Contents

Preface xiii
List of Contributors xv

Part I Introduction 1

1 Introduction to Reactive Extrusion 3
Christian Hopmann, Maximilian Adamy, and Andreas Cohnen
References 9

Part II Introduction to Twin-Screw Extruder for Reactive Extrusion 11

2 The Co-rotating Twin-Screw Extruder for Reactive Extrusion 13
Frank Lechner
2.1 Introduction 13
2.2 Development and Key Figures of the Co-rotating Twin-Screw Extruder 14
2.3 Screw Elements 16
2.4 Co-rotating Twin-Screw Extruder – Unit Operations 22
2.4.1 Feeding 23
2.4.2 Upstream Feeding 23
2.4.3 Downstream Feeding 24
2.4.4 Melting Mechanisms 24
2.4.5 Thermal Energy Transfer 24
2.4.6 Mechanical Energy Transfer 25
2.4.7 Mixing Mechanisms 25
2.4.8 Devolatilization/Degassing 25
2.4.9 Discharge 26
2.5 Suitability of Twin-Screw Extruders for Chemical Reactions 26
2.6 Processing of TPE-V 27
2.7 Polymerization of Thermoplastic Polyurethane (TPU) 29
Part III  Simulation and Modeling  37

3 Modeling of Twin Screw Reactive Extrusion: Challenges and Applications  39

Françoise Berzin and Bruno Vergnes

3.1 Introduction  39
3.1.1 Presentation of the Reactive Extrusion Process  39
3.1.2 Examples of Industrial Applications  40
3.1.3 Interest of Reactive Extrusion Process Modeling  41
3.2 Principles and Challenges of the Modeling  41
3.2.1 Twin Screw Flow Module  42
3.2.2 Kinetic Equations  44
3.2.3 Rheokinetic Model  44
3.2.4 Coupling  45
3.2.5 Open Problems and Remaining Challenges  45
3.3 Examples of Modeling  46
3.3.1 Esterification of EVA Copolymer  46
3.3.2 Controlled Degradation of Polypropylene  50
3.3.3 Polymerization of $\varepsilon$-Caprolactone  55
3.3.4 Starch Cationization  59
3.3.5 Optimization and Scale-up  61
3.4 Conclusion  65

References  66

4 Measurement and Modeling of Local Residence Time Distributions in a Twin-Screw Extruder  71

Xian-Ming Zhang, Lian-Fang Feng, and Guo-Hua Hu

4.1 Introduction  71
4.2 Measurement of the Global and Local RTD  72
4.2.1 Theory of RTD  72
4.2.2 In-line RTD Measuring System  73
4.2.3 Extruder and Screw Configurations  75
4.2.4 Performance of the In-line RTD Measuring System  76
4.2.5 Effects of Screw Speed and Feed Rate on RTD  77
4.2.6 Assessment of the Local RTD in the Kneading Disk Zone  79
4.3 Residence Time, Residence Revolution, and Residence Volume Distributions  81
4.3.1 Partial RTD, RRD, and RVD  82
4.3.2 Local RTD, RRD, and RVD  86

References  86
4.4 Modeling of Local Residence Time Distributions 88
4.4.1 Kinematic Modeling of Distributive Mixing 88
4.4.2 Numerical Simulation 89
4.4.3 Experimental Validation 92
4.4.4 Distributive Mixing Performance and Efficiency 93
4.5 Summary 97
References 98

5 In-process Measurements for Reactive Extrusion Monitoring and Control 101
José A. Covas
5.1 Introduction 101
5.2 Requirements of In-process Monitoring of Reactive Extrusion 103
5.3 In-process Optical Spectroscopy 111
5.4 In-process Rheometry 116
5.5 Conclusions 125
Acknowledgment 126
References 126

Part IV Synthesis Concepts 133

6 Exchange Reaction Mechanisms in the Reactive Extrusion of Condensation Polymers 135
Concetto Puglisi and Filippo Samperi
6.1 Introduction 135
6.2 Interchange Reaction in Polyester/Polyester Blends 138
6.3 Interchange Reaction in Polycarbonate/Polyester Blends 143
6.4 Interchange Reaction in Polyester/Polyamide Blends 148
6.5 Interchange Reaction in Polycarbonate/Polyamide Blends 155
6.6 Interchange Reaction in Polyamide/Polyamide Blends 159
6.7 Conclusions 166
References 167

