Contents

About the Editors xi
List of Contributors xiii
Series Preface xv
Introduction xvii

Part One TWO-WHEELED VEHICLES MODELLING AND SIMULATION

1 Motorcycle Dynamics 3
Vittore Cossalter, Roberto Lot, and Matteo Massaro

1.1 Kinematics 3
1.1.1 Basics of Motorcycle Kinematics 3
1.1.2 Handlebar Steering Angle and Kinematic Steering Angle 5

1.2 Tyres 6
1.2.1 Contact Forces and Torques 7
1.2.2 Steady-State Behaviour 9
1.2.3 Dynamic Behaviour 11

1.3 Suspensions 13
1.3.1 Suspension Forces 13
1.3.2 Suspensions Layout 14
1.3.3 Equivalent Stiffness and Damping 16

1.4 In-Plane Dynamics 18
1.4.1 Pitch, Bounce and Hops Modes 18
1.4.2 Powertrain 22
1.4.3 Engine-to-Slip Dynamics 24
1.4.4 Chatter 27

1.5 Out-of-Plane Dynamics 29
1.5.1 Roll Equilibrium 29
1.5.2 Motorcycle Countersteering 29
1.5.3 Weave, Wobble and Capsize 33

1.6 In-Plane and Out-of-Plane Coupled Dynamics 40
References 41
2 Dynamic Modelling of Riderless Motorcycles for Agile Manoeuvres
Yizhai Zhang, Jingang Yi, and Dezhen Song

2.1 Introduction 43
2.2 Related Work 44
2.3 Motorcycle Dynamics
 2.3.1 Geometry and Kinematics Relationships 45
 2.3.2 Motorcycle Dynamics 48
2.4 Tyre Dynamics Models
 2.4.1 Tyre Kinematics Relationships 51
 2.4.2 Modelling of Frictional Forces 52
 2.4.3 Combined Tyre and Motorcycle Dynamics Models 54
2.5 Conclusions 55

Nomenclature 55
Appendix A: Calculation of M_s 56
Appendix B: Calculation of Acceleration \dot{v}_G 57
Acknowledgements 57
References 57

3 Identification and Analysis of Motorcycle Engine-to-Slip Dynamics
Matteo Corno and Sergio M. Savarese

3.1 Introduction 59
3.2 Experimental Setup 60
3.3 Identification of Engine-to-Slip Dynamics
 3.3.1 Relative Slip 61
 3.3.2 Throttle Dynamics 72
3.4 Engine-to-Slip Dynamics Analysis
 3.4.1 Throttle and Spark Advance Control 74
 3.4.2 Motorcycle Benchmarking 75
3.5 Road Surface Sensitivity 78
3.6 Velocity Sensitivity 79
3.7 Conclusions 80
References 80

4 Virtual Rider Design: Optimal Manoeuvre Definition and Tracking
Alessandro Saccon, John Hauser, and Alessandro Beghi

4.1 Introduction 83
4.2 Principles of Minimum Time Trajectory Computation
 4.2.1 Tyre Modelling 87
 4.2.2 Engine and Drivetrain Modelling 88
 4.2.3 Brake Modelling 89
 4.2.4 Wheelie and Stoppie 90
4.3 Computing the Optimal Velocity Profile for a Point-Mass Motorcycle
 4.3.1 Computing the Optimal Velocity Profile for a Realistic Motorcycle 96
 4.3.2 Application to a Realistic Motorcycle Model 100
4.4 The Virtual Rider 102
 4.4.1 The Sliding Plane Motorcycle Model 102
4.5 Dynamic Inversion: from Flatland to State-Input Trajectories 103
 4.5.1 Quasi-Static Motorcycle Trajectory 104
 4.5.2 Approximate Inversion by Trajectory Optimization 106
4.6 Closed-Loop Control: Executing the Planned Trajectory 107
 4.6.1 Manoeuvre Regulation 107
 4.6.2 Shaping the Closed-Loop Response 112
 4.6.3 Interfacing the Maneuver Regulation Controller with the Multibody Motorcycle Model 113
4.7 Conclusions 115
4.8 Acknowledgements 116
References 116

