## CONTENTS

### PREFACE

ix

### 1. Fundamentals of Chromatography

1.1 Theory  
1.1.1 Component Separation  
1.1.2 Retention Factor  
1.1.3 Separation  
1.1.4 Resolution and Theoretical Plates  
1.2 Band Broadening  
1.2.1 Diffusion  
1.2.2 Linear Velocity  
1.2.3 Broadening in Open Tubes with No Stationary Phase and No Retention  
1.2.4 Broadening in Open Tubes with a Stationary Phase  
1.2.5 Broadening in a Packed Column  
1.2.6 Putting It All Together  
1.2.7 Practical Consequences of Broadening Theory  
1.3 General Resolution Equation  
1.4 Peak Symmetry  
1.5 Key Operating Variables  
1.6 Instrumentation  
1.7 Practice of The Technique  
1.7.1 Quantitation  
1.7.2 Internal Standards and the Method of Standard Additions  
1.8 Emerging Trends and Applications  
1.9 Summary  

Problems  
References  
Further Reading

### 2. Gas Chromatography

2.1 Theory of Gas Chromatographic Separations  
2.1.1 GC Columns and Partitioning  
2.2 Key Operating Variables that Control Retention  

References  
Further Reading
CONTENTS

2.2.1 Adjusting Retention Time: Temperature 65
2.2.2 Adjusting Retention Time: Temperature Programming 67
2.2.3 Adjusting Retention Time: Mobile Phase Flow Rate 69
2.2.4 Adjusting Retention Time: The Column and the Stationary Phase 72
2.2.5 Adjusting Retention Time: Summary 78
2.2.6 Measures of Retention 78

2.3 Gas Chromatography Instrumentation 82
2.3.1 Carrier Gas Supply 83
2.3.2 The Injection Port and the Solute Injection Process 83
2.3.3 Oven/Column Compartment 97
2.3.4 Detectors 98

2.4 A More Detailed Look at Stationary Phase Chemistry: Kovats Indices and Mcreynolds Constants 111
2.4.1 Kovats Retention Indices 111
2.4.2 Stationary Phase Selection 120

2.5 Gas Chromatography in Practice 124
2.5.1 Syringe Washing 124
2.5.2 Controls and Blanks/Ghost Peaks 124
2.5.3 Autosamplers 125
2.5.4 GC Septa 125
2.5.5 Qualitative Analysis 126
2.5.6 Quantitative Analysis 126
2.5.7 Derivatization 128
2.5.8 High-Speed GC 128
2.5.9 Tandem GC 129
2.5.10 Microfabricated GC 129

2.6 A “Real-World” Application of Gas Chromatography 131
2.6.1 GC and International Oil Trading 131

2.7 Summary 136
Problems 137
References 143
Further Reading 144

3. Liquid Chromatography 145
3.1 Examples of Liquid Chromatography Analyses 145
3.2 Scope of Liquid Chromatography 147
3.3 History of LC 148
3.3.1 Modern Packing Materials 149
3.4 Modes of Liquid Chromatography 152
3.4.1 Normal Phase Liquid Chromatography (NPLC) 152
3.4.2 Reversed-Phase Liquid Chromatography (RPLC) 154
3.4.3 Ion-Exchange Chromatography (IEX) 165
3.4.4 Hydrophilic Interaction Chromatography (HILIC) 173