Index

acute phase response, cytokine involvement, 228–229

aging, age-related disorders
 - gene therapy/modulation, 247
 - and hypertension, 28

AIDS-associated neoplasms, 143

alcohol
 - immunomodulatory effect, 163
 - and myocarditis, 162–163
 - and T_H1/T_H2 cytokines, 163

allograft and isograft coronary arteries
 - iNOS, eNOS expression in, 65–68, 70–73
 - allograft rejection, in children, 11
 - and inflammatory responses, 289

angiotensin-converting enzyme (ACE) inhibitors, 183
 - as anti-inflammatory drugs, 121–122
 - clinical trials, 121–123
 - and heart failure, 97
 - historical review, 121
 - and myocarditis, 22
 - signaling pathways, 116, 117f, 118
 - somatic, germinal forms, 118

Angiotensin II, 183

anticytokine therapy, 217

antigen-presenting cells (APC), 20f

anti-HLA antibodies, 86–88, 87r

antioxidant therapy, 101

anti-T-cell antibodies
 - action mechanism, 256–257
 - and myocarditis, experimental, 257–258
 - and myocarditis, human, 257–258, 259–260t

anti-TNF therapies, 100–101, 100r, 129–130

ASCOTT, 110

atherosclerosis, 227–228
 - and bisphosphonates, 241
 - CAV vs., 58
 - endothelial dysfunction, 39–40
 - genesis, 40
 - immunological activity, 39–40
 - and Interleukin-6, 238
 - mouse models, 40–41
 - plant polyphenols, fatty acids and, 241–242
 - and pro-inflammatory cytokines, 41–42
 - and RAS, 116, 118–121
 - risk factors, 109
 - and statins, 240–241

 and T cells, 41
 - and vascular smooth muscle cells, 40
 - atorvastatin, 110, 112
 - autoimmune diseases
 - and leukocyte adhesion, 111
 - therapeutics, 31–32
 - autoimmune heart disease
 - pathogenesis, 20f
 - unifying theory, 19
 - autoimmune heart failure. See also myocarditis
e - diagnostic approach, 20–22
 - and implantable cardiac defibrillators, 22
 - and Interferon-beta treatment, 23
 - patient management, 22–23
 - and simvastatin, 22
 - and TNF-α antagonists, 23
 - autoimmunity, 256
 - animal models, 18–19
 - features, 18
 - and heart failure, 17–19
 - and HIV virus associated cardiomyopathy, 138–139
 - autologous skeletal myoblasts, 280–281

β-blockers, and heart failure, 97

bisphosphonates
 - and atherosclerosis, 241
 - and cholesterol metabolism, 236
 - and Interleukin-6, 239
 - and osteoporosis, 244–245
 - and Type 2 diabetes, 243

bone marrow-derived cells (BMCDs), 280

Ca²⁺ hemostasis, intracellular, 51–53

calcineurin inhibition
 - and CaA, 61
 - and immunosuppression optimization, 88

cardiac allograft arteries, myogenic tone, 72–73

cardiac allograft vasculopathy (CAV)
 - during and after transplant, 265
 - animal models, 59
 - atherosclerosis vs., 58
 - and cardiac transplantation, 57
 - coronary heart disease vs., 58f
 - and CaA modulation, 60–61, 60f
 - and cyclosporine modulation, 74
 - and endothelial cells, 59

