
defining critical characteristics of, 342
demands and delights, distinguishing between, 315
exceeding, 21–22
identifying, 314–316
measuring, 319
translating into measurements, 343
customers
complaints, 94
CRM (customer relationship management), 92–93
data on, 87–94
desires of, 13
expectations of, 82–84
customers (continued)
feedback from, 346
focus groups, 90–91
gauging desires with Kano Model, 84–87
identifying critical-to-customer issues, 82–84
internal, 283
listening to, 13–14
observing, 94
surveys, 89–90, 92
voice of the customer (VOC), 13–14, 81
customer/supplier mapping, 43

• D •
daily inspection sheet, 5S, 233–234
data
attribute, 49, 115
coding, 123
cost of poor quality, 121
customer, 87–94
stratification of, 172
variable, 49, 115
warranty, 94
data analysis
coding data, 123
control charts, 128–129
histograms, 125–126
Pareto charts, 126–127
pivot tables, 123–124
scatter diagrams, 127–128
data collection
analysis of data, 122–129
anecdotal evidence, 107, 108
automated, 122
check sheets, 118–120
coding data, 123
compare-and-review checks, 120
cost of poor data quality (COPDQ), 121
costs of, 121–122
design of experiments (DOE), 110–111
elements of consistent collection
process, 113–114
gauge repeatability and reproducibility (gauge R&R), 113–117
guidelines, 112
knowing what you are looking for, 108–112
one-change-at-a-time testing, 109–110
pivot table use in, 123–124
for Quality Function Deployment (QFD), 315–316
quality of, confirming, 117–121
questions to ask about process, 108
SIPOC map, 111–112
standard samples, taking, 114–115
testing data collectors, 115–117
Total Quality Management (TQM), 282
data collectors, 88
data worksheets, 44
Datazinc (Web site), 292
DeCarlo, Neil (Six Sigma For Dummies), 289
decluttering. See 5S Method
defect
cost of producing, 48–49
definition of, 48
Total Quality Management, 278, 284
tracking, 56–60
waste of defective products, 191–192
Define, Measure, Analyze, Improve, and Control (DMAIC)
analyze, 298
control, 299
define, 295–296
improve, 298–299
measure, 296–298
delighters, 315
deliveries, 269–270
demand, listening to customer, 192–193
deming.org (Web site), 349
dependent variable, 128, 149
design of experiments (DOE), 110–111
design specification, converting customer
requirements into, 317–318
desires, customer, 84–87
disaggregation, 172
discrete data. See attribute data
discrimination, in measuring processes, 113
disposal, 221–222
DMAIC. See Define, Measure, Analyze, Improve, and Control
DOE (design of experiments), 110–111
double sampling, 56
Dreyer, Dennis (consultant), 196, 197
drum, 18, 330–331
Drum-Buffer-Rope system
buffer, 331–332
drum, 330–331
rope, 332–333
• E •

80/20 rule, 14, 126, 282
employee
 importance of empowered, 284–286
 role in Rapid Improvement Event (RIE), 239–240
suggestion program, 285
training, 14, 72, 74–75
tribal knowledge, 296
underutilization of skilled, 186
errors
 eliminating with Total Quality Management, 281
error counts, 99
sampling, 136
evaluation matrix, 43
Excel. See Microsoft Excel
Exciters, 85
executives, role in Total Quality Management, 283–284
experiment design, 44
experimentation, 172

• F •

F critical value, 154
F ratio, 152, 154
Failure Modes and Effects Analysis (FMEA)
 creating, 307–308, 309
 problem component, 308
 recommendation component, 310
families, product, 206, 208
feedback, 346
field reports, 94
fishbone chart/diagram, 277–278, 283, 305–307
5 Why’s, 195–197
SS Method
 auditing results, 234
 communication boards, 215–219
 cons, 215
daily inspection sheet, 233–234
description of, 16, 213
Lean Materials, 267
pros, 214–215
Rapid Improvement Event, 244, 249–250
Shine phase, 228–230
Sort phase, 219–222
Standardize phase, 231–232
Straighten phase, 223–227
Sustain phase, 232–234
Theory of Constraints, 335
floor plan
 before, 217–219
 after, 225–227
flowchart
 description of, 43
 in Statistical Process Control, 159
 Total Quality Management, 277
 Value Stream Mapping compared to, 201
FMEA. See Failure Modes and Effects Analysis
frequency distribution, 125
future state map
 constructing, 209–210
 developing, 202
 example, 211
 implementing, 210
 value-added and non-value-added steps, 208–209

