Index

a

accumulation 325, 340
accuracy, parameter 359, 363, 369, 373, 379, 397
activated carbon 48
adsorbent 8, 9, 326, 359, 379
– activity parameter 137
– classification 47
– customized 48
– designed 48
– general 48
– low affinity 341, 346
– morphology 95
– storage 108
adsorption
– chemical 10
– competitive 136, 388, 402
– enthalpy 10
– equilibrium 15, 136, 325, 329, 331, 335, 337, 341, 359
– model 134
– physical 9
– rate 329, 341
adsorption-desorption method 384, 386
advanced process control 237, 497
affinity selector sorbents 57
affinity sorbent 54
– protein A 54
– protein G 57
– protein L 57
agarose 73
alkylsilica 66, 153, 159, 167
analysis, moment 360, 361, 362, 370, 375, 376, 377, 382
analytical chromatography 110, 154
analytical solution 335, 336, 345, 360, 369, 370, 391
anion exchangers 77
annular chromatography 283
approach, model 322, 346
asynchronous shifting 233
at-column-dilution 130
automated screening 177
axial
– compression 19
– diffusion 27
b
back mixing 227
balance 321, 325, 405
– differential 331, 337, 338, 340, 341, 349, 408
– overall 336, 345, 385
band broadening 18, 20, 334, 335, 336, 345, 350, 365, 461
– artificial 354
baseline 363
– separation 274, 443
batch chromatography 442
batch method 382
bioprocess, economics 200
bio-separation 215, 220
boundary
– conditions 329, 335, 342, 343, 349, 350, 351, 405
– layer 328, 339
breakthrough 333, 374, 390
– curves 346, 359, 385
brush type adsorbent 153
bubble formation 226
buffer, systems 123
c

