Contents

Preface xi
List of Contributors xiii

1. Quality Assurance, Quality Control and Method Validation in Chromatographic Applications 1
Michele L. Merves and Bruce A. Goldberger

1.1 Introduction 1
1.2 History 1
1.3 Definition of Quality Assurance and Quality Control 3
1.4 Professional Organizations 4
1.5 Internal Quality Assurance and Control 5
1.5.1 Standard operating procedure manual 5
1.5.2 Method development 5
1.5.3 Method validation 6
1.5.4 Accuracy 7
1.5.5 Precision 7
1.5.6 Recovery 7
1.5.7 Lower limits of detection (sensitivity) and quantitation 8
1.5.8 Range of linearity 8
1.5.9 Specificity 9
1.5.10 Stability 9
1.5.11 Carryover 9
1.5.12 Ruggedness 9
1.5.13 Selection of a reference standard 10
1.5.14 Selection of an internal standard and standard addition 10
1.5.15 Selection of derivatization agent 10
1.5.16 Selection of ions for selected-ion monitoring or full-scan analysis 11
1.5.17 Chromatographic performance 11
1.5.18 Statistical evaluation of quality control 11
1.6 External Quality Assurance 13
References 13
2. Liquid Chromatographic-Mass Spectrometric Measurement of Anabolic Steroids

Don H. Catlin, Yu-Chen Chang, Borislav Starcevic and Caroline K. Hatton

2.1 Introduction
2.2 LC-MS Analysis of Synthetic Steroids or Animal Samples
2.3 LC-MS Analysis of Natural Androgens in Human Samples
2.4 Conclusion
References

3. High-performance Liquid Chromatography in the Analysis of Active Ingredients in Herbal Nutritional Supplements

Amitava Dasgupta

3.1 Introduction
3.2 St John’s Wort
 3.2.1 Drug interactions with St John’s wort
 3.2.2 Measurement of active ingredients of St John’s wort using HPLC
 3.2.3 Analysis of St John’s wort extract with other analytical techniques
 3.2.4 Measurement of hypericin and hyperforin in human plasma using HPLC
3.3 Herbal Supplements with Digoxin-like Immunoreactivity
 3.3.1 Use of HPLC for the determination of chan su, danshen and ginsengs
3.4 Herbal Remedies and Abnormal Liver Function Tests
 3.4.1 Use of GC-MS and HPLC for the measurement of active components
3.5 Ginkgo Biloba
 3.5.1 Analysis of components of ginkgo biloba by HPLC
3.6 Echinacea
 3.6.1 Analysis of active components of echinacea by HPLC
3.7 Valerian
 3.7.1 Analysis of components of valerian by HPLC
3.8 Feverfew
 3.8.1 Analysis of parthenolide by HPLC
3.9 Garlic
 3.9.1 Measurement of components of garlic by HPLC
3.10 Ephedra (Ma Huang) and Related Drugs
 3.10.1 Analysis of active components of ephedra-containing products
3.11 Conclusions
References

4. Measurement of Plasma l-DOPA and l-Tyrosine by High-Performance Liquid Chromatography as a Tumor Marker in Melanoma

Thierry Le Bricon, Sabine Letellier, Konstantin Stoitchkov and Jean-Pierre Garnier

4.1 Introduction
4.2 Melanogenesis
7.2 Analytical Measurements of Catecholamines and Metanephrines 105
7.3 Early Methods 105
 7.3.1 Catecholamines 105
 7.3.2 Metanephrines 106
7.4 Current Chromatographic Methods 106
 7.4.1 Chemistry of catecholamines 106
 7.4.2 Specimen preparation 107
 7.4.3 Fluorescence detection 109
 7.4.4 Electrochemical detection 110
 7.4.5 Chemiluminescence detection 112
 7.4.6 Mass spectrometry 115
7.5 Practical Considerations for the Stability of Urinary Catecholamines and Metanephrines During Storage 117
7.6 Future Developments 118
Dedication 119
References 119

8. Chromatographic Measurement of Volatile Organic Compounds (VOCs) 127
 Larry A. Broussard

 8.1 Introduction 127
 8.2 General Considerations 127
 8.3 Intended Use 128
 8.4 Volatility of Compounds 128
 8.5 Sample Collection, Handling and Storage 129
 8.6 Headspace Gas Chromatographic Methods 129
 8.7 Columns and Detectors 130
 8.8 Identification, Quantitation and Confirmation 130
 8.9 Ethanol and Other Volatile Alcohols 131
 8.10 Inhalants and Screening for Multiple VOCs 132
 8.11 Interpretation 134
 8.12 Conclusion 136
References 136