• G •

gauge
 choosing correct, 102–103
description of, 101–102
 setting up, 104
types, 102
gauge repeatability and reproducibility (gauge R&R)
 analyzing, 117
 elements of consistent collection process, 113–114
form, 116
Microsoft Excel, 115
standard samples, taking, 114–115
testing data collectors, 115–117
when to perform, 113
goal
 reviewing, 79
Six Sigma, 290–291
Theory of Constraints, 333
Total Quality Management, 280–281
Goldilocks (analogy), 19–20
Goldratt, Dr. Eliyahu (The Goal), 325
goldratt.com (Web site), 350
go/no go measurement, 97–98, 100
histogram
creating, 125–126
description of, 125
of normal process, 157
Pareto chart, 126, 137
in Statistical Process Control, 159
House of Quality. See also Quality Function Deployment (QFD)
basement, 321–323
building, 313–323
components of, 314
description of, 18
Quality Function Deployment (QFD) matrix, 312
roof, 320–321
Targets, 322–323
housekeeping. See 5S Method
icons, Value Stream Map, 204, 205
implementation. See also change, introducing
future state map, 210
of quality program, 64, 65
improvement teams, 280, 285–286
incorporation, of quality program, 64
independent variable, 128, 149
information security, 248
inspection
acceptable quality level (AQL), 53
attribute data, 49
challenges of implementation, 51–52
conforming item, 12, 45, 57
costs of, 51
defect, definition of, 48
defect, tracking, 56–60
errors, categories of, 50
human aspect of, 50–51
importance of catching bad products, 48–49
lot sampling, 54–56
nonconforming item, 12, 47, 48, 57
100%, 54
records, keeping careful, 57–59
rectifying scheme, 56
role of, 12
selecting approach for, 52–54
variable data, 49
zero, 54
internal constraints, 334
internal customers, 283
International Organization for
Standardization (ISO) certification
aim of process, 28
audit, 31–32
basics of, 27–28
benefits of, 27, 28
generic management system standards, 24
name standardization, 25
parts of ISO 9000 standards, 29
preparing for ISO 9001 certification, 30–31
registrars, 31–32
requirements for ISO 9000, 29–30
Web site, 347
Internet survey, 90
interval (coding scheme), 123
interviews, 91, 94
introducing quality control, 13
inventory
defined, 327
shrinkage, 263
waste of excess, 189–190
Ishikawa’s Fishbone chart, 305–307
isixsigma.com (Web site), 349
ISO. See International Organization for
Standardization (ISO) certification
ISO 9000
as example of a quality standard, 23
generic management system standards, 24
importance of certification, 28
parts of standard, 29
requirements for, 29–30
ISO 9000:2000, 29
ISO 9001 certification, 30–31
ISO 9001:2000, 29
ISO 9004:2000, 29
Joint Commission on Accreditation of Healthcare Organizations (JCAHO), 25–26
Juran Institute (Web site), 292, 349
Juran, Joseph (quality manager), 127
Just In Time item, 262

Kaizen event. See also Rapid Improvement Event (RIE)
Lean processes and, 183
waste from unneeded processing steps, 189
Kaizen Institute (Web site), 349
Kanban, 17, 258–260, 261, 344
Kano Model
categories, 85
description of, 84
steps in using, 85–87
Kano, Noriaki (professor), 84
key performance indicators, 44
knowledge, tribal, 296

Labeling items, 225
labels, standardizing, 231
labor, cost of, 244
Lean Aerospace Initiative (Web site), 348
Lean For Dummies (Williams and Sayer), 179
Lean Materials
buffers, 257–258
cons, 264
deliveries, 269–270
description of, 16–17, 256–257
Just In Time item, 262
Kanban, 258–260, 261
packing materials in containers, 267–268
pros, 263–264
Pull system, 260, 262–263
Push system, 260–262
recycling, 268
steps, 265–267
supermarkets, 267, 269
supplier involvement, 270–272