301
cardiac allograft vasculopathy (CAV) (Continued)
general concepts, 263–264
immunologic basis, 59
and immunosuppression, 57
lesionss, calcification, 58
long-term after transplant, 265–266
management approach, 264–268
modern immunosuppressive regimens, 74
and myogenic tone, 73
pretransplant, 264–265
preventing, limiting development of, 264–266
schematic representation, 60
T-lymphocyte interactions, 59
treatment to reverse, 266–267, 267f

cardiac cell survival in vivo, 284–285
cardiac contractile function, and TNF-α, 48–51
cardiac extracellular matrix (ECM) remodeling
and matrix metalloproteinases, 3
and TH1/TH2 imbalance, 3–4

cardiac fibroblasts
and collagen synthesis, 175–176, 179
and matricellular proteins, 176–179
cardiac fibrosis, and MMPs, 175

cardiac output, pediatric, 12
cardiac progenitor cells (CPs), 282
cardiac remodeling
and heart failure, 3
and myocardial ECM, 3
and osteopontin, 178–179
cardiac transplantation
arteriolar smooth cell muscle function in septal coronary arteries, 66f
CAV and, 57
conditions requiring, 57
and hypertension, 29
left ventricular dysfunction, post transplantation
acute antibody-mediated rejection, 83f
acute rejection, rescue therapy, 83–86, 85f
acute T-cell mediated, cellular rejection, 82
myocardial rescue, 202–203
myogenic tone, 65–72, 67f, 68f, 69f
and pravastatin, 88
septal coronary arteries, endothelium- and endothelium-dependent relaxation, 63–65, 63f, 65f
smooth cell muscle function in septal coronary arteries, 64, 65f
and statins, 88
survival rates, 57, 195–196, 196f
and total lymphoid irradiation, 201
without prospective negative crossmatch, 87f
cardiac transplantation, tolerance
central tolerance, 197–198
clinical protocols, 199–200
costimulatory blockade, 200–201
cytokine milieu, 198
defined, 196–197
immunosuppression, after conventional protocols, 100
incomplete tolerance, 202
induction mechanisms, 197, 198f
need for, 195–196
peripheral mechanisms, 198
peripheral T-cell deletion, 201
peripheral tolerance, 198
and regulatory cells, 198
re-programming, 198
through cellular therapy, 201
through hematopoietic reconstitution, 201–202
through mixed hematopoietic chimeras, 201
through pharmacology, 200–202
and total lymphoid irradiation, 201
cardiomyopathy, dilated, and TH2 lymphocytes, 4
cardiomyopathy, HIV associated
and myocarditis, 136
cardiomyopathy, human immunodeficiency virus (HIV) associated
myocardial cytokine expression, 138
pathologic features, 135–136
cardiovascular disease (CVD)
ACE signaling and immunomodulation in, 121
and C-reactive protein, 289
endothelium, immunology and, 208–209
and immune system function, 6, 207–208
inflammation and, 288
and Interleukin-4, 208–209
and lipids, 290
pediatric, 6
cardiovascular drugs, 22
and inflammatory response, 183
cardiovascular MRI, 21
cardiovascular therapy, traditional
imunomodulatory effects, 99–100, 100f
CARS, 110
carotenoids, 295–296
CD40-CD40L
and statins, 112
and T-Cell activation, 112
CD4+ T helper (TH) cells, 3
Celadac, 101–102
cellular therapy
and cardiac transplantation tolerance, 201
Chagas disease, 11, 17
cholesterol metabolism, 229, 230f, 231f, 236
clozapine
immunomodulatory effects, 164
and myocarditis, 163–164
cogulation disorders, HAART-associated, 147
cocaethylene
immunomodulatory effect, 163