calibration 359, 362, 374, 390, 391, 393, 396
– detector 359, 362, 374
capacity factors 12, 28
capacity scenarios 204
capture step 298
catalyst 344
– distribution of 281
cation exchangers 77
cavitation 226
cGMP 201
chiral selector 89, 92
chiral separation 167
– enantioselectivity 169
– optimization 171
– practical hints 172
– racemization 172
chiral stationary phases 85, 168
chromatogram 15, 361, 370, 375
chromatographic batch reactor 281
– application 282
chromatographic reactor 281
– Hashimoto process 302
– modeling 344
– simulated moving bed reactor 301
chromatographic separation
– development of 113
– goal 110
– working area 183
chromatography systems 8, 109, 358
– analytical 110, 154
– batch 438, 442
– column switching 283
– construction material 219
– FDA Code 219
– flash 115
– membranes 267
– normal phase 100, 132
– optimization 181
– preparative 110
– properties 117
– requirements 218
– selection 109, 125, 282
– supercritical-fluid 8
– thin layer 8, 134, 139, 149
– USP test 219
circulation method 384, 386
cleaning in place 103, 215, 220
– ion exchange resins 105
– protein A-resins 105
clinical phase 202
closed loop recycling chromatography 276, 457
coefficient
– effective mass transfer 366
– film mass transfer 365
coherence condition 334, 393
collocation 356
column 9, 446
– chemical resistance 211
– clean-ability 216
– combined stall (DAC packing 250
– dead time 12, 363, 377
– efficiency 24, 256, 346
– equilibration 254
– flow packing 246
– high pressure 210
– lifting pistons 235
– low pressure 210, 214
– maintenance 103
– model 322, 394, 401, 405
– mover 235
– packing 243
– parameter 350
– permeability 21
– pre-packed 266
– preparation 246
– pressure drop 21
– rating 102
– regeneration 103
– sanitary design 215
– semi-preparative 379
– stainless steel 210
– stall packing 250
– storage 108, 257
– testing 254
– vacuum packing 252
– vibration packing 253
column design 207, 208
column efficiency 28
column porosity 12
competitive, adsorption 388, 402
component 9
compression
– dynamic axial 209
– radial 209
computerized process model 203
concentration
– average 326
– distribution 326, 340
– plateau 374, 385, 392
– pore 326, 329, 331, 339
– profile 302, 362
– shock 387
conceptual design 203
condition, boundary 349, 405
conditioning, silica surfaces 106
continuously stirred tank 345, 352, 375
control
– advanced 237
– robustness 238
– standard 236
convection 325, 327, 330, 337, 340, 348, 408
correlation 360, 378, 398
corrosion requirements 203
costs 358, 379
– annual depreciation 428
– annual operating 428
– fixed 428, 446
– hardware 200
– mobile phase 201
– stationary phase 200
– total separation 428, 446, 452
– variable 428, 444
cross-linked polymer 47, 153
crystallization 115
C18 silica 159
CSP (chiral stationary phase)
– amyllose-based 89
– antibiotic 91
– brush-type 93
– cellulose-based 89
– monolithic 95
– preparative 85
– selectivity range 169
– synthetic polymeric 91
curves
– breakthrough 346, 359, 385
– fitting 370, 395, 397
customized adsorbent 62
cut strategy 442
cycle time 288
CycloJet 278
d
DAC packing 249
Darcy equation 21, 378, 446, 472
dead time 331, 360
– column 12, 363, 377
– plant 12, 333, 352, 363, 375, 386
– total 11
dead volume 228, 375, 404
– plant 375, 404
– simulated moving-bed 407, 410
deconvolution 371
degasser 227
designed adsorbent 54
detector 240, 350, 386, 411
– calibration 359, 362, 374, 390, 391, 393, 396
– limit 122, 240
– mass spectrometry 157
– model 352
– noise 240, 363, 365, 369, 393, 396
– polarimetry 387
– refractive index 122
– ultra violet 387
determination, parameter 357, 359, 397
differential
– balance 331, 337, 338, 340, 341, 349, 408
– equation 349, 353
– total 334
– volume element 322, 325
diffusion 207
– coefficients 496
– eddy 20, 377, 433, 436
– Fickian 23, 341
– film 23
– pore 398
– intraparticle 327, 342, 399
– macro 327
– molecular 377, 433
– pore 23, 325, 327, 340, 346, 365
– surface 23, 325, 327, 340, 346
Dirac pulse 345, 364, 365
direct optimizing control 503
discretization 354
disperse front 333, 390, 393
dispersion 325
– axial 327, 334, 338, 340, 348, 359, 360, 361, 365
– coefficient
– apparent 336, 366
– axial 335, 338, 358, 367, 377, 398
– numerical 354
displacement effect 42, 117, 183, 332, 387, 402
distortion, peak 350
divinylbenzene 76
downstream processing 115
– of Mabs 174
driving force 328, 344
Dyax phage display technology 63
dynamic methods 385
economic criteria 428, 429
eddy diffusion 20, 27, 377
effect, extra column 350, 359
efficiency, column 346
effusion, molecular 399
eluent 451
– consumption 479
– specific consumption 427, 451
eIotropie series 136
elution 298
– gradient 43, 131, 156, 279
Index

– isocratic 43, 157, 274, 279
– order 117, 154, 156, 171
– profile 336, 345, 363, 397, 402
endcapping 68, 167
equation, differential 343, 353
equilibrium 331, 382, 384
– adsorption 359
– dispersive model 334, 346, 366, 367
– model, ideal 330
– stage model 495
– theory 332, 390, 392
Ergun equation 21
estimation
– of column parameters 509
– parameter 360, 369, 375, 377, 394, 398
explosion requirements 202
exponential-modified-Gauss function 370
extended model 415
extra column 350, 364, 375, 404, 407
– effects 18, 350, 359, 361, 391
f
factor, loading 431, 435, 447
feedback control 236
fermentation processes 199
FF-SMB 294, 482
Fickian diffusion 23
filter 235
fine chemicals 201
finite difference method 355
first, moment 377
fitting, peak 361, 369, 370
flash, chromatography 115
flip-flop chromatography 275
flow
– dispersive 352
– ideal plug 352
– packing 246
– rate ratio 435
– rate ratio mj 464
flowsheet, simulation 350
fluid distribution 19, 20, 213
forced elution step 184
fractionation-feedback 293
fractionation mode (cut strategy) 442
fraction collection 386
frits design 211
frontal analysis 393