5 The Optimal Manoeuvre 119
 Francesco Biral, Enrico Bertolazzi, and Mauro Da Lio
5.1 The Optimal Manoeuvre Concept: Manoeuvrability and Handling 121
 5.1.1 Optimal Manoeuvre Mathematically Formalised 123
 5.1.2 The Optimal Manoeuvre Explained with Linearized Motorcycle Models 124
5.2 Optimal Manoeuvre as a Solution of an Optimal Control Problem 133
 5.2.1 The Pontryagin Minimum Principle 136
 5.2.2 General Formulation of Unconstrained Optimal Control 137
 5.2.3 Exact Solution of a Linearized Motorcycle Model 139
 5.2.4 Numerical Solution and Approximate Pontryagin 142
5.3 Applications of Optimal Manoeuvre to Motorcycle Dynamics 145
 5.3.1 Modelling Riders’ Skills and Preferences with the Optimal Manoeuvre 146
 5.3.2 Minimum Lap Time Manoeuvres 148
5.4 Conclusions 152
References 152

6 Active Biomechanical Rider Model for Motorcycle Simulation 155
 Valentin Keppler
6.1 Human Biomechanics and Motor Control 156
 6.1.1 Biomechanics 157
 6.1.2 Motor Control 159
6.2 The Model 161
 6.2.1 The Human Body Model 161
 6.2.2 The Motorcycle Model 165
 6.2.3 Steering the Motorcycle 166
6.3 Simulations and Results 167
 6.3.1 Rider’s Vibration Response 168
 6.3.2 Lane Change Manoeuvre 170
 6.3.3 Path Following Performance 170
6.3.4 Influence of Physical Fitness 176
6.3.5 Analysing Weave Mode 176
6.3.6 Provoking Wobble Mode 178
6.3.7 Road Excitation and Ride Comfort 178

6.4 Conclusions 179
References 180

7 A Virtual-Reality Framework for the Hardware-in-the-Loop Motorcycle Simulation 183
Roberto Lot and Vittore Cossalter

7.1 Introduction 183
7.2 Architecture of the Motorcycle Simulator 184
7.2.1 Motorcycle Mock-up and Sensors 184
7.2.2 Realtime Multibody Model 185
7.2.3 Simulator Cues 186
7.2.4 Virtual Scenario 188
7.3 Tuning and Validation 188
7.3.1 Objective Validation 190
7.3.2 Subjective Validation 190
7.4 Application Examples 191
7.4.1 Hardware- and Human-in-the-Loop Testing of Advanced Rider Assistance Systems 192
7.4.2 Training and Road Education 194
References 194

Part Two TWO-WHEELED VEHICLES CONTROL AND ESTIMATION PROBLEMS

8 Traction Control Systems Design: A Systematic Approach 199
Matteo Corno and Giulio Panzani

8.1 Introduction 199
8.2 Wheel Slip Dynamics 202
8.3 Traction Control System Design 206
8.3.1 Supervisor 206
8.3.2 Slip Reference Generation 208
8.3.3 Control Law Design 209
8.3.4 Transition Recognition 212
8.4 Fine tuning and Experimental Validation 212
8.5 Conclusions 218
References 219

9 Motorcycle Dynamic Modes and Passive Steering Compensation 221
Simos A. Evangelou and Maria Tomas-Rodriguez

9.1 Introduction 221
9.2 Motorcycle Main Oscillatory Modes and Dynamic Behaviour 222
9.3 Motorcycle Standard Model 224
9.4 Characteristics of the Standard Machine Oscillatory Modes and the Influence of Steering Damping 226
9.5 Compensator Frequency Response Design 228
9.6 Suppression of Burst Oscillations 233
9.6.1 Simulated Bursting 233
9.6.2 Acceleration Analysis 235
9.6.3 Compensator Design and Performance 237
9.7 Conclusions 240
References 240