and myocarditis, 163
cocaine, and myocarditis, 157–160
cocoa, 294–295
coffee, 295
collagen synthesis, 175–176, 179
coronary heart disease (CAD)
CAV, 58f
and HAART-associated arterial hypertension, 147
oral bacterial, coagulation system activation, 274–275
oral bacterial, IL-6 plasma levels, 276f
oral bacterial, indirect influence, 275–276
oral bacterial, lipid metabolism, 275
oral bacterial transferal to vessels, 273–274
pathogenic considerations, PD, 273–275
and periodontal disease, 271–277
Coxsackie virus B3 (CVB3), and EAM, 152
C-reactive protein (CRP), 109, 289
cyclosporine A (CsA)
and allograft coronary artery myogenic tone, 72
and calcineurin inhibition, 61
and CA V , 60–61, 60
f, 74
and endothelial function, 63–64
and hypertension, 29
and immunosuppression, 61
inhibitory effect, 62f
and smooth muscle treatment sensitivity to nitrous oxide, 64
cytokine-modulation therapies, 130
cytokines. See also inflammatory cytokines;
Interleukin-3; Interleukin-4; Interleukin-5;
Interleukin-6; Interleukin-10; Interleukin-13;
Interleukin-1
in acute phase response, 228–229
anti-inflammatory, 42–44
and atherosclerosis, 41–42
and cardiac transplantation tolerance, 198
and EAM, 153–154
and essential hypertension, 28
IFN–γ, 41–42
and Kawasaki disease, 8–9
and preeclampsia, 30–31
TGF–β, 43–44
TGFβ2 anti-inflammatory, 43–44, 208
dendritic cells (DCs), 19–20, 154
diabetes, 186–187, 191f. See also Type 2 diabetes
dietary intervention
alcohol, 293
carotenoids, 295–296
cocoa, 294–295
coffee, 295
flavonoids, 294–295
foods, anti-inflammatory substances, 290–293
fruits and vegetables, 290–292
grapes and wine polyphenols, resveratrol, 293–294
and inflammatory responses, 289
lycopene, 295–296
soy, 292
tea, 295
tree nuts, 292
whole grains, 292
dilated cardiomyopathy (DCM)
avtioimmune mechanisms, 10
and HAART-associated arterial hypertension, 147
and immunosuppression, 18
and myocarditis, 22
and myocarditis, 10, 17
pediatric, 10–11
and TNF-α antagonists, 23
and viral infections, 10
dimeric transcription factors, 233
Doxorubicin (adriamycin), 140, 142f
drug cardiotoxicity
and acute respiratory distress syndrome, 139–140
dyslipidemia, 34–35, 36f
embryonic stem cell-derived cardiomyocytes, 282–283
dendocarditis, 142–144
endothelial cells (ECs), 140, 146, 208–209
and CAV, 59
and atherosclerosis, 39–40
and CsA, 63–64
and HAART, 146
and HIV, 140
immunology, 208–209
leukocyte expression, 40
and preeclampsia, 30
and sepsis, 63–65, 63f, 65f
etanercept, 53, 218
exercise, 101
experimental autoimmune myocarditis (EAM), 152
and Coxsackie virus B3, 152
cytokine orchestras during, 152–154
and dendritic cells, 154
and fluvastatin, 155
and macrophage migration inhibitory factor, 155
and monocytosis, T cell infiltration, 154
and ovalbumin peptide-specific TCR transgenic CD8+ T cells, 152
and peroxisome proliferator-activated receptor ligand, 154
and suramin, 154
and T-cell activation blockade, 155
and TGFβ1/2 cell involvement, 153–154
and TNF-α blockage, 155
farnesyl pyrophosphate (FPP), 109
flavonoids, 294–295
fluvastatin, 155
foods, anti-inflammatory substances, 290–293, 290–296
fruits and vegetables, 290–292
fungi, polyphenolic compounds, fatty acids, 236–238
gene therapy/modulation, 247
geranylgeranyl pyrophosphate (GGFP), 109
Index