Lean processes
communication and training, 182
cons, 185
copying others, 182
cornerstones of, 180
customer demand, 192–193
description of, 15
5 Why’s, 195–197
Lean guru, installing a, 182
process map, 183
pros, 184–185
smooth flow, 195
sustaining improvements, 184
Takt Time, 192–195
target areas, 181–182
tempo, 193–194
Theory of Constraints compared to, 328
value streams, concentration on, 182–183
waste elimination, 180, 183–184
waste identification, 186–192
Likert scale, 49–50
Linear Attributes, 85
linear regression, 148
linearity, in measuring processes, 113
lot sampling
description of, 54
double sampling, 56
lot sentencing, 55
sequential sampling, 56
single sampling, 55
lot sentencing, 55

Maintenance issues, 230
management responsibility, ISO 9000 requirements for, 29–30
management system, generic standards, 24
managementhelp.org (Web site), 349
managers
role in Rapid Improvement Event, 241
role in Total Quality Management, 284
mapping
customer/supplier, 43
definition of, 200
process, 44, 183
relationships, 319–320
market constraints, 334
Massachusetts Institute of Technology (Web site), 348
materials
cleaning, 229
tidying, 223–224
materials aggregator, 268
matrix, Quality Function Deployment (QFD), 312
mean, 133, 162
measurement
coordinate measuring machines (CMMs), 105–106
error counts, 99
gauge, 101–104
go/no go, 97–98, 100
hand tools, 101
metrics, 95–97
selecting right process, 100
against specifications, 98, 99
measurement analysis and improvement, ISO 9000 requirements for, 30
metrics
characteristics of good, 96
defined, 95–96
industry standards used as, 96
for Lean transition, 183
measuring customer requirements, 319
questions to ask concerning, 97
in Value Stream Mapping (VSM), 201
Microsoft Excel
building control chart in, 165–169
correlation coefficient calculation, 146–147
gauge R&R test, 115
pivot table creation in, 124
regression analysis in, 149–150
scatter diagrams, 145
tracking risks with, 79
mistake proofing, 247–248, 344
movement, waste of unnecessary, 190–191
Must-Haves, 85, 87

N
needs analysis, 64
nominal (coding scheme), 123
nonconforming item, 12, 47, 48, 57
non-value-added steps, 208–209
normal curve, 158
normal process, 157, 158
Northwest Lean Networks (Web site), 348

p
p chart, 165
Pareto, Vilfredo (economist), 127
Pareto analysis/chart
benefits of, 137
category selection, 138–139
creating, 126–127, 137–140
description of, 43, 126
formation of, 139–140
information gathering, 138–139
interpreting, 140–143
pattern recognition, 140–141
pivot table use, 124
problems, 142–143
in Statistical Process Control, 159
Total Quality Management, 278, 282
using results of, 141–142
Pareto Principle, 127, 137, 141
parts, bad, 35
pass/fail test, 98, 123
PDCA. See Plan-Do-Check-Act (PDCA) cycle
peer pressure, 229
perfection, desire for, 82–83
performance attributes, 85, 87
personal items, putting away, 224–225
pilot project, 13, 76–78
pivot tables, 123–124
Plan-Do-Check-Act (PDCA) cycle
requirements of, 12
stages, 41–43
in Statistical Process Control, 172

O
Occupational Safety and Health Administration (OSHA), 26
one-change-at-a-time testing, 109–110
One-Dimensional Attributes, 85
on-the-job training, 44
operating expense, 327
ordinal (coding scheme), 123
overfeeding the process, 327–328
overproduction, waste of, 186–187
ownership, total cost of, 83–84

P
p chart, 165
Pareto, Vilfredo (economist), 127
Pareto analysis/chart
benefits of, 137
category selection, 138–139
creating, 126–127, 137–140
description of, 43, 126
formation of, 139–140
information gathering, 138–139
interpreting, 140–143
pattern recognition, 140–141
pivot table use, 124
problems, 142–143
in Statistical Process Control, 159
Total Quality Management, 278, 282
using results of, 141–142
Pareto Principle, 127, 137, 141
parts, bad, 35
pass/fail test, 98, 123
PDCA. See Plan-Do-Check-Act (PDCA) cycle
peer pressure, 229
perfection, desire for, 82–83
performance attributes, 85, 87
personal items, putting away, 224–225
pilot project, 13, 76–78
pivot tables, 123–124
Plan-Do-Check-Act (PDCA) cycle
requirements of, 12
stages, 41–43
in Statistical Process Control, 172
Index

