Contents

Preface XV
List of Contributors XIX

1 Fundamentals, Applications, and Perspectives of Solid-State Electrochemistry: A Synopsis 1
Joachim Maier
1.1 Introduction 1
1.2 Solid versus Liquid State 2
1.3 Thermodynamics and Kinetics of Charge Carriers 4
1.4 Usefulness of Electrochemical Cells 6
1.5 Materials Research Strategies: Bulk Defect Chemistry 9
1.6 Materials Research Strategy: Boundary Defect Chemistry 11
1.7 Nanoionics 11
References 12

2 Superionic Materials: Structural Aspects 15
Stephen Hull
2.1 Overview 15
2.2 Techniques 16
2.2.1 X-Ray and Neutron Diffraction 16
2.2.2 Extended X-Ray Absorption Fine Structure 17
2.2.3 Nuclear Magnetic Resonance 18
2.2.4 Computational Methods 18
2.3 Families of Superionic Conductors 19
2.3.1 Silver and Copper Ion Conductors 19
2.3.1.1 Silver Iodide (AgI) 20
2.3.1.2 Copper Iodide (CuI) 21
2.3.1.3 Other Ag⁺ and Cu⁺ Halides 21
2.3.1.4 Ag⁺ Chalcogenides 22
3 Defect Equilibria in Solids and Related Properties: An Introduction 43

Vladimir A. Cherepanov, Alexander N. Petrov, and Andrey Yu. Zuev

Editorial Preface 43
Vladislav Kharton

3.1 Introduction 44

3.2 Defect Structure of Solids: Thermodynamic Approach 44
3.2.1 Selected Definitions, Classification, and Notation of Defects 44
3.2.2 Defect Formation and Equilibria 46
3.2.3 Formation of Stoichiometric (Inherent) Defects 47
3.2.3.1 Schottky Defects 47
3.2.3.2 Frenkel Defects 47
3.2.3.3 Intrinsic Electronic Disordering 47
3.2.3.4 Ionization of Defects 48
3.2.4 Influence of Temperature 48
3.2.5 Nonstoichiometry: Equilibria with Gaseous Phase 51
3.2.6 Impurities and their Effects on Defect Equilibria 54
3.2.7 Crystallographic Aspects of Defect Interaction: Examples of Defect Ordering Phenomena 55
3.2.8 Thermal and Defects-Induced (Chemical) Expansion of Solids 57
3.3 Basic Relationships Between the Defect Equilibria and Charge Transfer in Solids 59
3.3.1 Phenomenological Equations 59
3.3.2 Mass Transfer in Crystals 60
3.3.3 Electrical Conductivity. Transport under a Temperature Gradient 62
3.3.4 Electrochemical Transport 63
3.3.4.1 Mass and Charge Transport under the Chemical Potential Gradient: Electrolytic Permeation 63
3.3.4.2 Charge Transfer under Temperature Gradient and Seebeck Coefficient: Selected Definitions 66
3.4 Examples of Functional Materials with Different Defect Structures 69
3.4.1 Solid Electrolytes 70
3.4.2 Examples of Defect Chemistry in Electronic and Mixed Conductors 75

References 77

4 Ion-Conducting Nanocrystals: Theory, Methods, and Applications 79

Alan V. Chadwick and Shelley L.P. Savin

4.1 Introduction 79
4.2 Theoretical Aspects 82
4.2.1 Space-Charge Layer 82
4.2.2 Surface Texture and Mismatch at Surfaces 85
4.3 Applications and Perspectives 85
4.3.1 Nanoionic Materials as Gas Sensors 86
4.3.2 Nanoionics as Battery Materials 90
4.3.3 Nanoionic Materials in Fuel Cells 92
4.4 Experimental Methods 94
4.4.1 Preparation of Nanoionic Materials 94
4.4.2 Determination of Particle Size and Dispersion 96
4.4.2.1 Transmission Electron Microscopy 96
4.4.2.2 X-Ray Based Methods 97
4.4.3 Characterization of Microstructure 98
4.4.4 Transport Measurements 102
4.4.4.1 Tracer Diffusion 103
4.4.4.2 NMR Spectroscopy Methods 104
4.4.4.2.1 Relaxation Time Experiments 105
4.4.4.2.2 Field Gradient Methods 107
4.4.4.2.3 Creep Measurements 108
4.5 Review of the Current Experimental Data and their Agreement with Theory 110
4.5.1 Microstructure 110
4.5.2 Transport 111
4.5.2.1 Simple Halides 112
4.5.2.1.1 Calcium Fluoride 112
4.5.2.1.2 Calcium Fluoride-Barium Fluoride 113
4.5.2.2 Oxides 114
4.5.2.2.1 Lithium Niobate 114
4.5.2.2.2 Zirconia 115
4.5.2.2.3 Ceria 119
4.5.2.2.4 Titania 121
4.6 Overview and Areas for Future Development 122
References 124