7 In situ Synthesis of Inorganic and/or Organic Phases in Thermoplastic Polymers by Reactive Extrusion 179
Véronique Bounor-Legaré, Françoise Fenouillot, and Philippe Cassagnau
7.1 Introduction 179
7.2 Nanocomposites 179
7.2.1 Synthesis of in situ Nanocomposites 181
7.2.2 Some Specific Applications 183
7.2.2.1 Antibacterial Properties of PP/TiO₂ Nanocomposites 183
7.2.2.2 Flame-Retardant Properties 184
7.2.2.3 Protonic Conductivity 186
7.3 Polymerization of a Thermoplastic Minor Phase: Toward Blend Nanostructuration 188
Contents

7.4 Polymerization of a Thermoset Minor Phase Under Shear 196
7.4.1 Thermoplastic Polymer/Epoxy-Amine Miscible Blends 197
7.4.2 Examples of Stabilization of Thermoplastic Polymer/Epoxy-Amine Blends 202
7.4.3 Blends of Thermoplastic Polymer with Monomers Crosslinking via Radical Polymerization 202
7.5 Conclusion 203
References 204

8 Concept of (Reactive) Compatibilizer-Tracer for Emulsification Curve Build-up, Compatibilizer Selection, and Process Optimization of Immiscible Polymer Blends 209
Cai-Liang Zhang, Wei-Yun Ji, Lian-Fang Feng, and Guo-Hua Hu
8.1 Introduction 209
8.2 Emulsification Curves of Immiscible Polymer Blends in a Batch Mixer 210
8.3 Emulsification Curves of Immiscible Polymer Blends in a Twin-Screw Extruder Using the Concept of (Reactive) Compatibilizer 213
8.3.1 Synthesis of (Reactive) Compatibilizer-Tracers 213
8.3.2 Development of an In-line Fluorescence Measuring Device 214
8.3.3 Experimental Procedure for Emulsification Curve Build-up 216
8.3.4 Compatibilizer Selection Using the Concept of Compatibilizer-Tracer 219
8.3.5 Process Optimization Using the Concept of Compatibilizer-Tracer 220
8.3.5.1 Effect of Screw Speed 220
8.3.5.2 Effects of the Type of Mixer 221
8.3.6 Section Summary 221
8.4 Emulsification Curves of Reactive Immiscible Polymer Blends in a Twin-Screw Extruder 222
8.4.1 Reaction Kinetics between Reactive Functional Groups 222
8.4.2 (Non-reactive) Compatibilizers Versus Reactive Compatibilizers 223
8.4.3 An Example of Reactive Compatibilizer-Tracer 224
8.4.4 Assessment of the Morphology Development of Reactive Immiscible Polymer Blends Using the Concept of Reactive Compatibilizer 225
8.4.5 Emulsification Curve Build-up in a Twin-Screw Extruder Using the Concept of Reactive Compatibilizer-Tracer 229
8.4.6 Assessment of the Effects of Processing Parameters Using the Concept of Reactive Compatibilizer-Tracer 233
8.4.6.1 Effect of the Reactive Compatibilizer-Tracer Injection Location 233
8.4.6.2 Effect of the Blend Composition 235
8.4.6.3 Effect of the Geometry of Screw Elements 238
8.5 Conclusion 241
References 241
Part V  Selected Examples of Synthesis  245

9  Nano-structuring of Polymer Blends by in situ Polymerization and in situ Compatibilization Processes  247
  Cai-Liang Zhang, Lian-Fang Feng, and Guo-Hua Hu

9.1  Introduction  247
9.2  Morphology Development of Classical Immiscible Polymer Blending Processes  248
  9.2.1  Solid–Liquid Transition Stage  249
9.2.2  Melt Flow Stage  251
9.2.3  Effect of Compatibilizer  253
9.3  In situ Polymerization and in situ Compatibilization of Polymer Blends  255
  9.3.1  Principles  255
9.3.2  Classical Polymer Blending Versus in situ Polymerization and in situ Compatibilization  255
9.3.3  Examples of Nano-structured Polymer Blends by in situ Polymerization and in situ Compatibilization  257
  9.3.3.1  PP/PA6 Nano-blends  257
9.3.3.2  PPO/PA6 Nano-blends  264
9.3.3.3  PA6/Core–Shell Blends  264
9.4  Summary  267