tools, 43–44
Total Quality Management, 287
population, definition of, 135, 162
precision, 114
process
bad, 36
mapping, 44, 183
standardization, 44
process capability
capability index, 174–175
description of, 173–174
identifying, 174–175
moving a process closer to customer specifications, 175–176
process flowchart, in Total Quality Management, 283
producer risk, 50
product development
customer requirement identification, 342
customer-feedback mechanism, creating, 346
improving the process, 345
Kanban planning, 344
leaning the process, 343–344
measuring customer requirements, 343
mistake proofing a process, 344
problem identification, 342
prototype process, establishing, 343
testing the process, 345
product realization, ISO 9000
requirements for, 30
prototype process, 343
Pull system, 260, 262–263
Push system, 260–262

QCM (quality control manager), 65–66, 67
QFD. See Quality Function Deployment
QFD Institute (Web site), 350
quality
cost of poor quality (COPQ), 20–21
customer-based definition, 10
statistical definition, 11
quality assurance
bad processes, 36
bad products, 35–36
buyer responsibilities, 38–41
catching errors before they occur, 35–36
description of, 11, 33–34
nursery rhyme, 35
Plan-Do-Check-Act (PDCA) cycle, 12, 41–44
quality control compared to, 34–35
specifications, 44–46
supplier self-survey, 37–38, 39
suppliers, developing trusted, 36–41
quality control manager (QCM), 65–66, 67
Quality Function Deployment (QFD)
absolute importance, 321
cons, 312–313
customer requirements, identifying, 314–316
description of, 18, 311
House of Quality, 18, 313–323
mapping relationships, 319–320
matrix, 312
process, 313
pros, 312
relative importance, 321–322
targets, 322–323
technical difficulty, 323
voice of the engineer, 318
voice of the marketplace, 317
quality management standards. See quality standards
quality management system, ISO 9000
requirements for, 29
quality standards
American National Standards Institute (ANSI), 25
best practices, 231–232
certification, ISO, 27–32
communicating customers’ requirements, 26
creating, 23–24
de facto standard, 23
defining, 22–23
governing bodies, 24–25
International Organization for Standardization (ISO), 24–25
Joint Commission on Accreditation of Healthcare Organizations (JCAHO), 25, 26
roles in commerce, 25–26
as rules of the road, 22
safety, 26
setting, 11
quality steering committee, 284
questionnaire
 in Kano Model, 86
 supplier self-survey, 37–38, 39–40

\[R \]

R (Range) chart, 129, 164–165, 168–169
random sampling, 136
range, 133, 162
Rapid Improvement Event (RIE)
 baselining process performance, 243–245
 cleaning work area, 249
 cons, 237
 description of, 16, 235–236
 documenting current process, 241–245
 documenting tests and research, 252
 fifth day, 253–254
 first day, 245–249
 5S process, 244, 249–250
 following workers through process, 243
 fourth day, 251–252
 improvement plan, drafting, 250–251
 information security, 248
 leader, 240
 management report, 253
 managers, 241
 mapping process flow, 241–242
 mistake proofing, 247–248
 one week later, 254
 presentations, 246–248
 problematic process, identifying, 238
 pros, 236–237
 scorecard, 244, 252
 second day, 249–250
 selecting a process victim, 237–239
 staffing an improvement team, 239–241
 team building, 246–247
 testing improved process, 251–252
 third day, 250–251
 training the team, 245–249
 Value Stream Map, 241–242, 248–249
 work instructions, 242–243
 workers, 239–240
 ratio (coding scheme), 123
 records, of inspection process, 57–59
 rectifying scheme, 56
 recycling, 268
 registrars, 31–32

regression analysis
 description of, 148
 linear regression, 148
 in Microsoft Excel, 149–150
 performing, 149–150
 using results of, 151
 relative importance, 321–322
Replenishment Technology Group, Inc.
 (Web site), 349
reporting matrix, stakeholder, 70–71
resource management, ISO 9000
 requirements for, 30
returning items, 221
rework, 59–60
RIE. See Rapid Improvement Event
risk
 consumer, 50
 identifying, 78–79
 monitoring and managing, 79
 planning for, 79
 producer, 50
 quantifying, 79
 tracking with Microsoft Excel, 79
Risk Priority Number (RPN), 308
roadmap, quality, 64
root-cause analysis of failures, 52
rope, in Theory of Constraints, 332–333
rulers, three-dimensional electronic, 105
Rumsey, Deborah (Statistics For Dummies), 131
run charts
 in Statistical Process Control, 159, 160
Total Quality Management, 283

