Contents

List of Contributors xi
Preface xiii
Acknowledgments xv
Glossary and Abbreviations xvii

1 Introduction
V. Naddeo, V. Belgiorno and T. Zarra

1.1 Origin and Definition 1
1.2 Quantifying Odour 2
1.3 Effects of Odour 3
1.4 Odour Impact Assessment Approaches 4
References 4

2 Odour Characterization and Exposure Effects
V. Naddeo, V. Belgiorno and T. Zarra

2.1 Attribute Descriptors 7
 2.1.1 Concentration 7
 2.1.2 Perceptibility or Olfactive Threshold 8
 2.1.3 Intensity 9
 2.1.4 Diffusibility 13
 2.1.5 Quality or Character 13
 2.1.6 Hedonic Tone or Offensiveness 15
2.2 Chemistry and Odours 16
 2.2.1 Vapour Pressure 16
 2.2.2 Water Solubility 17
 2.2.3 Chemical and Biological Oxidation 18
2.3 Odorous Compounds, Thresholds and Sources 19
2.4 Public Health Relevance of Odour Exposure 22
2.5 Odour Annoyance and Nuisance 24
 2.5.1 Odour Exposure 26
 2.5.2 People Response 27
 2.5.3 Sensitivity of Receptors 27
References 28
3 Instruments and Methods for Odour Sampling and Measurement

3.1 Introduction
3.2 Sampling Techniques
 3.2.1 Regulations and Guidelines
 3.2.2 General Aspects
 3.2.3 Sampling Program
3.3 Measurement of Odorous Substances
 3.3.1 Gas Chromatography and Mass-Spectrometry (GC/MS)
 3.3.2 Colorimetric Tubes
 3.3.3 Portable Multi-Gas Detectors
 3.3.4 Gas Analysers
3.4 Determination of Odour Concentration by Dynamic Olfactometry
3.5 Determination of Odour Concentration by the Triangular Odour Bag Method
3.6 Estimation of Emission Rate
3.7 Measurement of Odour Exposure by Field Assessment
3.8 Measurement of Odour by Sensor Arrays

References
4 Strategies for Odour Control 85
J. M. Estrada, R. Lebrero, G. Quijano, N. J. R. Kraakman and R. Muñoz
4.1 Introduction 85
4.2 Control of Odour Dispersion 87
4.3 Control of Odour Effects on an Exposed Community 90
4.4 Control of Odour Emission 92
4.4.1 Physical/Chemical Technologies 92
4.4.2 Biological Technologies 101
4.4.3 Technology Comparison Based on Case Studies 117
References 119

5 Dispersion Modelling for Odour Exposure Assessment 125
M. Piringer and G. Schauberger
5.1 Introduction 125
5.2 Odour Perception 126
5.2.1 Odour Intensity 126
5.2.2 Temporal Dimension 128
5.3 Overview on Types of Odour Dispersion Model 132
5.4 Algorithms to Estimate Short-Term Odour Concentrations 135
5.5 Annoyance 143
5.6 Odour Impact Criteria for Use in Dispersion Modelling 145
5.7 Meteorological Input to Odour Dispersion Models 152
5.7.1 Wind Information 152
5.7.2 Information on Atmospheric Stability 154
5.7.3 Information on the Mixing Height 160
5.8 Evaluation of Odour Dispersion Models 165
References 168

6 Odour Regulation and Policies 175
S. Sironi, L. Capelli, L. Dentoni and R. Del Rosso
6.1 Introduction 175
6.2 Regulation Based on Air Quality Standards and Limit Values 177
6.3 Regulation Based on Direct Exposure Assessment 178
6.4 Regulation Based on ‘No Annoyance’ 180
6.5 Regulation Based on Application of Best Practice 181
6.6 Comparison of Different Regulatory Approaches 183
References 183

7 Procedures for Odour Impact Assessment 187
V. Naddeo, V. Belgiorno and T. Zarra
7.1 Introduction 187
7.2 Factors Contributing to Odour Impact 187
7.2.1 Frequency of Detection 188
7.2.2 Intensity and Duration of Odour 188
Contents

7.2.3 Offensiveness 188
7.2.4 Location 189
7.2.5 Other Factors 189

7.3 Odour Impact Assessment from Exposure Measurement 190
 7.3.1 Field Sniff Testing 191
 7.3.2 Complaints and Odour Diaries 192
 7.3.3 Community Surveys 192
 7.3.4 Continuous Monitoring by E-Noses 192

7.4 Odour Impact Assessment from Sources 193
 7.4.1 Odour Sources 193
 7.4.2 Odour Emission Rate 194
 7.4.3 Meteorological Conditions 195
 7.4.4 Receptors and Sensitivity 195
 7.4.5 Dispersion Modelling 196
 7.4.6 Odour Impact Assessment 196

7.5 Mitigation of Odour Impact 197
 7.5.1 Responses to Driving Forces 198
 7.5.2 Responses to Pressures 199
 7.5.3 Responses to State 200
 7.5.4 Responses to Impact 200

7.6 Odour Monitoring 201
 7.6.1 Monitoring Plan 202
 7.6.2 Monitoring Report 202

References 203

8 Case Studies for Assessment, Control and Prediction of Odour Impact 205

8.1 Urban Wastewater Treatment Plant 205
 J. Lehtinen
 8.1.1 Motivation for the Study 205
 8.1.2 Description of the Situation 206
 8.1.3 Specific Objectives of the Study 207
 8.1.4 Methodology and Data Collection 208
 8.1.5 Results and Discussion 210
 8.1.6 Conclusions, Recommendations and Outcomes 216

References 218

8.2 Composting Plant 219
 S. Giuliani, T. Zarra, M. Reiser, V. Naddeo, M. Kranert and V. Belgiorno
 8.2.1 Motivation for the Study 219
 8.2.2 Material and Methods 220
 8.2.3 Results and Discussion 225
 8.2.4 Conclusions, Recommendations and Outcome 226

References 228
8.3 Landfill of Solid Waste 230
A.C. Romain and J. Nicolas
8.3.1 Motivation for the Study 230
8.3.2 Description of the Situation 230
8.3.3 Specific Objectives of the Study 232
8.3.4 Methodology 233
8.3.5 Data Collection 238
8.3.6 Results and Discussion 239
8.3.7 Conclusions, Recommendations and Outcomes 247
References 248
8.4 Industrial Activities 249
I. Sówka
8.4.1 Motivation for the Study 249
8.4.2 Identification of Industrial Odour Emission Sources 250
8.4.3 The Use of Selected Methods for Assessing the Odour Quality of Air 254
8.4.4 Conclusions, Recommendations and Outcomes 257
References 257
8.5 Concentrated Animal Feeding Operation (CAFO) Plants 259
K. Y. Wang
8.5.1 Motivation for the Study 259
8.5.2 Methodology 260
8.5.3 Dispersion Modeling Methodology 264
8.5.4 Results and Discussion 264
8.5.5 Conclusions, Recommendations and Outcomes 266
References 268
8.6 Assessment, Control and Management of Odour in Sensitive Areas 269
N. Kalogerakis and M. Lazaridis
8.6.1 Motivation for the Study 269
8.6.2 Description of the Situation 269
8.6.3 Specific Objectives of the Study 271
8.6.4 Methodology 271
8.6.5 Data Collection 271
8.6.6 Results and Discussion 273
8.6.7 Conclusions, Recommendations and Outcomes 281
References 282

Index 285