gradient
– chromatography 222
– generic 131, 157
– mixing 224
gradient elution 43, 131, 156, 279, 280
– linear gradient 280
– step gradient 279
gradient SMB
– chromatography 295, 415, 490
– hold-up vessel 494
– with open loop 494
guidelines for process concepts 305
h
Hashimoto process 302
Henry constant 349, 360, 365, 367, 379, 382, 391, 397, 410
HETP 24, 336, 361, 362, 367, 368, 371, 398, 433
high pressure injection 225
high-throughput screening 178
His-tagged protein 59
hold up, piping 221
HPLC chromatography 207
HPLC pumps 226
HPLC systems 218, 224
– feed injection 224
– pipes 227
– valves 227
hydrophilicity 48, 65
hydrophobic interaction
– chromatography 416
hydrophobicity 48, 64, 66, 70, 153, 167
hygienic requirements 203
i
ideal adsorbed solution theory 395, 402
ideal adsorbed solution (IAS) theory 35
ideal model 330, 346, 365
IgM isolation 64
immobilized metal affinity
– chromatography 57
improved SMB 293
infection point 386, 387, 393
initial, condition 335, 343
injection 343, 345, 363
– amount 129, 336
– high pressure 225
– loop 225
– low pressure 225
– solvent 129
– system 350, 351
– time 333, 343, 349, 351, 447
– dimensionless 432
inorganic oxide 51
integrated process, partial deintegration 302
intraparticle diffusion 83
ion exchange 77, 416
– chromatography 176
ion-exchange
– separation 496
ISMB 288
isocratic elution 43, 274, 280
isomerisation of glucose 504
isotherm 15, 32, 329, 358, 379, 396
– concave 394
– convex 386
– effect on elution profile 333, 390, 397
– Langmuir 33, 388, 402, 431
–– anti-Langmuir 389
–– multicomponent 35, 329, 334, 349, 388, 395, 402
– linear 329, 335, 339, 345, 364, 382, 397
– peak 359
– steric mass action (SMA) 38
– Toth model 34
isotherm determination 360, 379
– accuracy 379, 390, 394, 396
– adsorption-desorption method 382, 386
– analysis of disperse fronts 390, 393
– batch method 382
– circulation method 386
– curve fitting of the chromatogram 394
– dynamic methods 385, 396
– frontal analysis 385, 393
– minor disturbance method 391
– neural networks 399
– peak-maximum method 391
– perturbation method 391
– pulse response 385
– static method 382
– step response 385

k
kinetic, adsorption 339, 365

l
large scale manufacturing 202
linear driving force 338, 344
linear gradient 79
lipophilicity(lipophobicity 48
lipophobicity 133
loading 15, 326, 329, 331, 339, 382
– ability 127, 128
– average 326
– distribution 326, 340
– factor 431, 435, 447
– solid 31
– total 31
low pressure injection 225
LPLC system 218, 220
– chromatography 207
– piping systems 220
– valves 220
lumped rate model 338, 346, 365, 366