\[S \]
safety, quality standards, 26
sample fudge factor, 163
sample size, 135–136, 162
sampling
 double, 56
 lot, 54–56
 random, 136
 reasons to use in quality control, 134–135
 sample size, 135–136, 162
 sequential, 56
 single, 55
 standard samples, 114–115
sampling error, 136
Satisfiers, 85, 87
Sayer, Natalie (Lean For Dummies), 179
scatter diagram
creating, 128
plotting data on, 145–146
in Statistical Process Control, 159
in Total Quality Management, 282
uses for, 127–128
sequential sampling, 56
shadow boards, 223
Shewhart, Walter (statistician), 41, 156
Shine phase, 5S Method
cleaning as you go, 229–230
common areas, 229
description of, 228
equipment for, 228–229
fixing problems at the source, 230
maintenance issues, 230
shrinkage, inventory, 263
sigma, 163, 290, 301–303
signage, standardizing, 231
single sampling, 55
SIPOC map, 111–112
SIPOC (Standard Input and Output Chart), 304–305
Six Sigma
cons, 293
description of, 17–18, 289–290
DMAIC (Define, Measure, Analyze, Improve, and Control), 295–299
expertise levels, 291–292
Failure Modes and Effects Analysis (FMEA), 307–310
foundation of, 290
goal, 290–291
implementation, 293–299
Ishikawa’s Fishbone chart, 305–307
Lean improvements compared to, 18
process-review tools, 304–310
project selection, 293–299
pros, 292–293
Rolled Throughput Yield (RTY), 300–301
sigma measure, 301–303
Standard Input and Output Chart (SIPOC), 304–305
Theory of Constraints compared to, 329
variation measurement, 303–304
Six Sigma For Dummies (Gygi, DeCarlo, and Williams), 289
Six Sigma Qualtec (Web site), 292
small-group leadership skills training, 44
Some Economic Factors in Modern Life (Stamp), 122
Sort phase, 5S Method
description of, 219–220
disposal of items, 221–222
preparing to sort, 221–222
steps to sorting, 222
spaghetti chart
after, 237
before, 219, 220
Rapid Improvement Event, 243
SPC. See Statistical Process Control
special-cause variation, 162, 171
specifications
attributes of good, 45–46
avoiding extras in, 46
creating clear, 45–46
measurement against, 98, 99
need for, 44
required ingredients, 44–45
sponsor
approval for process, securing, 66
deciding on, 65
description of, 64–65
quality control manager, appointment of, 65–66
roles of, 65–68
spreadsheet. See Microsoft Excel
stability, in measuring processes, 113
stakeholder reporting matrix, 70–71
Stamp, Sir Josiah (Some Economic Factors in Modern Life), 122
standard deviation
capability index and, 174
control limits, 164
description of, 134
in Statistical Process Control, 162–163
Standard Input and Output Chart (SIPOC), 304–305
standard measurement, 115
Standardize phase, 5S Method, 231–232
standards. See quality standards
Statistical Process Control (SPC)
control chart use, 159, 161–173
data, attribute and variable, 164–165
description of, 15, 155–156
development of, 41
Statistical Process Control (SPC) (continued)

PDCA cycle, 172
process capability, calculating, 173–176
pros and cons, 159–161
responding to variation, 170–172
steps in, 156
tools, 158–159
variable (or continuous) data, 57
variation detection, 161–162
variation in normal processes, 157–158

statistics
confidence interval, 135
correlation, 143–148
mean, 133
Pareto analysis, 137–143
purposes served by, 14
regression analysis, 148–151
sampling, 134–136
sampling error, 136
standard deviation, 134
suspicion concerning, 132–133
terminology, 133–134
variance, 133, 151–154