10 Semi-Active Steering Damper Control for Two-Wheeled Vehicles 243
Pierpaolo De Filippi, Mara Tanelli, and Matteo Corno
10.1 Introduction and Motivation 243
10.2 Steering Dynamics Analysis 245
10.2.1 Model Parameters Estimation 248
10.2.2 Comparison between Vertical and Steering Dynamics 251
10.3 Control Strategies for Semi-Active Steering Dampers 252
10.3.1 Rotational Sky-Hook and Ground-Hook 253
10.3.2 Closed-Loop Performance Analysis 255
10.4 Validation on Challenging Manoeuvres 257
10.4.1 Performance Evaluation Method 257
10.4.2 Validation of the Control Algorithms 258
10.5 Experimental Results 266
10.6 Conclusions 267
References 268

11 Semi-Active Suspension Control in Two-Wheeled Vehicles: a Case Study 271
Diego Delvecchio and Cristiano Spelta
11.1 Introduction and Problem Statement 271
11.2 The Semi-Active Actuator 272
11.3 The Quarter-Car Model: a Description of a Semi-Active Suspension System 275
11.4 Evaluation Methods for Semi-Active Suspension Systems 277
11.5 Semi-Active Control Strategies 279
11.5.1 Sky-hook Control 279
11.5.2 Mix-1-Sensor Control 280
11.5.3 The Ground-Hook Control 280
11.6 Experimental Set-up 281
11.7 Experimental Evaluation 281
11.8 Conclusions 289
References 289

12 Autonomous Control of Riderless Motorcycles 293
Yizhai Zhang, Jingang Yi, and Dezhen Song
12.1 Introduction 293
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>Trajectory Tracking Control Systems Design</td>
<td>294</td>
</tr>
<tr>
<td>12.2.1</td>
<td>External/Internal Convertible Dynamical Systems</td>
<td>294</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Trajectory Tracking Control</td>
<td>297</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Simulation Results</td>
<td>301</td>
</tr>
<tr>
<td>12.3</td>
<td>Path-Following Control System Design</td>
<td>305</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Modelling of Tyre–Road Friction Forces</td>
<td>306</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Path-Following Manoeuvring Design</td>
<td>306</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Simulation Results</td>
<td>308</td>
</tr>
<tr>
<td>12.4</td>
<td>Conclusion</td>
<td>315</td>
</tr>
<tr>
<td>12.4</td>
<td>Acknowledgements</td>
<td>317</td>
</tr>
<tr>
<td>12.4</td>
<td>Appendix A: Calculation of the Lie Derivatives</td>
<td>317</td>
</tr>
<tr>
<td>12.4</td>
<td>References</td>
<td>318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Estimation Problems in Two-Wheeled Vehicles</td>
<td>319</td>
</tr>
<tr>
<td>Ivo Boniolo, Giulio Panzani, Diego Delvecchio, Matteo Corno, Mara Tanelli, Cristiano Spelta, and Sergio M. Savaresi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>13.2</td>
<td>Roll Angle Estimation</td>
<td>320</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Vehicle Attitude and Reference Frames</td>
<td>322</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Experimental Set-up</td>
<td>324</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Accelerometer-Based Roll Angle Estimation</td>
<td>325</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Use of the frequency separation principle</td>
<td>328</td>
</tr>
<tr>
<td>13.3</td>
<td>Vehicle Speed Estimation</td>
<td>329</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Speed Estimation During Traction Manoeuvres</td>
<td>331</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Experimental Setup</td>
<td>331</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Vehicle Speed Estimation via Kalman Filtering and Frequency Split</td>
<td>331</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Experimental Validation</td>
<td>335</td>
</tr>
<tr>
<td>13.4</td>
<td>Suspension Stroke Estimation</td>
<td>337</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Problem Statement and Estimation Law</td>
<td>337</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Experimental Results</td>
<td>339</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
<td>342</td>
</tr>
<tr>
<td>13.5</td>
<td>References</td>
<td>342</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td></td>
<td>345</td>
</tr>
</tbody>
</table>