grapes and wine polyphenols, resveratrol, 293–294

heart failure (HF), 186. See also autoimmune heart failure and ACE inhibitors, 97

anti-inflammatory treatments, 218–224

anti-TNF therapies, 100–101, 100r, 129–130

and autoimmunity, 17–19

and β-blockers, 97

and cardiac remodeling, 3

causes, 182

cytokine-modulation therapies, future strategies, 130
dendritic cell-induced, 19–20

diabetes, 186–187, 242–243

immune activation, pathophysiological consequences, 98–99, 99r

and immune system, 182

and immunoglobulin, 218–219

immunomodulating therapy rationale, 97–99

and inflammation, 12

and inflammatory cytokines, 12, 98, 128–129

and Interleukin-10, IR-IRa, 184

and Interleukin-1β, 98, 100

IVIG therapy, 184

and neurohormones, 97

new therapeutic targets, 104

and nonischemic cardiomyopathy, 220r

pediatric, 12

plasmapheresis in, 220–222, 222r

possible treatments, 183–184

public health problem of, 3

and serum inflammatory activity, 183

and stem cells, 104

stem cell therapy, 183–184

and TNF-α, 23, 98, 100, 182–183

hematopoietic reconstitution, 201–202

hepatocyte growth factor (HGF), 154

highly active antiretroviral therapy (HAART)

and arterial hypertension, coronary disease, 147

and coagulation disorders, 147

and endocarditis, 143–144

and endothelial dysfunction, 146

and HIV, 135–148

and HIV-associated pulmonary hypertension, 143

and lipodystrophy, metabolic syndrome, 143–144, 145f

and lipodystrophy, molecular mechanisms, 144

and pericardial effusion, 143–144

and peripheral vascular disease, 147–148

and vasculitis, 147

histocompatibility complex class II (MHC-II) expression, 110–111

HLA class II antigen expression, 11

HMG-CoA reductase inhibitors (statins), 88, 102, 222–223

and atherosclerosis, 240–241

and CD40–CD40L, 112

and farnesylation, 109

and geranylgeranylation, 109

GTP-binding proteins, 109

and histocompatibility complex class II (MHC-II) expression, 110–111

immunomodulation, 88, 102, 113f

and Interleukin-6, 239

and leukocyte adhesion, migration, 111

and LFA-1/ICAM-1 interaction, 111–112

and low-density lipoprotein cholesterol, 236

non-lipid-related effects, clinical trials, 109–110, 110r

and osteoporosis, 245

pleiotropic effects, 109–110, 112

simvastatin, 22, 110

and T-cell immune response, 111–112

and Type 2 diabetes, 243

human immunodeficiency virus (HIV)

and cardiomyopathy, 135, 138–139

cardiovascular actions/interactions, therapies, 140, 141–142r

coronary arteries, 140

endocarditis, 142–143

endothelial dysfunction, 140

fungal infections of heart, 137

and HAART, 135–148, 143

and legal, illegal drugs of abuse, 157

mitochondrial dysfunction and lipodystrophy, 146

myocardial cytokine expression, 138

and myocardial cytokine expression, 138

and myocarditis, 136–137, 137, 157

nutritional deficiencies, left ventricular dysfunction, 139

pericardial effusion, 140, 142

and pulmonary hypertension, 143

TNF-α and lipodystrophy, 145–146

vasculitis, 140

hyperglycemia, 188–192

hypertension

and aging, 28

and blood pressure, 28

and cardiac transplantation, 29

CsA induced, 29

essential, 28

and HAART, 147

immune basis, 28, 31r

and immunoglobulins, 28–29

and immunosuppression, 29

and insulin resistance, 35

and nitric oxide, 29

PPHN, 13

and preeclampsia, 30–31

tacrolimus (FK506)-induced, 29

and T cells, 28–29

and T regulatory cells, 29

hypertrophy, 217–218

idiopathic dilated cardiomyopathy (IDCM), 10, 11

IFN-α, 41–42

IgG antibodies, 21

immune adsorption, 219, 220r
immune cell recruitment/infiltration vs. parenchymal cell inflammatory response, 8

immune system function

age-dependent features, 6–8
and cardiovascular disease, 207–208
in cardiovascular disease, 6
and NADPH oxidase system, 7
and osteopontin, 176–177
and parenchymal tissues, 8
pediatric vs. adult, 6–8
polymorphonuclear neutrophils and, 7
redundancy, 218