5 The Fundamentals and Advances of Solid-State Electrochemistry: Intercalation (Insertion) and Deintercalation (Extraction) in Solid-State Electrodes 133
Sung-Woo Kim, Seung-Bok Lee, and Su-Il Pyun
5.1 Introduction 133
5.2 Thermodynamics of Intercalation and Deintercalation 135
5.2.1 Simple Lattice Gas Model 136
5.2.2 Consideration of Ionic Interaction Using the Lattice Gas Model 137
5.2.3 Application to Lithium Intercalation/Deintercalation 138
5.2.3.1 Application of Lattice Gas Model with Mean Field Approximation 138
5.2.3.2 Application of Lattice Gas Model with Monte Carlo Simulation 142
5.2.3.3 Application of Ab Initio (First Principles) Method 149
5.3 Kinetics of Intercalation and Deintercalation 149
5.3.1 Diffusion-Controlled Transport 150
5.3.2 Cell-Impedance-Controlled Transport 151
5.3.2.1 Non-Cottrell Behavior 151
5.3.2.2 (Quasi-) Current Plateau 152
5.3.2.3 Linear Relationship Between Current and Electrode Potential 155
5.3.3 Numerical Calculations 159
5.3.3.1 Governing Equation and Boundary Conditions 159
5.3.3.2 Calculation Procedure of Cell-Impedance-Controlled Current Transients 159
5.3.3.3 Theoretical Current Transients and their Comparison with Experimental Values 160
5.3.3.4 Extension of Cell-Impedance-Controlled Lithium Transport Concept to the Disordered Carbon Electrode 160
5.3.4 Statistical Approach with Kinetic Monte Carlo Simulation 166
5.3.4.1 Calculation Procedure of Cell-Impedance-Controlled Current Transients with Kinetic Monte Carlo Method 166
5.3.4.2 Theoretical Current Transients and their Comparison with Experimental Data 168
6 Solid-State Electrochemical Reactions of Electroactive Microparticles and Nanoparticles in a Liquid Electrolyte Environment

Michael Hermes and Fritz Scholz

6.1 Introduction 179
6.2 Methodological Aspects 181
6.3 Theory 182
6.3.1 General Theoretical Treatment 182
6.3.2 Voltammetry of Microparticle-Modified Electrodes 187
6.3.2.1 Adsorbed (Surface-)Electroactive Microparticles on Solid Electrodes 187
6.3.2.2 Voltammetry at Random Microparticle Arrays 192
6.3.2.2.1 The Diffusion Domain Approach 193
6.3.2.2.2 The Diffusion Categories 194
6.3.2.2.3 Voltammetric Sizing 200
6.3.2.3 Voltammetry at Regularly Distributed Microelectrode Arrays (Microarrays, Microbands) 201
6.3.2.4 The Role of Dissolution in Voltammetry of Microparticles 202
6.3.3 Voltammetric Stripping of Electroactive Microparticles from a Solid Electrode 204
6.3.3.1 Microparticles Within a Carbon Paste Electrode 204
6.3.3.2 Microparticles on a Solid Electrode Surface 205
6.3.4 Voltammetry of Single Microparticles (Microcrystals, Nanocrystals) on Solid Electrodes 209
6.3.4.1 Voltammetric Sizing of a Microparticle Sphere 211
6.4 Examples and Applications 212
6.4.1 Analytical Studies of Objects of Art 212
6.4.2 Metal Oxide and Hydroxide Systems with Poorly Crystalline Phases 213
6.4.3 Electrochemical Reactions of Organometallic Microparticles 215
6.4.4 Selected Other Applications 219