m
macropores 73, 100
mass balance, differential 344
mass loadability 101
mass spectrometry 156
MCSGP
– advanced control 504
– process 299, 496
membranes
– disposable 267
– single use 267
– technologies 269
mercury intrusion 100
mesopores 100
method development 8
micropores 73, 100
minor disturbance method 392
mixed recycle 454
mobile phase 8, 118
– detection property 121
– selection of 127
– water content 133
model 321
– approach 322, 346
– classification of 322
– column 346, 394, 401, 405
– equilibrium dispersive 334, 346, 366, 367
– general rate 340, 346, 365
– ideal 330, 346, 365
– lumped rate 338, 346, 365, 366
– plant 350, 375, 394
– pore diffusion 341
– reaction 337, 346
–– dispersive 339
– stage 344, 346
– theoretical plate 344
– transport 336
– validation 401
ModiCon 294, 407, 482, 484
moment
– analysis 360, 361, 362, 370, 375, 376, 377, 382, 398
– first 25, 336, 345, 364, 377
– second 26, 336, 345, 364, 373, 377
monoclonal antibodies 496
– purification 174
monoclonal antibody production 203
monolithic column 96
MR-SSR processes 454
multicolumn bioseparations 298
multicolumn countercurrent solvent gradient purification (MCSGP) 299
multicomponent SMB separations 296
multiport switching valve chromatography 284
multipurpose flexibility 202
multi-rate controller 504

n
neural networks 400
nitrogen sorption 100
noise, detector 363
nonlinear optimization 498
normal phase chromatography, practical hints 106
normal phase silica 106
normal phase system
– gradient 132, 148
– optimization 139, 145
– practical hints 128, 136
– retention 134
– selectivity 138, 145
– solvent strength 146
– water content 136
number of stages 336, 345, 346, 367, 371, 433, 435, 446, 447
numerical simulation 321, 344, 353, 369, 401, 413

o
objective function 369, 397, 429
online optimization 499
online parameter estimation 499
open-loop SMB 295
operating parameter 472
optimization 360, 369, 396, 440, 442
– batch process 444
– FFSQP algorithm 482
– genetic algorithm 482
– genetic algorithms, jumping genes 482
– MINLP 483
– model-based 437
– multiobjective 482, 484
– multiple shooting 482
– simulated moving bed 462
overload 40
– concentration 40
– mass 40
– volume 40