immunoadsorption, 102–103
immunoglobulins, 28–29, 102–103, 218–219
immunomodulation, 100
and ACE signaling, 121
and alcohol, 163
and amphetamine derivatives, 162
antioxidant therapy, 101
Celacade, 101–102
and chronic heart failure, 97–99
and clozapine, 164
and cocaethylene, 163
and cocaine, 157–160
exercise, 101
immunoadsorption, 102–103
intravenous immunoglobulin, 102–103
and MDA, 162
and MDEA, 162
and methamphetamine, 160–161
nonspecific, 101–104
and opiates, 164–165
pentoxifylline, 102
and statins, 88, 102, 113f
thalidomide, 103–104

immunosuppression

and autoimmunity induction, 29
calcineurin inhibition, 88
and cardiac transplantation tolerance, 100
CAV and, 57
with combination mycophenolate mofetil-prednisone, 267f
and CsA, 61
and DCM, 22
and hypertension, 29
and left ventricular dysfunction, post heart transplantation, 88
and mycophenolate mofetil, 88
and myocarditis, 22
skin dendritic cells, ultraviolet light-B radiation, 4
and statins, 88
T cells, ultraviolet light-B radiation, 4 trials, 22
implantable cardiac defibrillators (ICD), 22
inflammation and cardiovascular disease, 288
and cardiovascular drugs, 183

in chronic heart failure, 12
and diabetes, 186, 191f
and dietary intervention, 289
and hyperglycemia, 188–192
and metabolic syndrome, 187, 191f
and obesity, 187–188, 191f
pediatric, 12
inflammatory cytokines, 41–42
and chronic heart failure, 12
effects, 128–129
immunomodulating therapy, 97–99
mouse models, 98
neonate vs. adult, 7
inflammation and cardiovascular disease, 288
and cardiovascular drugs, 183

and diabetes, 186, 191f
and dietary intervention, 289
and hyperglycemia, 188–192
and metabolic syndrome, 187, 191f
and obesity, 187–188, 191f
pediatric, 12
inflammatory cytokines, 41–42
and chronic heart failure, 12
effects, 128–129
immunomodulating therapy, 97–99
mouse models, 98
neonate vs. adult, 7

implantable cardiac defibrillators (ICD), 22
inflammation and cardiovascular disease, 288
and cardiovascular drugs, 183