References 221

7 Alkali Metal Cation and Proton Conductors: Relationships between Composition, Crystal Structure, and Properties

Maxim Avdeev, Vladimir B. Nalbandyan, and Igor L. Shukaev

7.1 Principles of Classification, and General Comments 227
7.1.1 Physical State 227
7.1.2 Type of Disorder 228
7.1.3 Type of Charge Carrier 231
7.1.4 Connectivity of the Rigid Lattice 231
7.1.5 Connectivity of the Migration Paths 232
7.1.6 Stability to Oxidation and Reduction 232
7.1.7 A Comment on the Activation Energy 233
7.2 Crystal-Chemistry Factors Affecting Cationic Conductivity 233
7.2.1 Structure Type 233
7.2.2 Bottleneck Concept and Size Effects 235
7.2.3 Site Occupation Factors 238
7.2.4 Electronegativity, Bond Ionicity, and Polarizability 238
7.3 Crystal Structural Screening and Studies of Conduction Paths 239
7.3.1 Topological Analysis with Voronoi Tessellation 239
7.3.2 Topological Analysis with Bond-Valence Maps 241
7.3.3 Static First-Principles Calculations and Molecular Dynamics Modeling 242
7.3.4 Analysis of Diffraction Data with Maximum Entropy Method 245
7.4 Conductors with Large Alkali Ions 247
7.4.1 β/β''-Alumina, β/β''-Gallates and β/β''-Ferrites 247
7.4.2 Nasicon Family 248
7.4.3 Sodium Rare-Earth Silicates 251
7.4.4 Structures Based on Brucite-Like Octahedral Layers 251
7.4.5 Cristobalite-Related Tetrahedral Frameworks 252
7.4.6 Other Materials 253
7.5 Lithium Ion Conductors 255
7.5.1 General Comments 255
7.5.2 Garnet-Related Mixed Frameworks of Oxygen Octahedra and Twisted Cubes 255
7.5.3 Mixed Frameworks of Oxygen Octahedra and Tetrahedra 257
7.5.4 Octahedral Framework and Layered Structures 258
7.5.5 Structures Based on Isolated Tetrahedral Anions 259
7.5.6 Structures with Isolated Monatomic Anions 260
7.5.7 Other Structures 262
7.6 Proton Conductors 262
7.6.1 General Remarks 262
7.6.2 Low-Temperature Proton Conductors: Acids and Acid Salts 265
7.6.3 High-Temperature Proton Conductors: Ceramic Oxides 266
7.6.4 Intermediate-Temperature Proton Conductors 268
References 270

8 Conducting Solids: In the Search for Multivalent Cation Transport 279
Nobuhito Imanaka and Shinji Tamura
Editorial Preface 279
Vladislav Kharton
8.1 Introduction 280
8.2 Analysis of Trivalent Cation Transport 281
8.2.1 β/β''-Alumina 282
8.2.2 β-Alumina-Related Materials 285
8.2.3 Perovskite-Type Structures 286
8.2.4 Sc$_2$(WO$_4$)$_3$-Type Structures 287
8.2.5 NASICON-Type Structures 293
8.3 Search for Tetravalent Cation Conductors 295
References 297

9 Oxygen Ion-Conducting Materials 301
Vladislav V. Kharton, Fernando M.B. Marques, John A. Kilner, and Alan Atkinson
9.1 Introduction 301
9.2 Oxygen Ionic Transport in Acceptor-Doped Oxide Phases: Relevant Trends 302
9.3 Stabilized Zirconia Electrolytes 307
9.4 Doped Ceria 309
9.5 Anion Conductors Based on Bi$_2$O$_3$ 310
9.6 Transport Properties of Other Fluorite-Related Phases: Selected Examples 313
9.7 Perovskite-Type LnBO$_3$ ($B =$ Ga, Al, In, Sc, Y) and their Derivatives 314
9.8 Perovskite-Related Mixed Conductors: A Short Overview 318
9.9 La$_2$Mo$_2$O$_9$-Based Electrolytes 324
9.10 Solid Electrolytes with Apatite Structure 324
References 326