p
packing 9, 19, 47
– characterization factor 377
– column 243
– non-ideality 19
– procedure 19, 410
– properties 95, 335, 338, 347, 350, 376
– technology 243
parameter
– accuracy 359, 363, 368, 369, 373, 379, 397
– column 350
– design 357
– determination 357, 359, 397
– dimensionless 431
– estimation 360, 369, 375, 377, 394, 398
– operating 358
– optimization 430
– plant 358
Pareto optimal results 486
partial-feed 292
particle size 96
peak 11
– asymmetry 17, 336, 339, 370
– distortion 164, 350, 391
– fitting 361, 369, 370
– isotherm 359
– maximum 391
– resolution 25, 42
– shape 130
– shaving 276, 457
Péclet number 348, 433
performance criteria 426, 429, 435
permeability 21
perturbation method 392
phase system 125
– selection 127
physisorption 10
PID-controller 236
piston, electrically or hydraulically moved 209
piston, manually moved 209
plant
– dead time 333, 352, 363, 375
– dead volume 375, 404
– model 350, 375
– parameter 358
plateau, concentration 374
plate number 24
polyacrylamide packing 73
polymeric packing, polymerization 75
polymerization 75
polymers
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– artificial 65</td>
<td></td>
</tr>
<tr>
<td>– hydrophilic 76, 77</td>
<td></td>
</tr>
<tr>
<td>– hydrophobic 76</td>
<td></td>
</tr>
<tr>
<td>– natural 65</td>
<td></td>
</tr>
<tr>
<td>– organic 72</td>
<td></td>
</tr>
<tr>
<td>– porous 72</td>
<td></td>
</tr>
<tr>
<td>– synthetic 91</td>
<td></td>
</tr>
</tbody>
</table>
polysaccharide-type packing 73
pores 326
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– connectivity 100</td>
<td></td>
</tr>
<tr>
<td>– diffusion 347</td>
<td></td>
</tr>
<tr>
<td>-- model 341</td>
<td></td>
</tr>
<tr>
<td>– interparticle 98</td>
<td></td>
</tr>
<tr>
<td>– intraparticle 98</td>
<td></td>
</tr>
<tr>
<td>– macro 73, 100, 341</td>
<td></td>
</tr>
<tr>
<td>– meso 100, 327</td>
<td></td>
</tr>
<tr>
<td>– micro 73, 100, 327, 341</td>
<td></td>
</tr>
<tr>
<td>– structural parameters 99</td>
<td></td>
</tr>
<tr>
<td>– texture 97</td>
<td></td>
</tr>
</tbody>
</table>
porogens 47
porosity 358, 359, 367, 396
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– column 12</td>
<td></td>
</tr>
<tr>
<td>– particle 15</td>
<td></td>
</tr>
<tr>
<td>– solid phase 13</td>
<td></td>
</tr>
<tr>
<td>– total 13, 15, 331, 367, 376</td>
<td></td>
</tr>
</tbody>
</table>
porous glass 51
porous oxide 51
porous silica 51, 68
PowerFeed 291, 482, 484
practical hints 164
pre-column 275
prediction models 504
pre-packed columns 266
preparative chromatography 110
preparative column 208
pre-purification
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– crystallization 115</td>
<td></td>
</tr>
<tr>
<td>– extraction 115</td>
<td></td>
</tr>
</tbody>
</table>
power drop 19, 21, 213, 243, 324, 359, 378, 446, 447, 472
| | |
| – maximum allowable 453, 472 | |
PRISMA model 139
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– selectivity optimization 142</td>
<td></td>
</tr>
</tbody>
</table>
procedure, packing 410
process design 201
process development 111
process scheduling 204
production rate 426, 447
productivity 427, 451, 479
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– cross-section specific 427</td>
<td></td>
</tr>
<tr>
<td>– volume specific 427</td>
<td></td>
</tr>
</tbody>
</table>
profile, concentration 362
protein A affinity sorbent 54
protein binding 215
protein separation 416, 492, 493, 495
protein titer 199
pumps 350
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– diaphragm 221</td>
<td></td>
</tr>
<tr>
<td>– membrane (PTFE) 226</td>
<td></td>
</tr>
<tr>
<td>– peristaltic 222</td>
<td></td>
</tr>
<tr>
<td>– piston 226</td>
<td></td>
</tr>
<tr>
<td>– positive-displacement 221</td>
<td></td>
</tr>
<tr>
<td>– slurry 234</td>
<td></td>
</tr>
<tr>
<td>– working range 226</td>
<td></td>
</tr>
</tbody>
</table>
purification costs 200
purity 427
rate, adsorption 341
reaction dispersive model 339
reaction model 337, 346
reciprocal design approach 92
recycle pumps 288
recycling chromatography 453
regeneration 103, 295, 298
regulatory exigencies 203
resolution 27, 181
retardation factor 134
retention factor 12, 306, 365
retention time 11, 12, 16, 332, 366, 375, 390, 392
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– linear isotherm 333, 345</td>
<td></td>
</tr>
<tr>
<td>retention-time method 391</td>
<td></td>
</tr>
</tbody>
</table>
reversed phase system 155, 164
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– chromatography 153</td>
<td></td>
</tr>
<tr>
<td>– gradient 132, 157, 161</td>
<td></td>
</tr>
<tr>
<td>– optimization 157, 163</td>
<td></td>
</tr>
<tr>
<td>– practical hints 128, 157</td>
<td></td>
</tr>
<tr>
<td>– retention 154</td>
<td></td>
</tr>
<tr>
<td>– selectivity 154, 160</td>
<td></td>
</tr>
<tr>
<td>– silica 66, 153</td>
<td></td>
</tr>
</tbody>
</table>
robust performance 489
salt gradient 416
sample
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– characterization 114</td>
<td></td>
</tr>
<tr>
<td>– purity 130</td>
<td></td>
</tr>
</tbody>
</table>
sanitization 215
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– in place 108</td>
<td></td>
</tr>
</tbody>
</table>
saturation capacity 32, 329, 341, 379
scale
– laboratory 111, 125, 305
– production 111, 127, 305
– technical 111, 125, 148, 150
scale-up 202, 321, 351, 457
– batch chromatography 461
– CLCR processes 458
scheduling logistic software 202
second, moment 373
section 286
selectivity point 141
selectivity range 169
self-displacement effect 42
separation factor 12
separation scenario 116
sequential multicolunn chromatography 298
SFC
– feed injection 230
– mobile phases 230
– piping 231
– pumps 231
SFC-SMB 295
shape selectivity 70
shifting
– asynchronous 407, 413
– interval 288, 411
– time 288, 404, 407, 408, 410, 432
– dimensionless 432
silanisation 67
silanol activity 70, 165
simulated moving bed 286, 301
– advanced control 501
– configuration 476
– dead volume 407, 410, 413
– direct optimizing control 503
– improved 293
– isocratic 461
– model 336, 405, 409, 413
– validation 410, 413
– optimal axial profile 462
– optimization 440, 462, 472
– of column geometry 477
– of configuration 480
– periodic steady state 463
– process 231
– profile 410, 413
– purity control 502
– reactor 301, 302
– application 302
– design 302
– step gradient 304
– recycling strategy 232