9. Chromatographic Techniques for Measuring Organophosphorus Pesticides 139
 H. Wollersen and F. Musshoff

 9.1 Introduction 139
 9.2 Organophosphorus Pesticides (OPs)
 9.2.1 Mechanism of action 141
 9.2.2 Intoxication 141
 9.2.3 Progression of intoxication and longer term risks 145
 9.2.4 Therapy 146
 9.2.5 Analytical procedures 146
 9.3 Conclusion 163
References 164
CONTENTS

<table>
<thead>
<tr>
<th>10. Chromatographic Analysis of Nerve Agents</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeri D. Ropero-Miller</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>170</td>
</tr>
<tr>
<td>10.2 Neuromuscular Blockers</td>
<td>170</td>
</tr>
<tr>
<td>10.2.1 Background and uses</td>
<td>170</td>
</tr>
<tr>
<td>10.2.2 Classification, mechanism and duration of action</td>
<td>171</td>
</tr>
<tr>
<td>10.2.3 Effects and toxicity</td>
<td>173</td>
</tr>
<tr>
<td>10.2.4 Analysis</td>
<td>173</td>
</tr>
<tr>
<td>10.3 Paralytic Shellfish Poisoning: Saxitoxin</td>
<td>185</td>
</tr>
<tr>
<td>10.3.1 Background</td>
<td>185</td>
</tr>
<tr>
<td>10.3.2 Toxicity</td>
<td>187</td>
</tr>
<tr>
<td>10.3.3 Analysis</td>
<td>188</td>
</tr>
<tr>
<td>10.4 Summary</td>
<td>191</td>
</tr>
<tr>
<td>References</td>
<td>195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. History and Pharmacology of γ-Hydroxybutyric Acid</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laureen Marinetti</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>11.2 History of Illicit Use of GHB</td>
<td>198</td>
</tr>
<tr>
<td>11.3 Clinical Use of GHB in Humans</td>
<td>200</td>
</tr>
<tr>
<td>11.4 History of Illicit Use of GBL and 1,4BD</td>
<td>200</td>
</tr>
<tr>
<td>11.5 Distribution and Pharmacokinetics of GHB, GBL and 1,4BD</td>
<td>202</td>
</tr>
<tr>
<td>11.6 GHB Interpretation Issues and Post-mortem Production</td>
<td>204</td>
</tr>
<tr>
<td>11.7 Analysis for GHB, GBL and 1,4BD</td>
<td>208</td>
</tr>
<tr>
<td>References</td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Katarzyna Wrobel, Kazimierz Wrobel and Joseph A. Caruso</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>12.2 Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection</td>
<td>218</td>
</tr>
<tr>
<td>12.3 Analytical Applications of Clinical and Toxicological Relevance</td>
<td>219</td>
</tr>
<tr>
<td>12.3.1 Arsenic</td>
<td>219</td>
</tr>
<tr>
<td>12.3.2 Iodine</td>
<td>234</td>
</tr>
<tr>
<td>12.3.3 Mercury</td>
<td>234</td>
</tr>
<tr>
<td>12.3.4 Platinum</td>
<td>240</td>
</tr>
<tr>
<td>12.3.5 Selenium</td>
<td>245</td>
</tr>
<tr>
<td>12.4 Conclusions and Future Trends</td>
<td>260</td>
</tr>
<tr>
<td>12.5 Abbreviations</td>
<td>260</td>
</tr>
<tr>
<td>References</td>
<td>262</td>
</tr>
</tbody>
</table>

Suresh K. Aggarwal, Robert L. Fitzgerald and David A. Herold

13.1 Introduction 274
13.2 Instrumentation 275
13.3 Experimental Procedure 276
 13.3.1 Preparation of internal standard solutions 276
 13.3.2 Digestion of biological sample 276
 13.3.3 Preparation of metal chelate 277
13.4 GC-MS Studies 278
 13.4.1 Memory effect evaluation 278
 13.4.2 Precision and accuracy in measuring isotope ratios 281
 13.4.3 Results of concentration determination of toxic metals in biological samples 283
13.5 Conclusions 284
References 284

Index 287