10 Polymer and Hybrid Materials: Electrochemistry and Applications 335
Danmin Xing and Baolian Yi
10.1 Introduction 335
10.2 Fundamentals 336
10.2.1 The Proton-Exchange Membrane Fuel Cell (PEMFC) 336
10.2.2 Proton-Exchange Membranes for Fuel Cells 337
10.2.3 Membrane Characterization 338
10.2.3.1 Electrochemical Parameters 338
10.2.3.2 Physical Properties 338
10.2.3.3 Evaluation of Durability 338
10.3 Fluorinated Ionomer Membranes 339
10.3.1 Perfluorosulfonate Membranes 339
10.3.2 Partially Fluorosulfonated Membranes 341
10.3.3 Reinforced Composite Membranes 342
10.3.3.1 PFSA/PTFE Composite Membranes 342
10.3.3.2 PFSA/CNT Composite Membranes 343
10.3.4 Hybrid Organic–Inorganic Membranes 344
10.3.4.1 Hygroscopic Material/PFSA Composite Membranes 345
10.3.4.2	Catalyst Material/PFSA Composite Membranes	345
10.3.4.3	Heteropolyacid/PFSA Composite Membranes	346
10.3.4.4	Self-Humidifying Reinforced Composite Membranes	346
10.4	Non-Fluorinated Ionomer Membranes	347
10.4.1	Materials, Membranes, and Characterization	347
10.4.1.1	Post-Sulfonated Polymers	347
10.4.1.2	Direct Polymerization from the Sulfonated Monomers	349
10.4.1.3	Microstructures and Proton Transportation	351
10.4.1.4	Durability Issues	351
10.4.2	Reinforced Composite Membranes	352
10.4.3	Hybrid Organic–Inorganic Membranes	353
10.5	High-Temperature PEMs	354
10.5.1	Acid-Doped Polybenzimidazole	354
10.5.2	Nitrogen-Containing Heterocycles	356
10.5.3	Room-Temperature Ionic Liquids	357
10.5.4	Inorganic Membranes: A Brief Comparison	358
10.6	Conclusions	358
References	359	