blindness and visual impairment, 84–85
LFA-1/ICAM-1 interaction and statins, 111–112
lipids, 290
lovastatin, 111, 112
low-density lipoprotein (LDL) cholesterol, 236
lycopene, 295–296
macrophage migration inhibitory factor (MIF), 155
major histocompatibility complex (MHC), 10, 88
matricellular proteins
and cardiac fibroblasts, 176–179
osteopontin, 176–177, 177f
thrombospondins, 176
matrix metalloproteinases (MMPs), 3, 53–54
3,4-methylenedioxyamphetamine (MDA), 162
3,4-methylenedioxymethylamphetamine (MDMA), 162
metabolic syndrome (MetS)
definition, prevalence, 34
and dyslipidemia, 34, 36
and inflammation, 187, 191f
NCEP-ATP III clinical criteria, 34, 34t
pathophysiology, 34–35
and TH1/TH2 imbalance, 36–37
metalloproteinases (MMPs), 175–176, 176
methamphetamine (MA), 160–161
MetS. See metabolic syndrome
Mevalonate synthesis, 229, 230f
mitochondrial dysfunction and lipodystrophy; 146
mixed hematopoietic chimeras, 201
mouse models
atherosclerosis, 40–41
TNF-α, 49f
mycophenolate mofetil (MMF), 88
mycophenolate mofetil-prednisone (MMF-P), 267f
myocardial ECM, 3
myocardial regeneration
and autologous skeletal myoblasts, 280–281
bone marrow-derived cells, 280
cardiac cell survival in vivo, 284–285
cardiac progenitor cells, 282
cell types for, 280–284
clinical challenges, 284–285
embryonic stem cell-derived cardiomyocytes, 282–283
stem cell immunogenicity, 284–285
and umbilical cord blood cells, 282
of various stem cell populations, 281f
myocardial rescue, 202–203
myocarditis. See also experimental autoimmune myocarditis
and ACE inhibitors, 22
and alcohol, 162–163
alpha-myosin role, 18
animal models, 23
antibody measurements, 20–21
and anti-T-cell antibodies, 257–258, 259–260f
and autoimmune responses, 17
and cardiovascular magnetic resonance imaging, 21
and Chagas disease, 17
chronic vs. subacute, 17
and clozapine, 163–164
and cocaine, 163
and cocaethylene, 163
and cocaine, 157–160
and DCM, 10, 17
diagnostic approach, 20–22
electrocardiogram, 9
endomyocardial biopsy, 21
epidemiologic data, 17
and hepatocyte growth factor, 154
and HIV, 136–137
and IgG antibodies, 21
immune pathogenesis markers, 18
and immunosuppression, 22
and laser capture microdissection, 21
and MDA, 162
and MDEA, 162
and MDMA, 162
Myocarditis Treatment Trial, 9
necropsy studies, 9
noninfectious, 17–18
and opiates, 146–165
pediatric, 9–10
therapeutic targets, 154–155
T311/T312 cell involvement, 153–154
and TNF-alpha antagonists, 23
Toxoplasma gondii, 136
and viral infection, 18–19, 137
myogenic tone, 65–72, 67f, 68f, 69f
NADPH oxidase system, 7
neonates
anti-inflammatory response system in, 7
inflammatory cytokine responses, 7
TNF-α levels, 7
neutropenia, pediatric, 7
nitric oxide (NO), 29, 35
nonischemic cardiomyopathy (NICMP), 220f
Noradrenaline, 183
Nuclear factor-κB (NF-κB), 233
obesity, 187–188, 191f
and opiates, 164–165
osteoarthritis, 176–179, 177f
osteoarthritis
and bisphosphonates, 244–255, 245
and Interleukin-6, 244
plant polyphenols, fatty acids and, 245–246
and statins, 245
ovalbumin peptide-specific TCR transgenic CD8+ T cells, 152
parasitic protozoan Trypanosoma cruzi. See Chagas disease
dendritic cell inflammation and immunology
and ACE inhibitors, 22
and alcohol, 162–163
alpha-myosin role, 18
animal models, 23
antibody measurements, 20–21
and anti-T-cell antibodies, 257–258, 259–260f
and autoimmune responses, 17
and cardiovascular magnetic resonance imaging, 21
and Chagas disease, 17
parasitic protozoan Trypanosoma cruzi. See Chagas disease
parenchymal cell inflammatory response
vs. immune cell recruitment/infiltration, 8
patient management, 22–23
pediatric postpericardiotomy syndrome (PPS), 11
pediatrics
allograft rejection, 11
cardio output, 12
cardiovascular disease, 6
DCM, 10–11
heart disease, common forms, 13
immune system function, 6–8
inflammation, chronic heart failure, 12
Kawasaki disease, 8–9
myocarditis, 9–10