Statistics For Dummies (Rumsey), 131

status board, department, 216–219
storage, 224

Straighten phase, 5S Method
description of, 223
floor plan, after, 225–227
labeling items, 225
personal items, putting away, 224–225
spaghetti chart, after, 227
tools and materials, 223–224

stratification, common-cause variation, 172
stream, 200

subordinate processes, 332, 336, 338

suggestion program, 285

supermarkets, 267, 269

supplier
buyer, relationship with, 38–41
deliveries from, 269
developing trusted, 36–41
involvement to control costs, 271
self-survey, 37–38, 39–40
small lots, shipments in, 272
supplier certification program, 270
supplier constraints, 334, 335

survey
customer, 89–90
Internet, 90
supplier self-survey, 37–38, 39–40

Sustain phase, 5S Method
auditing, 234
daily checkup, 233–234
description of, 232
guidelines, 233
permanence of, 232–233
system constraint, 334. See also constraint

T

table, pivot, 123–124
Takt Time, 192–195, 330
Targets, House of Quality, 322–323
tempo, process, 193–194

Theory of Constraints (TOC)
checkout line example, 337
cleanup process, 335–336
cons, 329–330
description of, 18, 325–326
Drum-Buffer-Rope system, 330–333
elevating the constraint, 337
goals, 333
identifying a constraint, 334–335
Lean compared to, 328
overfeeding the process, 327–328
principles of, 326
pros, 328–329
Six Sigma compared to, 329
subordinate processes, 332, 336, 338
throughput, concentration on, 326–327, 338

Threshold Attributes, 85
throughput, 327
timeline, Value Stream Map, 206
TOC. See Theory of Constraints
tools
acting, 44
checking, 44
cleaning, 228
coordinate measuring machines (CMMs), 105–106
doing, 43–44
gauge, 101–104
hand, 101
planning, 43
tidying, 223–224
Total Quality Management, 282–283
total cost of ownership, 83–84
Total Quality Management (TQM)
continuous improvement, 286–288
customer satisfaction, 286
data collection, 282
defect deletion, 281
description of, 17, 275
executives, role of, 283–284
improvement teams, 280, 285–286
middle managers, duties of, 284
obstacles, overcoming, 288
Plan-Do-Check-Act cycle, 287
principles, 276–277
pros and cons, 279
steps, 277–278
techniques, 280–281
tools, 282–283
training workers, 284–285
Toyota Production System (TPS), 186
TQM. See Total Quality Management
tracking defects, 56–60
training
cooperative, 75
experimentation, 75
formal, 72–74
help with, 74
importance of, 71
informal, 72, 74–75
Lean processes, 182
Rapid Improvement Event team, 245–249
self-motivated, 75
Six Sigma, 291–292
steps in, 73
workers on Total Quality Management, 284–285
transportation waste, 188–189
tribal knowledge, 296

• U •
u chart, 165
unit cost of manufacture, 256
unnecessary motion, waste of, 190–191

• V •
value, definition of, 200
Value Stream Map (VSM)
advantages of, 202–203
attributes, 201
creation, steps in, 201–202
current state map, 202, 203–208
description of, 15, 200
families, creating product, 206, 208
flow of materials and information, 204, 206
flowcharting compared to, 201
future state map, 202, 208–212
icons, 204, 205
purpose of, 199–200
in Rapid Improvement Event, 241–242, 248–249
value-added and non-value-added steps, 208–209
value streams, leaning, 182–183
value-added steps, 208–209
variable data
control chart, 164–165
description of, 49
in gauge R&R test, 115
Statistical Process Control, 57
turning attribute data into, 49
variables, 128, 149
variance
analysis of variance (ANOVA), 151–154
calculating and using, 152–154
description of, 133
identifying variance issue, 151–152
variation
common-cause, 161, 171–172
measuring in Six Sigma, 303–304
normal, 157–158
special-course, 162, 171
voice of the customer (VOC)
benefits of, 81
House of Quality, 313
methods to seek information, 93–94
survey, sample, 92
ways to hear, 13–14
voice of the engineer, 318
voice of the marketplace, 317
VSM. See Value Stream Map

• W •

waiting, waste of, 187–188
warranty data, 94
waste
 defective products, 191–192
defined, 15
excess inventory, 189–190
focus on elimination of, 180, 183–184
of overproduction, 186–187
Theory of Constraints, definition of, 327
transportation, 188–189
underutilization of skilled employees, 186
of unnecessary motion, 190–191
from unneeded processing steps, 189
of waiting, 187–188
Web sites, 347–350
Wikipedia (Web site), 347
Williams, Bruce
 Lean For Dummies, 179
 Six Sigma For Dummies, 289
work instructions, process, 242

• X •

X-bar chart, 129, 164–165