11 **Electrochemistry of Electronically Conducting Polymers** 365

Mikhael Levi and Doron Aurbach

11.1 Introduction 365
11.2 Solid Organic and Inorganic Electrochemically Active Materials for Galvanic Cells Operating at Moderate Temperatures 366
11.2.1 Molecular, Low-Dimensional CT Complexes and \(\pi\)-Conjugated Organic Oligomers 366
11.2.2 Electroactive Solids and Polymeric Films with Mixed Electronic–Ionic Conductivity 369
11.2.2.1 Inorganic \(\pi\)-Conjugated Polymers and Polymer-Like Carbonaceous Materials 369
11.2.2.2 Organic \(\pi\)-Conjugated Polymers 370
11.2.2.3 Conventional Redox-Polymers 370
11.2.2.4 Inorganic Ion-Insertion (Intercalation) Compounds 370
11.3 General Features of Doping-Induced Changes in \(\pi\)-Conjugated Polymers 371
11.3.1 The Electronic Band Diagram of ECP as a Function of Doping Level 371
11.3.2 The Effect of Morphology on the Conductivity of the Polymeric Films 373
11.3.3 Electrochemical Synthesis and Doping 374
11.3.3.1 Selection of Suitable Electrolyte Solutions 374
11.3.3.2 A Short Survey on In Situ Techniques used for Studies of Mechanisms of Electrochemical Doping of \(\pi\)-Conjugated Polymers 375
11.3.3.3 Mechanisms of Electrochemical Synthesis of Conducting Polymer Films 377
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.3.4</td>
<td>Dynamics of the Micromorphological Changes in ECP Films as a Function of their Doping Level</td>
<td>379</td>
</tr>
<tr>
<td>11.3.3.5</td>
<td>The Maximum Attainable Doping Levels and the Conductivity Windows</td>
<td>380</td>
</tr>
<tr>
<td>11.3.3.6</td>
<td>Charge Trapping in n-Doped Conducting Polymers</td>
<td>385</td>
</tr>
<tr>
<td>11.4</td>
<td>The Thermodynamics and Kinetics of Electrochemical Doping of Organic Polymers and Ion-Insertion into Inorganic Host Materials</td>
<td>387</td>
</tr>
<tr>
<td>11.5</td>
<td>Concluding Remarks</td>
<td>393</td>
</tr>
<tr>
<td>12</td>
<td>High-Temperature Applications of Solid Electrolytes: Fuel Cells, Pumping, and Conversion</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Jacques Fouletier and Véronique Ghetta</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>397</td>
</tr>
<tr>
<td>12.2</td>
<td>Characteristics of a Current-Carrying Electrode on an Oxide Electrolyte</td>
<td>399</td>
</tr>
<tr>
<td>12.3</td>
<td>Operating Modes</td>
<td>402</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Electrochemical Pumping</td>
<td>403</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Fuel Cell Mode</td>
<td>403</td>
</tr>
<tr>
<td>12.3.3</td>
<td>The NEMCA Effect</td>
<td>406</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Electrolyte Reduction</td>
<td>407</td>
</tr>
<tr>
<td>12.4</td>
<td>Cell Materials</td>
<td>408</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Electrolytes</td>
<td>408</td>
</tr>
<tr>
<td>12.4.1.1</td>
<td>Oxide Electrolytes</td>
<td>408</td>
</tr>
<tr>
<td>12.4.1.2</td>
<td>Proton-Conducting Electrolytes</td>
<td>409</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Electrodes</td>
<td>410</td>
</tr>
<tr>
<td>12.4.2.1</td>
<td>Cathode</td>
<td>410</td>
</tr>
<tr>
<td>12.4.2.2</td>
<td>Anode</td>
<td>411</td>
</tr>
<tr>
<td>12.5</td>
<td>Cell Designs</td>
<td>411</td>
</tr>
<tr>
<td>12.6</td>
<td>Examples of Applications</td>
<td>413</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Oxygen and Hydrogen Pumping, Water Vapor Electrolysis</td>
<td>414</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Pump–Sensor Devices</td>
<td>414</td>
</tr>
<tr>
<td>12.6.2.1</td>
<td>Open System: Oxygen Monitoring in a Flowing Gas</td>
<td>414</td>
</tr>
<tr>
<td>12.6.2.2</td>
<td>Closed Systems</td>
<td>417</td>
</tr>
<tr>
<td>12.6.2.3</td>
<td>Amperometric and Coulometric Sensors</td>
<td>418</td>
</tr>
<tr>
<td>12.6.3</td>
<td>HT- and IT-SOFC</td>
<td>418</td>
</tr>
<tr>
<td>12.6.4</td>
<td>Catalytic Membrane Reactors</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>423</td>
</tr>
<tr>
<td>13</td>
<td>Electrochemical Sensors: Fundamentals, Key Materials, and Applications</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>Jeffrey W. Fergus</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>427</td>
</tr>
<tr>
<td>13.2</td>
<td>Operation Principles</td>
<td>428</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Voltage-Based Sensors</td>
<td>428</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>13.2.1.1 Potentiometric Sensors: Equilibrium</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>13.2.1.2 Potentiometric: Nonequilibrium</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>13.2.2 Current-Based Sensors</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>13.2.2.1 Sensors Based on Impedance Measurements</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>13.2.2.2 Amperometric Sensors</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>13.3 Materials Challenges</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>13.3.1 Electrolytes</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>13.3.2 Electrodes</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>13.3.2.1 Reference Electrodes</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>13.3.2.2 Auxiliary Electrodes</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>13.3.2.3 Electrocatalytic Electrodes</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>13.3.2.4 Electrodes for Current-Based Sensors</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td>13.4 Applications</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>13.4.1 Gaseous Medium</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>13.4.2 Molten Metals</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>13.5 Summary and Conclusions</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>468</td>
<td></td>
</tr>
</tbody>
</table>

Index 493