neutropenia, 7
postpericardiotomy syndrome, 11
sepsis, 7, 12–13
T-cells, 7
therapeutic issues, opportunities, 13
pentoxifylline, 53, 102
pericardial effusion, 140, 142–143
periodontal disease (PD), 271–277, 272
peripheral vascular disease, 147–148
peroxisome proliferator-activated receptor gamma ligand
(PPAR γ), 154
peroxisome proliferator-activated receptors (PPARs), 234
persistent pulmonary hypertension (PPHN), 13
PI-associated lipodystrophy, metabolic alteration
plant products, polyphenols, fatty acids
fungi, polyphenolic compounds, fatty acids, 236–238
and Interleukin-6, 239–240
and osteoporosis, 245–246
and Type 2 diabetes, 243–244
plaque, atheroma, 39–40
plasmapheresis, 220–222, 222r
polymorphonuclear neutrophils (PMNs), 7
post-translational collagen modification, 175–176
pravastatin, 88, 110, 112
preeclampsia
and endothelial cell dysfunction, 30
possible mediators, 30
and TGF-β1 cytokines, 30–31
protein kinases, 232
PROVE-IT, 109, 110r
renin-angiotensin system (RAS)
activation cascade, 116, 117f
and atherosclerosis, 116, 118–121
components, 116
resveratrol, 293–294
sepsis
and left ventricular ejection fraction, 12
mortality rate factors, 12
pediatric, 7, 12–13
and persistent pulmonary hypertension, 13
and systemic vascular resistance, 12
and TNF-α production, 12
septal coronary arteries
endothelium- and endothelium-dependent relaxation, 63–65, 65f, 65f
smooth cell muscle function, 64, 65f
serine/threonine kinases, 232–233
simvastatin, 22, 110
skin dendritic cells (DC), 4
smooth cell muscle function, 64, 65f
soy, 292
sphingosine, 51–53
statins. See HMG-CoA-reductase inhibitors
stem cells, 104, 183–184, 281f, 284–285
suramin, 154
systemic vascular resistance (SVR), 12
tacrolimus (FK506), 29, 74, 88, 266
T cells
and atherosclerosis, 41
blockade, 155
and CAV, 59
and CD40-CD40L, 112
and EAM, 152, 154
and hypertension, 28–29
and immunosuppression, by ultraviolet light-B radiation, 4
pediatric, 7
peripheral depletion, 201
and statins, 111–112
ultraviolet light-B induced immunosuppression, 4
tea, 295
TGF-β, 43–44
thalidomide, 103–104
3-Hydroxy-3-methylglutarylcoenzyme A (HMG-CoA) reductase inhibitors (statins). See
HMG-CoA-reductase inhibitors
thrombospondins (TSP), 176
TGF-β1/TGF-β2 cells, 4, 208, 209r
and alcohol, 163
and EAM, 153–154
and ECM remodeling, 3–4
and LV remodeling in MetS, 36–37
and myocarditis, 153
tissue inhibitors of metalloproteinases (TIMPs), 175
tNF-α, 145–146, 182–183
animal models, 49, 49f
and autoimmune heart failure, 23
and cardiac contractile function, 48–51
and cardiac function, 48–51, 49f, 50f
cardiosuppressive effects, in vitro, 50, 50f
and DCM, 23
and EAM, 155
etanercept impact on, 53
and heart failure, 23, 98, 100, 182–183
hemodynamics, 49f
and hypertrophy, 217–218
and lipodystrophy, 145–146
and matrix metalloproteinase activity, 53–54
mouse models, 49f
in neonates, 7
and pentoxifylline, 53, 102
TNF-α (Continued)

- receptors, 48
- RENAISSANCE, RECOVER studies, 53–54
- and sepsis, 12
- and sphingosine, 51

TNF-α induced contractile dysfunction
- and iNOS-NO pathways, 52–54
- mechanics, 51
- sphingosine pathway, 51–53

tolerance. See cardiac transplantation, tolerance
toll-like receptors (TLRs), 19–20
- and antigen-presenting cells, 20f
- and dendritic cell activation, 19–20

total lymphoid irradiation, 201
Toxoplasma gondii, 136

- tree nuts, 292

- tumor necrosis factor (TNF) antagonists, clinical trials, 129–130

Type 2 diabetes
- and bisphosphonates, 243
- and Interleukin-6, 242–243
- plant polyphenols, fatty acids and, 243–244
- and statins, 243
- tyrosine kinase, 232

- ultraviolet light-B induced immunosuppression, 4
- umbilical cord blood cells (UCBCs), 282

- vascular disease, peripheral, 147–148
- vascular smooth muscle cells (VSMCs), 40
- vasculitis, 140, 147
- viral infections
 - and DCM, 10
 - and myocarditis, 18–19, 137

- whole grains, 292