– robustness 483
– short-cut for Langmuir Isotherms 469
– solvent gradient 490
– solvent-gradient
– TMB short cut 491
– start-up 414
– supercritical fluid 296
– three-section process 289, 494
– valves 233
simulation 413
size distribution 96
size exclusion 179
– chromatography 72
– matrices 181
slurry
– preparation 244
– tank 234
– stirrer 246
– ultrasonification 246
– volume 245
sol-gel process 51
solubility 127
– limitation 128, 130
solute 117, 363, 364, 367, 368
solvent
– flammibility 118
– miscibility 121
– mixture 123, 127
– optimization 118
– removal 456
– RI detection 122
– stability 118
– strength 44, 136, 137
– toxicity 121
– UV detection 121
– viscosity 121, 123
specific surface area 100, 328
stage model 344, 346, 486
stall packing 250
Stanton number 349
static method 382
steady state recycling chromatography 278, 454
steam cleaning 220
step gradient 490
stereoisomer separation 127, 133, 143
steric mass action (SMA)
– isotherms 38
– model 492
stirred tank continuously 345
styrene 76
supercritical fluid 8
– chromatography 228
surface chemistry 100, 133
surface group 133
switching
– interval 288
– time 288
synthetic zeolites 50

t
tag-along effect 42, 117, 183, 332
tailing 23, 336
targeted selector design 92
temperature
– gradients 296
– influence of 123, 156
tentacular structure 84
theory, equilibrium 390, 392
time
– injection 349
– shifting 404
tortuosity 377, 399
touching band 453
tracer 12, 363, 364, 365, 367, 368, 375, 376
transfer
– coefficient 398
– effective 338, 358, 359, 366, 367, 395
– film 328, 365, 398
– lumped film 338
transport model 336
– transport dispersive model 338, 347, 358,
 359, 366, 367, 401, 407, 410, 413, 497
– dimensionless 349
triangle method 494
triangle theory 464, 472
troubleshooting 257
– column stability 265
– loss of column efficiency 262
– loss of performance 259
– loss of purity/yield 264
– pressure increment 259
– technical failures 258
– variation of elution profile 263
ttrue moving bed 286, 463
– model 407, 409
– profile 410
two-step gradient SMB 295

u
uncertainties 488
UV cut-off 121
UV detection 121

v
vacuum packing 252
van Deemter equation 26, 368
van der Waals forces 9
variable, costs 444
variance 26, 345
Varicol process 233, 288, 290, 407,
 481, 483
velocity
– effective 331, 335
– interstitial 13, 327, 331, 335, 348, 408
– superficial 21
vibration packing 253
viscosity 123
voidage 20
void fraction 12, 13, 15, 326, 358, 359, 361,
 367, 376, 396
volume element, differential 322

w
washing 298
waste fraction 443, 447
water content 134, 136

y
yield 426, 451