References  268

10  Reactive Comb Compatibilizers for Immiscible Polymer Blends  271
  Yongjin Li, Wenyong Dong, and Hengti Wang

10.1  Introduction  271
10.2  Synthesis of Reactive Comb Polymers  272
10.3  Reactive Compatibilization of Immiscible Polymer Blends by Reactive Comb Polymers  274
  10.3.1  PLLA/PVDF Blends Compatibilized by Reactive Comb Polymers  274
  10.3.1.1  Comparison of the Compatibilization Efficiency of Reactive Linear and Reactive Comb Polymers  274
  10.3.1.2  Effects of the Molecular Structures on the Compatibilization Efficiency of Reactive Comb Polymers  278
  10.3.2  PLLA/ABS Blends Compatibilized by Reactive Comb Polymers  282
10.4  Immiscible Polymer Blends Compatibilized by Janus Nanomicelles  289
10.5  Conclusions and Further Remarks  293

References  293
11 Reactive Compounding of Highly Filled Flame Retardant Wire and Cable Compounds 299
Mario Neuenhaus and Andreas Niklaus
11.1 Introduction 299
11.2 Formulations and Ingredients 300
11.2.1 Typical Formulation and Variations for the Evaluation 300
11.2.2 Principle of Silane Crosslinking by Reactive Extrusion 301
11.2.3 Production of Aluminum Trihydroxide (ATH) 301
11.2.4 Mode of Action of Aluminum Trihydroxide 302
11.2.5 Selection of Suitable ATH Grades 303
11.3 Processing 306
11.3.1 Compounding Line 306
11.3.2 Compounding Process for Cross Linkable HFFR Products 308
11.3.2.1 Two-Step Compounding Process 308
11.3.2.2 One-Step Compounding Process 309
11.3.2.3 Advantages and Disadvantages of the Two Process Concepts (Two-Step vs One-Step) 313
11.4 Evaluation and Results on the Compound 314
11.4.1 Crosslinking Density 314
11.4.2 Mechanical Properties 315
11.4.3 Aging Performance 315
11.4.4 Fire Performance on Laboratory Scale 317
11.4.5 Results of the Non-Polar Compounds 318
11.5 Cable Trials 322
11.5.1 Fire Performance of Electrical Cables According to EN 50399 322
11.5.2 Burning Test on Experimental Cables According to EN 50399 323
11.6 Conclusions 328
References 329

12 Thermoplastic Vulcanizates (TPVs) by the Dynamic Vulcanization of Miscible or Highly Compatible Plastic/Rubber Blends 331
Yongjin Li and Yanchun Tang
12.1 Introduction 331
12.2 Morphological Development of TPVs from Immiscible Polymer Blends 333
12.3 TPVs from Miscible PVDF/ACM Blends 334
12.4 TPVs from Highly Compatible EVA/EVM Blends 338
12.5 Conclusions and Future Remarks 342
References 342
Part VI  Selected Examples of Processing  345

13  Reactive Extrusion of Polyamide 6 with Integrated Multiple Melt Degassing  347
  Christian Hopmann, Eike Klünker, Andreas Cohnen, and Maximilian Adamy

  13.1  Introduction  347
  13.2  Synthesis of Polyamide 6  347
  13.2.1  Hydrolytic Polymerization of Polyamide 6  347
  13.2.2  Anionic Polymerization of Polyamide 6  348
  13.3  Review of Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders  352
  13.4  Recent Developments in Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders  354
  13.4.1  Reaction System and Experimental Setup  354
  13.4.2  Influence of Number of Degassing Steps and Activator Content on Residual Monomer Content and Molecular Weight  356
  13.4.3  Influence of Amount and Type of Entrainer on Residual Monomer Content and Molecular Weight  365
  13.4.4  Influence of Polymer Throughput on Residual Monomer Content  367
  13.5  Conclusion  368

References  369

14  Industrial Production and Use of Grafted Polyolefins  375
  Inno Rapthel, Jochen Wilms, and Frederik Piestert

  14.1  Grafted Polymers  375
  14.2  Industrial Synthesis of Grafted Polymers  376
  14.2.1  Melt Grafting Technology  377
  14.2.2  Solid State Grafting Technology  378
  14.3  Main Applications  380
  14.3.1  Use as Coupling Agents  380
  14.3.2  Grafted Polyolefins for Polymer Blending  392
  14.3.2.1  Reactive Blending of Polyamides  392
  14.3.3  Grafted TPE’s for Overmolding Applications  400
  14.4  Conclusion and Outlook  403

References  404

Index  407